Improvement of code behaviour in a design of experiments by metamodeling

Abstract : It is now common practice in nuclear engineering to base extensive studies on numerical computer models. These studies require to run computer codes in potentially thousands of numerical configurations and without expert individual controls on the computational and physical aspects of each simulations. In this paper, we compare different statistical metamodeling techniques and show how metamodels can help to improve the global behaviour of codes in these extensive studies. We consider the metamodeling of the Germinal thermalmechanical code by Kriging, kernel regression and neural networks. Kriging provides the most accurate predictions while neural networks yield the fastest metamodel functions. All three metamodels can conveniently detect strong computation failures. It is however significantly more challenging to detect code instabilities, that is groups of computations that are all valid, but numerically inconsistent with one another. For code instability detection, we find that Kriging provides the most useful tools.
Type de document :
Pré-publication, Document de travail
2015
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01216697
Contributeur : François Bachoc <>
Soumis le : lundi 19 octobre 2015 - 19:37:38
Dernière modification le : samedi 27 octobre 2018 - 01:27:46
Document(s) archivé(s) le : jeudi 27 avril 2017 - 07:21:03

Fichiers

bachoc_ammar_martinez_improvem...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01216697, version 1
  • ARXIV : 1511.03046

Citation

François Bachoc, Jean-Marc Martinez, Karim Ammar. Improvement of code behaviour in a design of experiments by metamodeling. 2015. 〈hal-01216697〉

Partager

Métriques

Consultations de la notice

328

Téléchargements de fichiers

132