
HAL Id: hal-01215582
https://hal.science/hal-01215582

Submitted on 14 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contrast estimation for parametric stationary
determinantal point processes

Christophe Ange Napoléon Biscio, Frédéric Lavancier

To cite this version:
Christophe Ange Napoléon Biscio, Frédéric Lavancier. Contrast estimation for parametric stationary
determinantal point processes. Scandinavian Journal of Statistics, 2016. �hal-01215582�

https://hal.science/hal-01215582
https://hal.archives-ouvertes.fr


Contrast estimation for parametric stationary

determinantal point processes

Christophe Ange Napoléon Biscio1 and Frédéric Lavancier1,2

1 Laboratoire de Mathématiques Jean Leray, University of Nantes, France
2 Inria, Centre Rennes Bretagne Atlantique, France

Abstract

We study minimum contrast estimation for parametric stationary determinan-
tal point processes. These processes form a useful class of models for repulsive
(or regular, or inhibitive) point patterns and are already applied in numerous
statistical applications. Our main focus is on minimum contrast methods
based on the Ripley’s K-function or on the pair correlation function. Strong
consistency and asymptotic normality of theses procedures are proved under
general conditions that only concern the existence of the process and its reg-
ularity with respect to the parameters. A key ingredient of the proofs is the
recently established Brillinger mixing property of stationary determinantal
point processes. This work may be viewed as a complement to the study of Y.
Guan and M. Sherman who establish the same kind of asymptotic properties
for a large class of Cox processes, which in turn are models for clustering (or
aggregation).

Keywords: Ripley’s K function, pair correlation function, Brillinger mixing,
central limit theorem.

1 Introduction

Determinantal point processes (DPPs) are models for repulsive (or regular, or in-
hibitive) point processes data. They have been introduced by O. Macchi in [21] to
model the position of fermions, which are particles that repel each others. Their
probabilistic aspects have been studied thoroughly, in particular in [28], [27] and [13].
Recently, DPPs have been studied and applied from a statistical perspective. A de-
scription of their main statistical aspects is conducted in [19] and they actually turn
out to be a well-adapted statistical model in domains as statistical learning [16],
telecommunications [8, 22], biology and ecology (see the examples in [19] and [18]).

A DPP is defined through a kernel C, basically a covariance function. Assuming
a parametric form for C, several estimation procedures are considered in [19], specif-
ically the maximum likelihood method and minimum contrast procedures based on
the Ripley’s K function or the pair correlation g. These methods are implemented
in the spatstat library [1, 2] of R [25]. From the simulation study conducted in [19]
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and [18], see also Section 2.2, the maximum likelihood procedure seems to be the
best method in terms of quadratic loss. However, the expression of the likelihood
relies in theory on a spectral representation of C, which is rarely known in practice,
and some Fourier approximations are introduced in [19]. The likelihood also involves
the determinant of a n × n matrix, where n is the number of observed points, which
is prohibitively time consuming to compute when n is large. In contrast, the esti-
mation procedures based on K or g do not require the knowledge of any spectral
representation of C and are faster to compute in presence of large datasets, which
explain their importance in practice.

From a theoretical point of view, neither the likelihood method nor the minimum
contrast methods for DPPs have been studied thoroughly, even in assuming that a
spectral method for C is known. In this work, we focus on parametric stationary
DPPs and we prove the strong consistency and the asymptotic normality of the min-
imum contrast estimators based on K and g. These questions are in connection with
the general investigation of Y. Guan and M. Sherman [10], who study the asymp-
totic properties of the latter estimators for stationary point processes. However the
setting in [10] has a clear view to Cox processes and the assumptions involve both
α-mixing and Brillinger mixing conditions, which are indeed satisfied for a large
class of Cox processes. Unfortunately these results do no apply straightforwardly to
DPPs. We consider instead more general versions of the asymptotic theorems in [10]
and we prove that they apply nicely to DPPs. Our main ingredient then becomes
the Brillinger mixing property of stationary DPPs, recently proved in [4], and we
do not need any α-mixing condition. Our asymptotic results finally gather a very
large class of stationary DPPs, where the main assumptions are quite standard and
only concern the regularity of the kernel C with respect to the parameters. As an
extension to the results in [10], it is worth mentioning the study of [32] dealing with
constrast estimation for some inhomogeneous spatial point processes, still under a
crucial α-mixing condition. We do not address this generalization for DPPs in the
present work.

The remainder of this paper is organized as follows. In Section 2, we recall
the definition of stationary DPPs, some of their basic properties and we discuss
parametric estimation of DPPs. Our main results are presented in Section 3, namely
the asymptotic properties of the minimum contrast estimators of a DPP based on
the K or the g function. Section 4 gathers the proofs of our main results. In the
appendix, we finally present our general asymptotic result for minimum contrast
estimators and some auxiliary materials.

2 Stationary DPPs and parametric estimation

2.1 Stationary DPPs

We refer to [6, 7] for a general presentation on point processes. Let X be a simple
point process on Rd. For a bounded set D ⊂ Rd, denote by X(D) the number of
points of X in D and let E be the expectation over the distribution of X. If there
exists a function ρ(k) : (Rd)k → R+, for k ≥ 1, such that for any family of mutually
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disjoint subsets D1, . . . , Dk in Rd

E
k∏

i=1

X(Di) =
∫

D1

. . .
∫

Dk

ρ(k)(x1, . . . , xk)dx1 . . . dxk,

then this function is called the joint intensity of order k of X. If X is stationary,
ρ(k)(x1, . . . , xk) = ρ(k)(0, x2 −x1, . . . , xk −x1) and in particular ρ(1) = ρ is a constant.
From its definition, the joint intensity of order k is unique up to a Lebesgue nullset.
Henceforth, for ease of presentation, we ignore nullsets. In particular we will say
that a function is continuous whenever there exists a continuous version of it.

Determinantal point processes (DPPs) are defined through their joint intensities.
We refer to the survey by Hough et al. [13] for a general presentation including the
non-stationary case and the extension to complex-valued kernels. We focus in this
work on stationary DPPs and so we restrict the definition to this subclass. We also
consider for simplicity real-valued kernels.

Definition 2.1. Let C : Rd → R be a function. A point process X on Rd is a
stationary DPP with kernel C, in short X ∼ DP P (C), if for all k ≥ 1 its joint
intensity of order k exists and satisfies the relation

ρ(k)(x1, . . . xk) = det[C](x1, . . . , xk)

for every (x1, . . . , xk) ∈ Rdk, where [C](x1, . . . , xk) denotes the matrix with entries
C(xi − xj), 1 ≤ i, j ≤ k.

Conditions on C ensuring the existence of DP P (C) are recalled in the next
proposition. We define the Fourier transform of a function h ∈ L1(Rd) as

F(h)(t) =
∫

Rd
h(x)e2iπx·tdx, ∀t ∈ Rd

and we consider its extension to L2(Rd) by Plancherel’s theorem, see [30].

Condition K(ρ). A kernel C is said to verify condition K(ρ) if C is a symmetric
continuous real-valued function in L2(Rd) with C(0) = ρ and 0 ≤ F(C) ≤ 1.

Proposition 2.2 ([28, 19]). Assume C satisfies K(ρ). Then DP P (C) exists and is
unique if and only if 0 ≤ F(C) ≤ 1.

In short, DP P (C) exists whenever C is a continuous covariance function in
L2(Rd) with F(C) ≤ 1. This makes easy the construction of parametric families
of DPPs, simply considering parametric families of covariance functions where the
condition F(C) ≤ 1 appears as a constraint on the parameters. Some examples are
given in [19], [5] and in the next section.

By definition, all moments of a DPP are known, in particular the pair correlation
(pcf) and the Ripley’s K-function can explicitly be expressed in terms of the kernel.
For C satisfying K(ρ), let R(x) = C(x)/C(0) be the correlation function associated
to C. The pcf, defined in the stationary case for all x ∈ Rd by g(x) = ρ(2)(0, x)/ρ2,
writes

g(x) = 1 − R2(x).
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The Ripley’s K-function is in turn given for all t ≥ 0 by

K(t) =
∫

B(0,t)
g(x)dx =

∫

B(0,t)
(1 − R2(x))dx (2.1)

where B(0, t) is the Euclidean ball centred at 0 with radius t. For later purposes,
we denote by cred

[k] the density of the reduced factorial cumulant moment measures
of order k of X. We refer to [4] for the definition and further details, where the
following particular cases are derived. Assuming that the kernel C of X satisfies
K(ρ), we have for all (u, v, w) ∈ R3d

cred
[2] (u) = −C2(u), (2.2)

cred
[3] (u, v) = 2 C(u)C(v)C(v − u), (2.3)

cred
[4] (u, v, w) = −2

[
C(u)C(v)C(u − w)C(v − w) + C(u)C(w)C(u − v)C(v − w)

+ C(v)C(w)C(u − v)C(u − w)
]
. (2.4)

2.2 Parametric estimation of DPPs

We consider a parametric family of DPPs with kernel Cρ,θ where ρ = Cρ,θ(0) > 0
and θ belongs to a subset Θρ of Rp, for a given p ≥ 1. To ensure the existence of
DP P (Cρ,θ), we assume that for all ρ > 0 and any θ ∈ Θρ, the kernel Cρ,θ verifies
K(ρ), which explains the indexation of Θρ by ρ. We assume further that for a given
ρ0 > 0 and θ0 in the interior of Θρ0

(provided this interior is non-empty) we observe
the point process X ∼ DP P (Cρ0,θ0

) on a bounded domain Dn ⊂ Rd.

The standard estimator of the intensity ρ0 is

ρ̂n =
1

|Dn|
∑

x∈X

1{x∈Dn} (2.5)

where |Dn| denotes the Lebesgue volume of Dn. Since a stationary DPP is ergodic,
see [28], this estimator is strongly consistent by the ergodic theorem, and it is
asymptotically normal, cf [29] and [4]. In the following, we focus our attention on
the estimation of θ0. As explained in [18], likelihood inference is in theory feasible
if we know a spectral representation of Cρ,θ on Dn. Unfortunately no spectral
representations are known in the general case and some Fourier approximations
are introduced in [18]. Another option is to consider minimum contrast estimators
(MCE) as described below.

For ρ > 0 and θ ∈ Θρ, let J(., θ) be a function from Rd into R+ which is a
summary statistic of DP P (Cρ,θ) that does not depend on ρ. In the DPP’s case, the
most important and natural examples are the K-function and the pcf g, that we
study in detail in the following. Consider Ĵn an estimator of J from the observation
of X on Dn. Further, let c ∈ R, c 6= 0, be a parameter such that Ĵn(t)c and J(t, θ)c

are well defined for all t ∈ R and θ ∈ Θρ0
. Finally, define for 0 ≤ rmin < rmax, the

discrepancy measure

Un(θ) =
∫ rmax

rmin

w(t)
{
Ĵn(t)c − J(t, θ)c

}2
dt (2.6)
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where w is a smooth weight function. The MCE of θ0 is

θ̂n = arg min
θ∈Θρ̂n

Un(θ). (2.7)

For example, let us consider the parametric family of DPPs with Gaussian kernels

C(x) = ρe−| x
α |2

, x ∈ Rd, (2.8)

where |.| denote the Euclidean norm on Rd, ρ > 0 and α ≤ 1/(
√

πρ1/d), the latter
constraint on the parameter space being a consequence of the existence condition
F(C) ≤ 1 in K(ρ). Some realizations are shown in Figure 1. For comparison, we
have estimated the parameter α of this model with the MCE (2.7) when J corre-
sponds to K or g, and with the maximum likelihood method (using the Fourier
approximation of the spectral representation of C introduced in [19]). The estima-
tors of K and g, in place of Ĵn in (2.7), are standard and recalled in Sections 3.2-3.3,
see also [23, Chapter 4]. For the tuning parameters, we followed the standard choice
w(t) = 1, rmin = 0.01, rmax as one quarter of the side length of the window and
c = 0.5 as recommended in [9] for repulsive point processes. This simulation study
has been carried out with the functions implemented in the spatstat library. Ta-
ble 1 reports the mean squared errors of the three mentioned methods over 500
realisations of DP P (C) with ρ = 100 and α = 0.01, 0.03, 1

10
√

π
, observed on [0, 1]2,

[0, 2]2 and [0, 3]2.

Figure 1: Realizations on [0, 1]2 of DPPs with kernel (2.8) where ρ = 100 and from
left to right α = 0.01, 0.03, 1

10
√

π
.

For all methods considered in Table 1, the estimators seem consistent and the
precision, in the sense of the mean squared errors, increases with the size of the
observation window. From these results, the maximum likelihood method seems to
be the best method in terms of quadradic loss, which agrees with the observations
made in [19]. However, MCEs, especially the one based on g, seem to perform
reasonably well. Moreover, their computation is faster than the maximum likelihood
method and do not rely on an approximated spectral representation of C. For
instance, with a regular laptop, the estimation of α for 500 realizations on [0, 3]2

took about 30 minutes for the MCEs based on K and g against more than 7 hours
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[0, 1]2 [0, 2]2 [0, 3]2

K g ML K g ML K g ML

α = 0.01 2.026 1.039 1.032 0.848 0.309 0.220 0.521 0.175 0.096

α = 0.03 1.214 0.706 0.786 0.419 0.248 0.175 0.231 0.180 0.084

α = 1/(10
√

π) 0.356 0.588 0.225 0.113 0.258 0.061 0.051 0.176 0.022

Table 1: Mean squared errors of the MCE (2.7) when J = K, J = g, and the maxi-
mum likelihood method estimator (ML) as approximated in [19]. These values are
estimated from 500 realizations of DPPs on [0, 1]2, [0, 2]2 and [0, 3]3 with kernel (2.8),
ρ = 100 and α = 0.01, 0.03, 1

10
√

π
. All entries are multiplied by 104 to make the

table more compact.

by the maximum likelihood method. Finally, it seems that each estimator has an
asymptotic Gaussian behaviour, as illustrated in Figure 2 where we have represented
the histograms obtained from the estimations of α = 0.03 over 500 realizations
on [0, 1]2 as in Table 1. The remainder of this paper is dedicated to proving the
asymptotic normality of the MCE (2.7) when J = K or J = g and X is a stationary
DPP. The asymptotic properties of the maximum likelihood estimator remain an
open problem. Note finally that a solution to improve the efficiency of the MCEs,
still avoiding the computation of the likelihood, is to construct an optimal linear
combination of the MCE based on K and the MCE based on g, see [20] for a general
presentation of the procedure and [17] for an example in spatial statistics.
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Figure 2: Histograms of the estimations of α = 0.03 from 500 realizations of DPPs
with kernel (2.8) on [0, 1]2. From left to right : MCE (2.7) based on K, MCE (2.7)
based on g and maximum likelihood estimator.
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3 Asymptotic properties of minimum contrast es-

timators based on K and g

3.1 Setting

In the next sections we study the asymptotic properties of (2.7) when J = K and
J = g, respectively. The asymptotic is to be understood in the following way. We
assume to observe one realization of X on Dn and we let Dn to expand to Rd as
detailed below. We denote by ∂Dn the boundary of Dn.

Definition 3.1. A sequence of subsets {Dn}n∈N of Rd is called regular if for all
n ∈ N, Dn ⊂ Dn+1, Dn is compact, convex and there exist constants α1 and α2 such
that

α1nd ≤ |Dn| ≤ α2nd,

α1nd−1 ≤ Hd−1 (∂Dn) ≤ α2nd−1

where Hd−1 is the (d − 1)-dimensional Hausdorff measure.

Henceforth, we consider the estimator (2.7) under the setting of Section 2.2 where
{Dn}n∈N is a sequence of regular subsets of Rd. Moreover, for any ρ > 0 and θ ∈ Θρ,
we assume that the correlation function associated to Cρ,θ, denoted by Rθ, does not
depend on ρ but only on θ, i.e. Rθ = Cρ,θ/ρ. Note that this is the case for all
parametric families considered in [19] and [5], including the Whittle-Matèrn, the
generalized Cauchy and the generalized Bessel families.

For r > 0, we denote by Θ⊕r
ρ0

:= Θρ0
+B(0, r) the r-dilation of Θρ0

, where B(0, r)
denotes the closed ball centred at 0 with radius r. Further, for all x ∈ Rd, denote
R

(1)
θ (x) and R

(2)
θ (x), the gradient, respectively the Hessian matrix, of Rθ(x) with

respect to θ. We make the following assumptions. Specific additional hypotheses in
the case J = K and J = g are described in the respective sections.

(H1) For all ρ > 0, Θρ is a compact convex set with non-empty interior and the
mapping ρ → Θρ is continuous with respect to the Haussdorff distance on the
compact sets.

(H2) For all θ ∈ Θρ0
, Cρ0,θ verifies the condition K(ρ0) and there exists ǫ > 0 such

that for all θ ∈ Θ⊕ǫ
ρ0

, Cρ0,θ ∈ L2(Rd) and F(Cρ0,θ) ≥ 0.

(H3) There exists ǫ > 0 such that for all x ∈ B(0, rmax), the function θ 7→ Rθ(x) is
of class C2 on Θ⊕ǫ

ρ0
. Further, for i ∈ {1, 2}, there exists M > 0 such that for

all x ∈ B(0, rmax) and θ ∈ Θ⊕ǫ
ρ0

,
∣∣∣R(i)

θ (x)
∣∣∣ ≤ M .

The first assumption is needed to handle the fact that the minimisation (2.7) is
done over the random set Θρ̂n

in place of Θρ0
. The two other assumptions deal with

the regularity of the kernel with respect to the parameters.
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3.2 MCE based on K

Since for any ρ > 0 and θ ∈ Θρ Rθ = Cρ,θ/ρ is assumed to not depend on ρ, the
K-function (2.1) of DP P (Cρ,θ) does not depend on ρ. Consequently we denote it
by K(., θ). For all t ≥ 0 and n ∈ N, we consider the estimator of the K-function,
see [23, Chapter 4],

K̂n(t) :=
1

ρ̂n
2

6=∑

(x,y)∈X2

1{x∈Dn}1{y∈D⊖t
n }

1{|x−y|≤t}
|D⊖t

n | (3.1)

where ρ̂n is as in (2.5) and for t ≥ 0, D⊖t
n := {x ∈ Dn, B(x, t) ∈ Dn}.

For all t ∈ [rmin, rmax], denote by K(1)(t, θ) and K(2)(t, θ) the gradient and the
Hessian matrix of K(t, θ) with respect to θ. We consider the following assumptions.

(HK1) w is a positive and integrable function in [rmin, rmax].

(HK2) If rmin = 0, then c ≥ 2.

(HK3) For θ1 6= θ2, there exists a set A ∈ [rmin, rmax] of positive Lebesgue measure
such that

∫

x∈B(0,t)
Rθ1

(x)2dx 6=
∫

x∈B(0,t)
Rθ2

(x)2dx, ∀t ∈ A.

(HK4) The matrix
∫ rmax

rmin
w(t)K(t, θ0)

2c−2K(1)(t, θ0)K(1)(t, θ0)T dt is invertible.

Assumption (HK1) is not restrictive. The constraint on c implied by (HK2) in
the case rmin = 0 tends to confirm the practice, which consists in the choice rmin > 0.
(HK3) is an identifiability assumption and (HK4) turns out to be the main technical
assumption. Define for all t ∈ [rmin, rmax],

jK(t) := w(t)K(t, θ0)
2c−2K(1)(t, θ0).

The following theorem states the strong consistency and the asymptotic normality
of the MCE based on K for stationary DPPs. It is proved in Section 4.1.

Theorem 3.2. Let X be a DPP with kernel Cρ0,θ0
= ρ0Rθ0

for a given ρ0 > 0
and θ0 an interior point of Θρ0

. For all n ∈ N, let Un be defined as in (2.6) with

J = K and Ĵn = K̂n. Assume that (H1)-(H3) and (HK1)-(HK4) hold. Then, the
minimum contrast estimator θ̂n defined by (2.7) exists and is strongly consistent for
θ0. Moreover, it satisfies

√
|Dn|(θ̂n − θ0)

distr.−−−−→
n→+∞

N
[
0, B−1

θ0
Σρ0,θ0

{B−1
θ0

}T
]

with

Bθ0
:=
∫ rmax

rmin

w(t)K(t, θ0)2c−2K(1)(t, θ0)K(1)(t, θ0)T dt (3.2)
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and

Σρ0,θ0
=
∫ rmax

rmin

∫ rmax

rmin

hρ0,θ0
(t1, t2)jK(t1)jK(t2)dt1dt2

where hρ0,θ0
can be expressed in terms of Cρ0,θ0

. Specifically, for all (t1, t2) ∈
[rmin, rmax]2,

hρ0,θ0
(t1, t2) := 2

∫

Rd
1{0<|x|≤t1}1{0<|x|≤t2}

(
cred

[2] (x) + ρ2
0

)
dx

+ 4
∫

R2d
1{0<|x|≤t1}1{0<|y−x|≤t2}

(
cred

[3] (x, y) + ρ0cred
[2] (y)

)
dxdy

+ 4ρ0

∫

R2d
1{0<|x|≤t1}1{0<|y|≤t2}

(
2cred

[2] (y) + ρ2
0

)
dxdy

+
∫

R3d
1{0<|x|≤t1}1{0<|z−y|≤t2}cred

[4] (x, y, z)dxdydz

+ 4ρ0

∫

R3d
1{0<|x|≤t1}1{0<|z−y|≤t2}c

red
[3] (y, z)dxdydz

+ 2
∫

R3d
1{0<|x|≤t1}1{0<|x+z−y|≤t2}cred

[2] (y)cred
[2] (z)dxdydz

+ 4ρ2
0

∫

R3d
1{0<|x|≤t1}1{0<|z−y|≤t2}c

red
[2] (y)dxdydz

− 4ρ0

∫

R2d
1{0<|x|≤t1}K(t2, θ0)

(
cred

[3] (x, y) + 2ρ0cred
[2] (y)

)
dxdy

− 8ρ0

∫

Rd
1{0<|x|≤t1}K(t2, θ0)

(
cred

[2] (x) + ρ2
0

)
dx

+ 4ρ2
0K(t1, θ0)K(t2, θ0)

(
ρ0 −

∫

Rd
Cρ0,θ0

(x)2dx
)

where cred
[2] , cred

[3] and cred
[4] are given with respect to Cρ0,θ0

in (2.2)-(2.4).

Let us notice that the finiteness of the integrals involved in the last expression
follows from the Brillinger mixing property of the DPPs with kernel verifying the
condition K(ρ0), see [4].

3.3 MCE based on g

We assume in this section that all DPPs of the parametric family are isotropic, which
is the usual practice when dealing with the pair correlation function. In this case,
for all ρ > 0 and θ ∈ Θρ, there exists R̃θ such that Rθ(x) = R̃θ(|x|) for all x ∈ Rd

so that the pcf of DP P (Cρ,θ) writes

g(x, θ) = 1 − R̃θ(|x|)2 =: g̃(|x|, θ) (3.3)

and does not depend on ρ. In the following, to alleviate the notation, we omit the
symbol tilde and for all θ ∈ Θρ, we consider that the domain of definition of Rθ(.)
and g(., θ) is R+. Moreover, by symmetry we extend this domain to R. Denote, for
all d ≥ 2, the surface area of the d-dimensional unit ball,

σd :=
2πd/2

Γ (d/2)
.
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For n ∈ N and t > 0, we consider the kernel estimator of g, see [23, Section 4.3.5],

ĝn(t) :=
1

σdtd−1ρ̂n
2

6=∑

(x,y)∈X2

1{x∈Dn, y∈Dn}
1

bn|Dn ∩ Dx−y
n |k

(
t − |x − y|

bn

)
(3.4)

where for any z ∈ Rd Dz
n := {u, u + z ∈ Dn}, ρ̂n is as in (2.5) and bn and k are the

bandwidth and the kernel to be chosen according to the assumptions below. For
all t ∈ [rmin, rmax], denote by g(1)(t, θ) and g(2)(t, θ) the gradient and the Hessian
matrix of g with respect to θ. We consider the assumptions:

(Hg1) rmin > 0.

(Hg2) w is a positive and continuous function on [rmin, rmax].

(Hg3) The kernel k is positive, symmetric and bounded with compact support in-
cluded in [−T, T ] for a given T > 0. Further,

∫
R k(x)dx = 1.

(Hg4) {bn}n∈N is a positive sequence, bn → 0, bn|Dn| → +∞ and b4
n|Dn| → 0.

(Hg5) There exists ǫ > 0 such that for all θ ∈ Θ⊕ǫ
ρ0

, Rθ(.) is of class C2 on R \ {0}.

(Hg6) For θ1 6= θ2, there exists a set A ∈ [rmin, rmax] of positive Lebesgue measure
such that

|Rθ1
(t)| 6= |Rθ2

(t)| , ∀t ∈ A.

(Hg7) The matrix
∫ rmax

rmin
w(t)g(t, θ0)

2c−2g(1)(t, θ0)g(1)(t, θ0)
T dt is invertible.

The first four assumptions are easy to satisfy by appropriate choices of rmin, w, bn

and k. (Hg5) is not restrictive and is satisfied by all parametric families considered
in [19] and [5]. (Hg6) is an identifiability assumption and as in the previous section,
the main technical assumption is in fact (Hg7). The proof of the following theorem
is postponed to Section 4.2. Put

jg(t) := w(t)g(t, θ0)
2c−2g(1)(t, θ0), t ∈ [rmin, rmax].

Theorem 3.3. Let X be an isotropic DPP with kernel Cρ0,θ0
= ρ0Rθ0

for a given
ρ0 > 0 and θ0 an interior point of Θρ0

. For all n ∈ N, let Un be defined as in (2.6)
with J = g and Ĵn = ĝn. Assume that (H1)-(H3) and (Hg1)-(Hg7) hold. As-
sume further that for all θ ∈ Θρ0

, Rθ(.) is isotropic. Then, the minimum contrast

estimator θ̂n defined by (2.7) exists and is consistent for θ0. Moreover, it satisfies

√
|Dn|(θ̂n − θ0)

distr.−−−−→
n→+∞

N
[
0, B−1

θ0
Σρ0,θ0

{B−1
θ0

}T
]

with

Bθ0
:=
∫ rmax

rmin

w(t)g(t, θ0)
2c−2g(1)(t, θ0)g(1)(t, θ0)

T dt
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and

Σρ0,θ0
= 2

∫

Rd
1{rmin≤|x|≤rmax}

jg(|x|)jg(|x|)
σ2

d|x|2(d−1)

(
cred

[2] (x) + ρ2
0

)
dx

+ 4
∫

R2d
1{rmin≤|x|,|y−x|≤rmax}

jg(|x|)jg(|y − x|)
σ2

d|x|d−1|y − x|d−1

(
cred

[3] (x, y) + ρ0cred
[2] (y)

)
dxdy

+ 4ρ0

∫

R2d
1{rmin≤|x|,|y|≤rmax}

jg(|x|)jg(|y|)
σ2

d|x|d−1|y|d−1

(
2cred

[2] (x) + ρ2
0

)
dxdy

+
∫

R3d
1{rmin≤|x|,|z−y|≤rmax}

jg(|x|)jg(|z − y|)
σ2

d|x|d−1|z − y|d−1
cred

[4] (x, y, z) dxdydz

+ 4ρ0

∫

R3d
1{rmin≤|x|,|z−y|≤rmax}

jg(|x|)jg(|z − y|)
σ2

d|x|d−1|z − y|d−1
cred

[3] (y, z) dxdydz

+ 2
∫

R3d
1{rmin≤|x|,|z−y+x|≤rmax}

jg(|x|)jg(|z − y + x|)
σ2

d|x|d−1|z − y + x|d−1
cred

[2] (y)cred
[2] (z) dxdydz

+ 4ρ2
0

∫

R3d
1{rmin≤|x|,|z−y|≤rmax}

jg(|x|)jg(|z − y|)
σ2

d|x|d−1|z − y|d−1
cred

[2] (y) dxdydz

− 4ρ0

(∫ rmax

rmin

g(t, θ0)jg(t)dt
)

∫

R2d
1{rmin≤|x|≤rmax}

jg(|x|)
σd|x|d−1

(
cred

[3] (x, y) + 2ρ0c
red
[2] (y)

)
dxdy

− 8ρ0

(∫ rmax

rmin

g(t, θ0)jg(t)dt
) ∫

Rd
1{rmin≤|x|≤rmax}

jg(|x|)
σd|x|d−1

(
cred

[2] (x) + ρ2
0

)
dx

+ 4ρ2
0

(∫ rmax

rmin

g(t, θ0)jg(t)dt
)2 (

ρ0 −
∫

Rd
Cρ0,θ0

(x)2dx
)

where cred
[2] , cred

[3] and cred
[4] are given in (2.2)-(2.4).

4 Proofs

4.1 Proof of Theorem 3.2

Since Cρ0,θ0
verifies K(ρ0), ρ̂n converges almost surely to ρ0, so by (H1), for all

ǫ > 0, there exists N ∈ N such that for all n ≥ N , Θρ̂n
⊂ Θ⊕ǫ

ρ0
almost surely.

Henceforth, without loss of generality, we let ǫ > 0 and assume that Θρ̂n
⊂ Θ⊕ǫ

ρ0

for all n ∈ N. We apply below the general Theorems 5.1-5.2 of the appendix to
prove that the estimator θ̃n defined in (5.2) with Θ = Θ⊕ǫ

ρ0
, J = K and Ĵn = K̂n is

consistent and asymptotically normal. As a consequence, almost surely, there exist
r > 0 such that B(θ0, r) ⊂ Θρ0

and Nr ∈ N such that for all n ≥ Nr, θ̃n ∈ B(θ0, r).
From Lemma 5.4 in the appendix and (H1), we deduce that for n sufficiently large,
B(θ0, r) ⊂ Θρ̂n

. Hence, almost surely, for n large enough, the minimum of Un is

attained in Θρ̂n
⊂ Θ⊕ǫ

ρ0
so that θ̃n in (5.2) and θ̂n in (2.7) coincide.

Let us now prove the strong consistency and asymptotic normality of θ̃n in (5.2)
when Θ = Θ⊕ǫ

ρ0
, J = K and Ĵn = K̂n. To that end, we verify all the assumptions of

Theorems 5.1-5.2. The general setting in Section 3.1, Assumptions (H1) and (HK1)

11



imply directly (A1)-(A2). For all θ ∈ Θ, we have

K(t, θ) = σdtd −
∫

x∈B(0,t)
Rθ(x)2dx (4.1)

where F(Rθ) ≥ 0 by (H2). Further, by [26, Corollary 1.4.13], for all θ ∈ Θ, if for a
given x 6= 0, |Rθ(x)| = 1, then Rθ is invariant by translation of x. Since for all θ ∈ Θ,
Rθ(.) ∈ L2(Rd), this is impossible so, for all x 6= 0 and θ ∈ Θ, |Rθ(x)| < 1. Hence,
by (4.1), K(t, θ) > 0 on (rmin, rmax]×Θ and K(., .) is continuous on [rmin, rmax]×Θ.
Consequently, K(., .)c is continuous for all c ∈ R if rmin > 0 and for all c > 0
if rmin = 0. Therefore, under (H1)-(H3) and (HK2), (A3) holds. By the same
arguments, K(., .)c−2 and K(., .)2c−2 are continuous for all c ∈ R if rmin > 0 and for
all c ≥ 2 if rmin = 0. Thus (A8) holds. For all t ∈ [rmin, rmax], K̂n(t) is bounded
by K̂n(rmax) and it follows from the ergodic theorem that K̂n(rmax) is almost surely
finite as soon as n and so Dn is large enough. Moreover, by Lemma 4.1, K̂n(t) is
almost surely strictly positive for t > 0 and n large enough. Hence, under (H1)-(H3)
and (HK2), (A4) holds. We have for all θ ∈ Θ and t ∈ (0, rmax)

K(1)(t, θ) = − ∂

∂θ

∫

x∈B(0,t)
Rθ(x)2dx.

By (H3), the function (x, θ) 7→ R
(1)
θ (x) is continuous with respect to θ and bounded

for all x ∈ B(0, rmax) and θ ∈ Θ. Thus by the dominated convergence theorem,

K(1)(t, θ) = −2
∫

x∈B(0,t)
Rθ(x)R

(1)
θ (x)dx. (4.2)

We obtain similarly

K(2)(t, θ) = −2
∫

x∈B(0,t)

(
R

(1)
θ (x)R

(1)
θ (x)T + R

(2)
θ (x)Rθ(x)

)
dx.

By (H3), the terms inside the integral in the last equation are bounded uniformly
with respect to (x, θ) ∈ B(0, rmax) × Θ. Therefore, K(1)(t, θ) and K(2)(t, θ) are
continuous with respect to θ and uniformly bounded with respect to t ∈ [rmin, rmax]
and θ ∈ Θ so (A7) holds. Assumptions (A6) and (A9) are directly implied by
(HK3) and (HK4), respectively. The assumption (A5)′ is proved by Lemma 4.1
below, while Lemmas 4.2-4.3 are preliminary results for Lemma 4.4 which proves
the remaining assumption (T CL).

Lemma 4.1. Let K be the Ripley’s K-function of a DPP with kernel C verifying
K(ρ0) and K̂n the estimator given by (3.1). Then, for all rmax > rmin ≥ 0,

sup
t∈[rmin,rmax]

∣∣∣K̂n(t) − K(t)
∣∣∣ a.s.−−−−→

n→+∞
0,

Proof. Since a stationary DPP is ergodic by [28, Theorem 7], we have

ρ̂n
a.s.−−−−→

n→+∞
ρ0 (4.3)
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and

sup
t∈[rmin,rmax]

∣∣∣ρ̂ 2
nK̂n(t) − ρ2

0K(t)
∣∣∣ a.s.−−−−→

n→+∞
0, (4.4)

see for instance [12, Section 4.2.2]. Further, as K is an increasing function, we have

ρ̂ 2
n sup

t∈[rmin,rmax]

∣∣∣K̂n(t) − K(t)
∣∣∣

≤ sup
t∈[rmin,rmax]

∣∣∣ρ̂ 2
nK̂n(t) − ρ2

0K(t)
∣∣∣+ K(rmax) sup

t∈[rmin,rmax]

∣∣∣ρ̂ 2
n − ρ2

0

∣∣∣ .

Hence, by (4.3)-(4.4) and the last equation, we have the convergence

sup
t∈[rmin,rmax]

∣∣∣K̂n(t) − K(t)
∣∣∣ a.s.−−−−→

n→+∞
0.

Lemma 4.2. If (HK1)-(HK2) and (H3) hold, then for all rmax > rmin ≥ 0,

∫ rmax

rmin

|jK(t)| dt < +∞.

Proof. By (4.2), we have

∫ rmax

rmin

|jK(t)| dt = 2
∫ rmax

rmin

∣∣∣∣∣w(t)K(t, θ0)2c−2
∫

x∈B(0,t)
Rθ0

(x)R
(1)
θ0

(x)dx

∣∣∣∣∣ dt. (4.5)

By (H3), the function defined for all t ≥ 0 by

t 7→
∫

x∈B(0,t)
Rθ0

(x)R
(1)
θ0

(x)dx

is continuous so bounded on [rmin, rmax]. As already noticed after (4.1), K(t, θ) > 0
on (rmin, rmax] × Θ. Consequently, if rmin > 0, the lemma is proved since w is
integrable on [rmin, rmax] by (HK1). Finally, if rmin = 0, the integrability at 0 of the
function t 7→ |jK(t)| follows from (HK2).

To shorten, define for all n ∈ N and t ∈ [rmin, rmax],

Hn(t) := ρ̂ 2
nK̂n(t) − 2ρ0K(t, θ0)ρ̂n.

Lemma 4.3. If (H1)-(H3) and (HK1) hold, for all s ∈ Rd, we have

lim
n→+∞

|Dn|Var
( ∫ rmax

rmin

Hn(t)sT jK(t)dt
)

=
∫

[rmin,rmax]2
h(t1, t2)s

T jK(t1)s
T jK(t2)dt1dt2

where hρ0,θ0
is defined as in Theorem 3.2.
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Proof. From (3.1), we have
∫ rmax

rmin

Hn(t)sT jK(t)dt =
∑

(x,y)∈X2

fn(x, y) −
∑

x∈X

hn(x)

where for all n ∈ N,

fn(x, y) := 1{x∈Dn}

∫ rmax

rmin

1

|D⊖t
n |1{y∈D⊖t

n }1{0<|x−y|≤t}s
T jK(t)dt

and

hn(x) =
2ρ0

|Dn|1{x∈Dn}

∫ rmax

rmin

K(t, θ0)s
T jK(t)dt.

Notice that for all n ∈ N and x ∈ Rd, fn(x, x) = 0. Thus, we have from the last
equation,

Var
(∫ rmax

rmin

Hn(t)sT jK(t)dt
)

= Var




6=∑

(x,y)∈X2

fn(x, y)


+Var

(∑

x∈X

hn(x)

)
−2 Cov




6=∑

(x,y)∈X2

fn(x, y),
∑

x∈X

hn(x)


 .

These terms are developed in Lemmas 7.1-7.3 of [4], whereby we deduce the limit
by a long but straightforward calculus.

Lemma 4.4. If (H1)-(H3) and (HK1)-(HK2) hold, then

√
|Dn|

∫ rmax

rmin

[
K̂n(t) − K(t, θ0)

]
jK(t)dt

distr.−−−−→
n→+∞

N (0, Σρ0,θ0
)

where Σρ0,θ0
is defined as in Theorem 3.2.

Proof. For all n ∈ N, we have

ρ2
0

√
|Dn|

∫ rmax

rmin

[
K̂n(t) − K(t, θ0)

]
jK(t)dt =

√
|Dn|

∫ rmax

rmin

[
ρ2

0 − ρ̂ 2
n

]
K̂n(t)jK(t)dt

+
√

|Dn|
∫ rmax

rmin

[
ρ̂ 2

nK̂n(t) − ρ2
0K(t, θ0)

]
jK(t)dt. (4.6)

Since X is ergodic by [28, Theorem 7], ρ̂n converges almost surely to ρ0. Then, by
Taylor expansion of the function x → x2 at ρ0, we have almost surely

[
ρ2

0 − ρ̂ 2
n

]
= 2ρ0 [ρ0 − ρ̂n] + o (ρ0 − ρ̂n) . (4.7)

Moreover,

2ρ0

√
|Dn|

∫ rmax

rmin

[ρ0 − ρ̂n] K̂n(t)jK(t)dt

= 2ρ0

√
|Dn|

∫ rmax

rmin

[ρ0 − ρ̂n]
[
K̂n(t) − K(t, θ0)

]
jK(t)dt

+ 2ρ0

√
|Dn|

∫ rmax

rmin

[ρ0 − ρ̂n] K(t, θ0)jK(t)dt. (4.8)
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Using the notation

An = 2ρ0

√
|Dn| [ρ0 − ρ̂n]

∫ rmax

rmin

K̂n(t)jK(t)dt,

Bn = 2ρ0

√
|Dn| [ρ0 − ρ̂n]

∫ rmax

rmin

[
K̂n(t) − K(t, θ0)

]
jK(t)dt,

Cn =
√

|Dn|
∫ rmax

rmin

(
[ρ0 − ρ̂n] 2ρ0K(t, θ0) +

[
ρ̂ 2

nK̂n(t) − ρ2
0K(t, θ0)

])
jK(t)dt,

we have by (4.6)-(4.8),

ρ2
0

√
|Dn|

∫ rmax

rmin

[
K̂n(t) − K(t, θ0)

]
jK(t)dt = Bn + Cn + o (An) . (4.9)

We prove that Bn + o(An) tends in probability to 0 and Cn tends in distribution to
a Gaussian variable. Then, the proof is concluded by Slutsky’s theorem and (4.9).
By Lemma 4.1,

sup
t∈[rmin,rmax]

∣∣∣K̂n(t) − K(t, θ0)
∣∣∣ a.s.−−−−→

n→+∞
0

so
∫ rmax

rmin

K̂n(t)jK(t)dt
a.s.−−−−→

n→+∞

∫ rmax

rmin

K(t, θ0)jK(t)dt. (4.10)

Since K(., θ0) is continuous on [rmin, rmax],
∫ rmax

rmin
K(t, θ0)jK(t)dt is finite by Lemma 4.2.

Hence, by Corollary 5.6, (4.10) and Slutsky’s theorem, we deduce that Bn
P−−−−→

n→+∞
0

and o(An)
P−−−−→

n→+∞
0.

As to the term Cn, notice that

Cn =
√

|Dn|
(∫ rmax

rmin

Hn(t)jK(t)dt −
[
−
∫ rmax

rmin

ρ2
0K(t, θ0)jK(t)dt

])
. (4.11)

We prove the convergence in distribution of Cn by the Cramer-Wold device, see for
instance [3, Theorem 29.4]. For all t ∈ [rmin, rmax] and s ∈ Rp, we have

sT Cn =
√

|Dn|
(∫ rmax

rmin

Hn(t)sT jK(t)dt −
[
−
∫ rmax

rmin

ρ2
0K(t, θ0)sT jK(t)dt

])
.

By (3.1), we have

∫ rmax

rmin

Hn(t)sT jK(t)dt =
∑

(x,y)∈X2

fDn
(x, y) (4.12)

where

fDn
(x, y) := 1{x∈Dn}

∫ rmax

rmin

(
1{y∈D⊖t

n }
|D⊖t

n | 1{0<|x−y|≤t} − 2ρ0
K(t, θ0)

|Dn| 1{x−y=0}

)
sT jK(t)dt.
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Notice that for t ∈ [rmin, rmax], sT jK(t) ≤ |jK(t)||s| and K(t, θ0) ≤ K(rmax, θ0) so
we have

|fDn
(x, y)|

≤ |s|
|D⊖rmax

n |1Dn
(x)

(
1{0<|x−y|≤rmax} + 1{x−y=0}2ρ0K(rmax, θ0)

) ∫ rmax

rmin

|jK(t)| dt.

(4.13)

The right-hand term in (4.13) is compactly supported and is bounded by Lemma 4.2.
Moreover,

E
(∫ rmax

rmin

∣∣∣Hn(t)sT jK(t)
∣∣∣ dt
)

≤ |s|
[
E
(∣∣∣ρ̂ 2

nK̂n(t)
∣∣∣
)

+ 2ρ0K(rmax, θ0)E (|ρ̂n|)
] ∫ rmax

rmin

|jK(t)|dt.

Further, for n ∈ N and t ∈ [rmin, rmax], ρ̂ 2
nK̂n(t) and ρ̂n are positive and unbiased

estimator of ρ2
0K(t, θ0) and ρ0, respectively, see for instance [12, Section 4.2.2]. Thus,

E
(∫ rmax

rmin

∣∣∣Hn(t)sT jK(t)
∣∣∣ dt
)

≤ 3|s|ρ2
0K(rmax, θ0)

∫ rmax

rmin

|jK(t)|dt,

which is finite by Lemma 4.2. Then, by Fubini’s theorem, (4.12) and the last equa-
tion, we have

E


 ∑

(x,y)∈X2

fDn
(x, y)


 = −

∫ rmax

rmin

ρ2
0K(t, θ0)sT jK(t)dt.

Moreover, by (4.12) and Lemma 4.3,

lim
n→+∞

V ar



√

|Dn|
∑

(x,y)∈X2

fDn
(x, y)


 = sT Σρ0,θ0

s.

Therefore, by (4.11)-(4.13), the last two equations and Theorem 5.5, we have

sT Cn
distr.−−−−→

n→+∞
N(0, sT Σρ0,θ0

s).

which proves that Cn
distr.−−−−→

n→+∞
N(0, Σρ0,θ0

).

4.2 Proof of Theorem 3.3

As in the proof of Theorem 3.2, we consider without loss of generality ǫ > 0 such
that Θρ̂n

⊂ Θ⊕ǫ
ρ0

, for all n ∈ N. We prove below the consistency and asymptotic

normality of θ̃n defined in (5.2) with Θ = Θ⊕ǫ
ρ0

, J = g and Ĵn = ĝn. Then, for r ≥ 0
such that B(θ0, r) ⊂ Θρ0

, we have

P (θ̃n ∈ B(θ0, r)) −−−−→
n→+∞

1.
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Thus, by Lemma 5.3, with probability tending to one θ̃n ∈ Θρ̂n
so

P (θ̃n = θ̂n) −−−−→
n→+∞

1.

Therefore, θ̂n has the same asymptotic behaviour than θ̃n.

Let us now determine the asymptotic properties of θ̃n by application of Theo-
rems 5.1 and 5.2. The assumptions (A1), (A2), (A6), (A7) and (A9) are directly
implied by (H1)-(H3), (Hg1), (Hg2), (Hg6) and (Hg7). Moreover, rmin > 0 by (Hg1)
so (A4) is directly implied by (3.4), (Hg3), (Hg4) and the ergodic theorem, see [24]
or [12]. By (H2), Rθ0

(.) is continuous on [rmin, rmax] so is g. By [26, Corollary 1.4.14],
for all θ ∈ Θ, if for a given t > 0, |Rθ(t)| = 1, then Rθ is periodic of period t. This
is incompatible with (H2) so, for all t > 0 and θ ∈ Θ, |Rθ(t)| < 1. Consequently, by
(3.3) and (Hg1), g(t, θ) is strictly positive for all (t, θ) ∈ [rmin, rmax] × Θ. Thus, for
all c ∈ R, g(., .)c is well defined and strictly positive on [rmin, rmax]×Θ so (A3) holds.
By the same arguments, it follows that (A8) holds. Finally, the assumptions (A5)
and (T CL) are proved by Lemmas 4.5 and 4.9, respectively while the other lemmas
are auxiliary results.

Lemma 4.5. If (H1)-(H3), (Hg1) and (Hg3)-(Hg4) hold then, for all rmax >
rmin > 0, there exists a set A verifying |[rmin, rmax] \ A| = 0 such that

sup
t∈A

|ĝn(t) − g(t, θ0)| P−−−−→
n→+∞

0.

Proof. From (H2)-(H3) and (Hg3)-(Hg4) we can use Proposition 4.5 in [4] that gives

E
[∫ rmax

rmin

(
ρ̂ 2

n ĝn(t) − ρ2
0g(t, θ0)

)2
dt
]

=
2ρ2

0

bn|Dn|
∫ rmax

rmin

g(t, θ0)

σdtd−1
dt
∫

R
k(x)2dx + O

(
1

|Dn|

)
+ O(b4

n). (4.14)

By (Hg1), (Hg3) and (H3) we have
∫ rmax

rmin

g(t,θ0)
σdtd−1 dt

∫
R k(x)2dx < +∞. Hence, with

(Hg4), the right-hand term in (4.14) tends to 0 as n tends to infinity. Moreover,
the term inside the expectation in (4.14) is positive so there exists a set A as in
Lemma 4.5 such that

sup
t∈A

∣∣∣ρ̂ 2
n ĝn(t) − ρ2

0g(t, θ0)
∣∣∣ P−−−−→

n→+∞
0. (4.15)

We have

ρ̂ 2
n sup

t∈A
|ĝn(t) − g(t, θ0)| ≤ sup

t∈A

∣∣∣ρ̂ 2
n ĝn(t) − ρ2

0g(t, θ0)
∣∣∣+

(
sup
t∈A

g(t, θ0)

) ∣∣∣ρ̂ 2
n − ρ2

0

∣∣∣ .

By (H1)-(H2), it follows from Corollary 5.6 that ρ̂n converges in probability to ρ0.
Further, by (H3) and (3.3), g(., θ0) is bounded on [rmin, rmax]. Therefore, we have
by (4.15) the convergence

sup
t∈A

|ĝn(t) − g(t, θ0)| P−−−−→
n→+∞

0.
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Lemma 4.6. If (H1)-(H3), (Hg1)-(Hg2) hold then jg(.) is continuous on [rmin, rmax].

Proof. By (3.3), we have for all t ∈ [rmin, rmax]

|jg(t)| = 2
∣∣∣∣w(t)

(
1 − Rθ0

(t)2
)2c−2

Rθ0
(t)R

(1)
θ0

(t)
∣∣∣∣ .

By (H3), Rθ0
(.) and R

(1)
θ0

(.) are continuous on [rmin, rmax]. Further, by (Hg1), rmin >
0 and as noticed at the beginning of the proof of Theorem 3.3, for all t > 0, |Rθ0

(t)| <
1. Thus by (H3), the function t 7→ (1 − Rθ0

(t)2)
2c−2

is well defined and continuous
on [rmin, rmax]. Finally, by (Hg2), w is continuous on [rmin, rmax] so the lemma is
proved.

To abbreviate, we define for all n ∈ N and t ∈ [rmin, rmax],

Hg
n(t) := ρ̂ 2

n ĝn(t) − 2ρ0ρ̂ng(t, θ0).

Lemma 4.7. If (H1)-(H3) and (Hg1)-(Hg5) hold, we have for all s ∈ Rd,

lim
n→+∞

|Dn|Var
(∫ rmax

rmin

Hg
n(t)sT jg(t)dt

)
= sT Σρ0,θ0

s

with Σρ0,θ0
defined as in Theorem 3.3.

Proof. Similarly to the proof of Lemma 4.3, we have by (3.4),
∫ rmax

rmin

Hg
n(t)sT jg(t)dt =

∑

(x,y)∈X2

fn(x, y) −
∑

x∈X

hn(x)

where for all n ∈ N,

fn(x, y) := 1{x∈Dn}

∫ rmax

rmin

k
(

t−|x−y|
bn

)
1{|x−y|>0,y∈Dn}

σdtd−1bn|Dn ∩ Dx−y
n | sT jg(t)dt

and

hn(x) =
2ρ0

|Dn|1{x∈Dn}

∫ rmax

rmin

g(t, θ0)s
T jg(t)dt.

The result follows similarly as in the proof of Lemma 4.3 using Lemmas 7.1-7.3
in [4].

Lemma 4.8. Assume that (H1)-(H3) and (Hg1)-(Hg4) hold. For a given s ∈ Rd

and all n ∈ N, let fDn
be defined for any (x, y) ∈ R2d by

fDn
(x, y)

:= 1{x∈Dn}

∫ rmax

rmin




k
(

t−|x−y|
bn

)
1{|x−y|>0,y∈Dn}

σdtd−1bn|Dn ∩ Dx−y
n | − 2ρ0g(t, θ0)

|Dn| 1{x−y=0}


 sT jg(t)dt.

Then, there exists M > 0 such that for all (x, y) ∈ R2d,

|fDn
(x, y)| ≤ |s|M1{x∈Dn}

|D⊖rmax+T
n |

(
1

σdrd−1
min

1{0<|x−y|≤rmax+T } + 2ρ0||g||∞1{x−y=0}

)
.
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Proof. By (Hg3), for any t ∈ [rmin, rmax] and (x, y) ∈ R2d,

∣∣∣∣∣k
(

t − |x − y|
bn

)∣∣∣∣∣1{|y−x|>0, y∈Dn} ≤
∣∣∣∣∣k
(

t − |x − y|
bn

)∣∣∣∣∣1{0<|y−x|<t+T bn}

≤
∣∣∣∣∣k
(

t − |x − y|
bn

)∣∣∣∣∣1{0<|y−x|<t+T }

whenever bn < 1 which, by (Hg4), we assume in the following without loss of gener-
ality. Thus, for any t ∈ [rmin, rmax] and (x, y) ∈ R2d,

∣∣∣∣∣k
(

t − |x − y|
bn

)∣∣∣∣∣1{|y−x|>0, y∈Dn} ≤
∣∣∣∣∣k
(

t − |x − y|
bn

)∣∣∣∣∣1{0<|y−x|<rmax+T }. (4.16)

Further, by Lemma 4.6, jg is bounded on [rmin, rmax] by a constant M so by (4.16)
and Lemma 6.3 in [4], we have

∣∣∣∣∣∣
1{x∈Dn}

∫ rmax

rmin

k
(

t−|x−y|
bn

)
1{|x−y|>0,y∈Dn}

σdtd−1bn|Dn ∩ Dx−y
n | sT jg(t)dt

∣∣∣∣∣∣

≤ 1{x∈Dn}
|s|M

|D⊖rmax+T
n |

1{0<|x−y|≤rmax+T }

σdrd−1
minbn

∫ rmax

rmin

∣∣∣∣∣k
(

t − |x − y|
bn

)∣∣∣∣∣ dt.

Finally, the result follows by the last inequality, (H2) and (Hg3).

Lemma 4.9. If (H1)-(H3) and (Hg1)-(Hg5) hold, then

√
|Dn|

∫ rmax

rmin

[ĝn(t) − g(t, θ0)] jg(t)dt
distr.−−−−→

n→+∞
N (0, Σρ0,θ0

)

with Σρ0,θ0
defined as in Theorem 3.3.

Proof. The arguments of this proof are similar the the ones of the proof of Lemma 4.4.
Notice that

ρ2
0

√
|Dn|

∫ rmax

rmin

[ĝn(t) − g(t, θ0)] jg(t)dt =
√

|Dn|
([

ρ2
0 − ρ̂ 2

n

] ∫ rmax

rmin

ĝn(t)jg(t)dt

+
∫ rmax

rmin

[
ρ̂ 2

n ĝn(t) − E
[
ρ̂ 2

n ĝn(t)
]]

jg(t)dt +
∫ rmax

rmin

[
E
[
ρ̂ 2

n ĝn(t)
]

− ρ2
0g(t, θ0)

]
jg(t)dt

)

(4.17)

and

√
|Dn| [ρ0 − ρ̂n]

∫ rmax

rmin

ĝn(t)jg(t)dt =

√
|Dn| [ρ0 − ρ̂n]

∫ rmax

rmin

[ĝn(t) − g(t, θ0)] jg(t)dt+
√

|Dn| [ρ0 − ρ̂n]
∫ rmax

rmin

g(t, θ0)jg(t)dt.

(4.18)
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Denote

Tn = 2ρ0

√
|Dn| [ρ0 − ρ̂n]

∫ rmax

rmin

ĝn(t)jg(t)dt

Un = 2ρ0

√
|Dn| [ρ0 − ρ̂n]

∫ rmax

rmin

[ĝn(t) − g(t, θ0)] jg(t)dt

Vn =
√

|Dn|
∫ rmax

rmin

[
E
[
ρ̂ 2

n ĝn(t)
]

− ρ2
0g(t, θ0)

]
jg(t)dt

Wn =
√

|Dn|
∫ rmax

rmin

[
ρ̂ 2

n ĝn(t) − 2ρ0ρ̂ng(t, θ0) −
(
E
[
ρ̂ 2

n ĝn(t)
]

− 2ρ2
0g(t, θ0)

)]
jg(t)dt.

Using (4.7) in the proof of Lemma 4.4, (4.17) and (4.18), we get

ρ2
0

√
|Dn|

∫ rmax

rmin

[ĝn(t) − g(t, θ0)] jg(t)dt = Un + Vn + Wn + o (Tn) . (4.19)

We prove that Un + Vn + o(Tn) tends in probability to 0 and we conclude by proving
that Wn tends in distribution to a Gaussian variable. From Corollary 5.6, Lem-

mas 4.5-4.6 and Slutsky’s theorem, we have Un
P−−−−→

n→+∞
0. Further, since g is contin-

uous on [rmin, rmax] so bounded, we have by Lemma 4.5 that ĝn is uniformly bounded
in probability on [rmin, rmax], see [31, Prohorov’s theorem]. Thus, by Corollary 5.6

and Lemma 4.6, o(Tn)
P−−−−→

n→+∞
0. Further, under (H1)-(H2) and (Hg1)-(Hg5), we

deduce from Lemma 6.2 in [4] that supt∈[rmin,rmax] (E [ρ̂ 2
n ĝn(t)] − ρ2

0g(t, θ0)) < κb2
n

with κ > 0, which combined with (Hg4) and Lemma 4.6 proves that Vn
P−−−−→

n→+∞
0.

We prove the convergence in distribution of Wn by the Cramer-Wold device. To
shorten, denote for all n ∈ N and s ∈ Rp,

Xs
n :=

∫ rmax

rmin

Hg
n(t)sT jg(t)dt.

By Lemma 4.6, jg is bounded on [rmin, rmax] by a constant M . Then, since for all
t ∈ [rmin, rmax] and n ∈ N,

Hg
n(t) = ρ̂ 2

n ĝn(t) − ρ2
0g(t, θ0) + (ρ0 − ρ̂n)ρ0g(t, θ0) − ρ0ρ̂ng(t, θ0),

we have

E
(∫ rmax

rmin

∣∣∣Hg
n(t)sT jg(t)

∣∣∣ dt
)

≤ |s|ME
∫ rmax

rmin

(∣∣∣ρ̂ 2
n ĝn(t) − ρ2

0g(t, θ0)
∣∣∣
)

dt

+ |s|M [E(|ρ0 − ρ̂n|) + E(ρ̂n)]
∫ rmax

rmin

|ρ0g(t, θ0)|dt. (4.20)

By (H3), g(., θ0) is bounded on [rmin, rmax]. Denote ||g||∞ its maximum so by Cauchy
Schwartz inequality, Jensen inequality and (4.20), we have

∫ rmax

rmin

E
∣∣∣Hg

n(t)sT jg(t)
∣∣∣ dt ≤ |s|M(rmax−rmin)

1

2

(
E
∫ rmax

rmin

(
ρ̂ 2

n ĝn(t) − ρ2
0g(t, θ0)

)2
dt
) 1

2

+ |s|M(rmax − rmin)ρ0||g||∞ (E(|ρ0 − ρ̂n|) + E(ρ̂n)) . (4.21)
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By the same arguments as in the proof of Lemma 4.5, we have

E
[∫ rmax

rmin

(
ρ̂ 2

n ĝn(t) − ρ2
0g(t, θ0)

)2
dt
]

=
2ρ2

0

bn|Dn|
∫ rmax

rmin

g(t, θ0)

σdtd−1
dt
∫

R
k(x)2dx + O

(
1

|Dn|

)
+ O(b4

n).

Thus by (Hg4), E
(∫ rmax

rmin
(ρ̂ 2

n ĝn(t) − ρ2
0g(t, θ0))

2
dt
)

tends to 0. Moreover, as noticed

in [11], ρ̂n converge in L1 to ρ0 so E(|ρ0 − ρ̂n|) + E(ρ̂n) converges to ρ0. Hence,

by (4.20)-(4.21), E
∫ rmax

rmin

∣∣∣Hg
n(t)sT jg(t)

∣∣∣ dt is bounded. Then, by Fubini theorem,

E(Xs
n) =

∫ rmax

rmin

E (Hg
n(t)) sT jg(t)dt

which implies that

sT Wn =
√

|Dn| (Xs
n − E(Xs

n)) .

By (3.4), we have

Xs
n =

∑

(x,y)∈X2

fDn
(x, y), (4.22)

where fDn
(x, y) is given in Lemma 4.8 and satisfies

|fDn
(x, y)| ≤ |s|M1{x∈Dn}

|D⊖rmax+T
n |

(
1

σdrd−1
min

1{0<|x−y|≤rmax+T } + 2ρ0||g||∞1{x−y=0}

)
. (4.23)

The right-hand term in (4.23) is bounded and compactly supported. Therefore, by
Lemma 4.7 and Theorem 5.5, we have for all s ∈ Rp

√
|Dn| (Xs

n − E(Xs
n))

distr.−−−−→
n→+∞

N(0, sT Σρ0,θ0
s),

which implies that Wn
distr.−−−−→

n→+∞
N(0, Σρ0,θ0

).

5 Appendix

5.1 A general result for minimum contrast estimation

We present in this section two general theorems concerning the consistency and
asymptotic normality of the estimator defined in (2.7). Contrary to the results in
Sections 3.2-3.3, these theorems hold for an arbitrary stationary point process and
an arbitrary statistic J , generalizing a study by [10]. The results of Sections 3.2-3.3
are in fact consequences in the particular case of a DPP and J = K or J = g, which
simplifies the general assumptions below.

Let X be a stationary point process belonging to a parametric family indexed by,
among possibly other parameters, θ ∈ Θ where Θ ⊂ Rp, for a given p ≥ 1. For any
t ∈ [rmin, rmax], let J(t, θ) be any real valued summary statistic of X that depends
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on θ (specific assumptions on J are listed below). For any t ∈ [rmin, rmax], let Ĵn(t)
be an estimator of J(t, θ0) where θ0 is the true parameter ruling the distribution
of X. We denote by J (1)(t, θ) and J (2)(t, θ) the gradient, respectively the Hessian
matrix, of J(t, θ) with respect to θ. Define for all θ ∈ Θ,

B(θ) :=
∫ rmax

rmin

w(t)J(t, θ)2c−2J (1)(t, θ)J (1)(t, θ)T dt, (5.1)

and for all t ∈ [rmin, rmax],

j(t) = w(t)J(t, θ0)
2c−2J (1)(t, θ0).

We consider the following assumptions.

(A1) Θ is a compact set with non-empty interior, 0 ≤ rmin < rmax, c 6= 0 and
{Dn}n∈N is a regular sequence of subsets of Rd in the sense of Definition 3.1.

(A2) w is a positive and integrable function in [rmin, rmax].

(A3) J(., .) and J(., .)c are well defined continuous functions on [rmin, rmax] × Θ.
Moreover, there exists a set A ∈ [rmin, rmax] such that [rmin, rmax] \ A is of
Lebesgue measure null and for all t ∈ A, θ ∈ Θ, we have J(t, θ) > 0.

(A4) There exists n0 ∈ N such that for all n ≥ n0, Ĵn(.) and Ĵn(.)c are almost surely
bounded on [rmin, rmax].

(A5) There exists a set A ∈ [rmin, rmax] such that [rmin, rmax] \ A is of Lebesgue
measure null and

sup
t∈A

∣∣∣Ĵn(t) − J(t, θ0)
∣∣∣ P−−−−→

n→+∞
0.

(A6) For θ1 6= θ2, there exists a set A of positive Lebesgue measure such that

J(t, θ1) 6= J(t, θ2), ∀t ∈ A.

(A7) For all t ∈ [rmin, rmax], J (1)(t, θ) and J (2)(t, θ) exist, are continuous with respect
to θ and uniformly bounded with respect to t ∈ [rmin, rmax] and θ ∈ Θ.

(A8) There exists M > 0 such that for all (t, θ) ∈ [rmin, rmax] × Θ and a ∈ {c −
2, 2c − 2},

∣∣∣J(t, θ)
∣∣∣
a ≤ M .

(A9) The matrix B(θ0) is invertible.

(T CL) There exists m ∈ R and a covariance matrix Σ such that

√
|Dn|

∫ rmax

rmin

[
Ĵn(t) − J(t, θ0)

]
j(t)dt

distr.−−−−→
n→+∞

N (m, Σ).

Further, define (A5)′ as the assumption (A5) with the convergence in probability
replaced by the almost sure convergence.
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Theorem 5.1. Let X be a stationary point process with distribution ruled by a given
θ0, assumed to be an interior point of Θ. For all n ∈ N, let Un be defined as in (2.6).
Assume that(A1)-(A6) hold. Then, the minimum contrast estimator θ̃n defined by

θ̃n = arg min
θ∈Θ

Un(θ) (5.2)

exists almost surely, is consistent for θ0 and strongly consistent if (A5)′ holds.

Proof. For a sequence {θm}m∈N belonging to Θ, we have for all n ∈ N,

|Un(θm) − Un(θ)| ≤
∫ rmax

rmin

|w(t)|
(∣∣∣2Ĵn(t)c

∣∣∣ |J(t, θm)c − J(t, θ)c| +
∣∣∣J(t, θm)2c − J(t, θ)2c

∣∣∣
)

dt. (5.3)

Denote A the intersection of the sets defined in (A3) and (A5). By (A3), J(., .)c is
continuous on [rmin, rmax] × Θ which is compact by (A1). We deduce that

sup
t∈[rmin,rmax]

|J(t, θm)c − J(t, θ)c| ≤ K.

By (A3)-(A4), for all θ ∈ Θ, J(t, θ)c and Ĵn(t)c are almost surely bounded on
[rmin, rmax], for all n large enough. Further, by (A2), w is integrable on [rmin, rmax]
thus, by (5.3) and the dominated convergence theorem, we have the convergence

|Un(θm) − Un(θ)| a.s.−−−→
θm→θ

0.

Therefore, for all n large enough, Un is almost surely continuous so the almost sure
existence of θ̃n follows by (A1). Define for all θ ∈ Θ,

U∗
n(θ) = Un(θ) − Un(θ0). (5.4)

By (2.6) and (5.4),

U∗
n(θ) = 2

∫ rmax

rmin

w(t)
[
Ĵn(t)c − J(t, θ0)c

][
J(t, θ0)c − J(t, θ)c

]
dt

+
∫ rmax

rmin

w(t)
[
J(t, θ0)c − J(t, θ)c

]2
dt.

Note that from (5.4) U∗
n(θ̃n) ≤ U∗

n(θ0) = 0, so
∫ rmax

rmin

w(t)
[
J(t,θ0)c − J(t, θ̃n)c

]2
dt

≤ 2
∫ rmax

rmin

w(t)
∣∣∣Ĵn(t)c − J(t, θ0)c

∣∣∣
∣∣∣J(t, θ0)

c − J(t, θ̃n)c
∣∣∣dt. (5.5)

By (A3)-(A4), J(., .)c is continuous on [rmin, rmax]×Θ and for n large enough, Ĵn(.)c

is almost surely bounded on [rmin, rmax] so by (A5), the right-hand term in (5.5)
tends in probability to 0. Hence, we have

∫ rmax

rmin

w(t)
[
J(t,θ0)c − J(t, θ̃n)c

]2
dt

P−−−−→
n→+∞

0.

It follows by (A2) and (A6) that θ̃n converges in probability to θ0. Finally, by a
similar argument, we prove by (5.5) that this last convergence is almost sure if (A5)′

holds.
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Theorem 5.2. Under the same setting as in Theorem 5.1, if in addition (A7)-(A9)
and (T CL) hold true, then

√
|Dn|(θ̃n − θ0)

distr.−−−−→
n→+∞

N
(

m, B(θ0)−1Σ
(
B(θ0)−1

)T
)

where B is defined as in (5.1) and Σ comes from (T CL).

Proof. Denote by A the intersection of the sets defined in (A3) and (A5). Then, by
(A3), (A7) and (A8), we see that Un is almost surely twice differentiable on Θ and
that we can differentiate twice under the integral sign. Thus, by the mean value
theorem, for all j = 1, . . . , p, there exists s ∈ (0, 1) and θ∗

j = θ0 + s(θ̃n − θ0) such
that

∂jUn(θ̃n) − ∂jUn(θ0) =
(
∂2

ijUn(θ∗
j )
)

i=1,...,p

(
θ̃n − θ0

)
.

To shorten, denote by U (1)
n the gradient of Un and by U (2)

n (θ∗
n) the matrix with entries

∂2
ijUn(θ∗

j ). Since Un is minimal at θ̃n, U (1)
n (θ̃n) = 0 and the last equation becomes

U (2)
n (θ∗

n)(θ̃n − θ0) = −U (1)
n (θ0)

= 2c
∫ rmax

rmin

w(t)
[
Ĵn(t)c − J(t, θ0)c

]
J(t, θ0)c−1J (1)(t, θ0)dt. (5.6)

Note that by (A3) and (A8), J(., θ0)
c−1 is bounded on A and strictly positive. Thus,

by (A4), we can use the Taylor expansion of the function x 7→ xc so, for all t ∈ A,

Ĵn(t)c − J(t, θ0)
c = cJ(t, θ0)c−1

(
Ĵn(t) − J(t, θ0)

)
+ o

(
Ĵn(t) − J(t, θ0)

)
.

Therefore, by (A5), (5.6) and the last equation,
√

|Dn| U (2)
n (θ∗

n)(θ̃n − θ0) = 2c2An(θ0) + o(An(θ0)) (5.7)

where

An(θ0) =
√

|Dn|
∫

A

[
Ĵn(t) − J(t, θ0)

]
j(t)dt.

By (T CL), we have 2c2An(θ0)
distr.−−−−→

n→+∞
2c2N(m, Σ). Hence, by Slutsky’s theorem

and (5.7),
√

|Dn| U (2)
n (θ∗

n)(θ̃n − θ0)
distr.−−−−→

n→+∞
2c2N(m, Σ). (5.8)

Moreover, we have that

U (2)
n (θ∗

n) = 2c2B(θ∗
n) − En (5.9)

where B is as in (5.1) and

En := 2c(c − 1)
∫ rmax

rmin

w(t)
[
Ĵn(t)c − J(t, θ∗

n)c
]
J(t, θ∗

n)c−2J (1)(t, θ∗
n)J (1)(t, θ∗

n)T dt

+ 2c
∫ rmax

rmin

w(t)
[
Ĵn(t)c − J(t, θ∗

n)c
]
J(t, θ∗

n)c−1J (2)(t, θ∗
n)dt.
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By Theorem 5.1, θ̃n
P−−−−→

n→+∞
θ0 so θ∗

n
P−−−−→

n→+∞
θ0. Then, by (A7)-(A8), En tends in

probability to 0. Note that by continuity of J(., θ) for all θ ∈ Θ, the integrability
on [rmin, rmax] of w(.)J(., θ)c−2 implies the one of w(.)J(., θ)c−1. Further, we deduce
by (A3), (A7) and (A8) that (t, θ) 7→ J(t, θ)2c−2J (1)(t, θ)J (1)(t, θ)T is continuous
with respect to θ ∈ Θ and uniformly bounded for t ∈ [rmin, rmax]. Thus, by the
dominated convergence theorem,

B(θ∗
n)

P−−−−→
n→+∞

B(θ0).

By (A9), B(θ0) is invertible so by (5.9)

U (2)
n (θ∗

n)B(θ0)−1 P−−−−→
n→+∞

2c2. (5.10)

Since the group of invertible matrix is an open set, it follows from the last conver-
gence that for n large enough, U (2)

n (θ∗
n) is invertible so we can write

B(θ0)
√

|Dn|(θ̃n − θ0) = B(θ0)
[
U (2)

n (θ∗
n)
]−1

U (2)
n (θ∗

n)
√

|Dn|(θ̃n − θ0).

By (5.8)-(5.10) and Slutsky’s theorem, we get

B(θ0)
√

|Dn|(θ̃n − θ0)
distr.−−−−→

n→+∞
N(m, Σ)

and the conclusion of the theorem follows.

5.2 Auxiliary results

The two following lemmas are of topological nature and useful for the proofs of
Theorems 3.2-3.3.

Lemma 5.3. For all p ≥ 1, let Ξ be a compact convex set in Rp. Then, for all
y ∈ Rp \ Ξ and δ ≥ 0, B(y, δ) * Ξ⊕δ.

Proof. Since Ξ is a closed convex set, the projection of y onto Ξ, denoted by pΞ(y),
is the unique element belonging to Ξ that, for all u ∈ Ξ, verifies

(y − pΞ(y)).(u − pΞ(y)) ≤ 0. (5.11)

For all δ ≥ 0, the line (y, pΞ(y)) intersects ∂B(y, δ) at two points, one inside the
segment [y, pΞ(y)] and the other, that we denote by v, outside the segment. Thus,
there exists t > 1 such that v = pΞ(y) + t(y − pΞ(y)). Notice that for all u ∈ Ξ,

(v − pΞ(y)).(u − pΞ(y)) = t(y − pΞ(y)).(u − pΞ(y)).

Thus, as t > 1, we deduce from (5.11) and the last equation that pΞ(y) is the
projection of v onto Ξ. It follows that d(v, Ξ) = d(y, Ξ) + δ and as y /∈ Ξ and Ξ
is closed, d(v, Ξ) > δ. Therefore, v /∈ Ξ⊕δ but v ∈ ∂B(y, δ) by construction so
B(y, δ) * Ξ⊕δ.
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Lemma 5.4. For p ≥ 1, let Θ be a convex compact set in Rp and {Θn}n∈N be
a sequence of convex compact sets in Rp that converges to Θ with respect to the
Hausdorff distance. Let r ≥ 0 and x be an interior point of Θ such that B(x, r)
belongs to the interior of Θ. Then, there exists N ∈ N such that for all n ≥ N ,

B(x, r) ⊂ Θn.

Proof. Since B(x, r) belongs to the interior of Θ, there exists δ > 0 such that

B(x, r + δ) ⊂ Θ. (5.12)

Assume that the lemma is wrong, then for all N ∈ N, there exists n ≥ N such
that B(x, r) * Θn. Denote y a point in B(x, r) that does not belong to Θn. By
Lemma 5.3, B(y, δ) * Θ⊕δ

n . But by (5.12), B(y, δ) ⊂ Θ so Θ * Θ⊕δ
n which contra-

dicts the convergence of the sequence {Θn}n∈N to Θ.

The following theorem appears in [14] in a slightly less general framework, see
also [15], and is proved in [4] in its present form. It is used in the proofs of our main
results, Theorems 3.2 and 3.3.

Theorem 5.5. Let {Dn}n∈N and {D̃n}n∈N be two sequences of regular sets in the

sense of Definition 3.1 such that |D̃n|
|Dn|

n→+∞−−−−→ κ for a given κ > 0. For all n ∈ N,

let {fDn
}n∈N be a family of functions from Rdp into R. Assume that there exists

a bounded function F from Rd(p−1) into R+ with compact support such that for all
n ∈ N and (x1, . . . , xp) ∈ Rdp,

|fDn
(x1, . . . , xp)| ≤ 1

|D̃n|
1{x1∈Dn}F (x2 − x1, . . . , xp − x1). (5.13)

Assume further that the point process X is ergodic, admits moment of any order and
is Brillinger mixing. Then, for all k ≥ 2, we have

Cumk

(√
|Dn|Np (fDn

)
)

= O
(

|Dn|1− k
2

)
. (5.14)

Moreover, if there exists σ > 0 such that

Var
(√

|Dn|Np (fDn
)
)

−−−−→
n→+∞

σ2, (5.15)

then we have the convergence

√
|Dn| [Np (fDn

) − E (Np (fDn
))]

distr.−−−−→
n→+∞

N (0, σ2) (5.16)

and the convergence of all moments to the corresponding moments of N (0, σ2).

As a corollary when p = 1, we retrieve a theorem from [29] giving the asymptotic
normality of the estimator of the intensity of a DPP.
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Corollary 5.6. Let X be a DPP with kernel C verifying the condition K(ρ) for a
given ρ > 0 and {Dn}n∈N be a family of regular sets. Define for all n ∈ N,

ρ̂n =
1

|Dn|
∑

x∈X

1{x∈Dn}.

We have the convergence

√
|Dn| (ρ̂n − ρ)

distr.−−−−→
n→+∞

N(0, σ2)

where σ2 = limn→+∞ V ar
(√

|Dn|ρ̂n

)
= ρ − ∫

Rd C(x)2dx.
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