Extensions of some classical local moves on knot diagrams

Abstract : We consider the quotient of welded knotted objects under several equivalence relations, generated respectively by self-crossing changes, ∆ moves, self-virtualizations and forbidden moves. We prove that for welded objects up to forbidden moves or classical objects up to ∆ moves, the notions of links and string links coincide, and that they are classified by the (virtual) linking numbers; we also prove that the ∆ move is an unknotting operation for welded (long) knots. For welded knotted objects, we prove that forbidden moves imply the ∆ move, the self-crossing change and the self-virtualization, and that these four local moves yield pairwise different quotients, while they collapse to only two distinct quotients in the classical case.
Type de document :
Article dans une revue
Michigan Mathematical Journal, University of Michigan, 2017
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

Contributeur : Benjamin Audoux <>
Soumis le : lundi 19 octobre 2015 - 07:09:29
Dernière modification le : mardi 23 octobre 2018 - 15:21:24
Document(s) archivé(s) le : jeudi 27 avril 2017 - 07:14:10


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01217085, version 1
  • ARXIV : 1510.04237


Benjamin Audoux, Paolo Bellingeri, Jean-Baptiste Meilhan, Emmanuel Wagner. Extensions of some classical local moves on knot diagrams. Michigan Mathematical Journal, University of Michigan, 2017. 〈hal-01217085〉



Consultations de la notice


Téléchargements de fichiers