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ON MITTAG-LEFFLER DISTRIBUTIONS AND RELATED

STOCHASTIC PROCESSES

THIERRY E. HUILLET

Abstract. Random variables with Mittag-Leffler distribution can take values

either in the set of non-negative integers or in the positive real line. There can

be of two different types, one (type-1) heavy-tailed with index α ∈ (0, 1), the
other (type-2) possessing all its moments. We investigate various stochastic

processes where they play a key role, among which: the discrete space/time

Neveu branching process, the discrete-space continuous-time Neveu branch-
ing process, the continuous space/time Neveu branching process (CSBP) and

renewal processes with rare events. Its relation to (discrete or continuous)

self-decomposability and branching processes with immigration is emphasized.
Special attention will be paid to the Neveu CSBP for its connection with the

Bolthausen-Sznitman coalescent. In this context, and following a recent work
of Möhle [49], a type-2 Mittag-Leffler process turns out to be the Siegmund dual

to Neveu’s CSBP block-counting process arising in sampling from PD
(
e−t, 0

)
.

Further combinatorial developments of this model are investigated.

Keywords: Mittag-Leffler random variables and processes, stochastic growth

models, Neveu branching process with infinite mean, immigration and self-
decomposability, renewal process, self-similarity, Bolthausen-Sznitman coales-

cent.

1. Sibuya random variables (rvs) and related branching processes

We first investigate a class of integral-valued rvs that will show important for our
general purpose.

1.1. Sibuya rvs and related ones. We start with their definition and main prop-
erties.

• One parameter Sibuya(α) rv. Let Xα ≥ 1 be an integer-valued random
variable with support N = {1, 2, ....} defined as follows:

Xα = inf (l ≥ 1 : Bα (l) = 1) ,

where (Bα (l))l≥1 is a sequence of independent Bernoulli rvs obeying P (Bα (l) = 1) =

α/l where α ∈ (0, 1) . It is thus the first epoch of a success in a Bernoulli trial when
the probability of success is inversely proportional to the number of the trial. Xα

is called a Sibuya(α) rv. Then

P (Xα = k) = (−1)
k−1

(
α

k

)
, k ≥ 1,

with
(
α
k

)
= (α)k /k!, (α)k := Γ (α+ 1) /Γ (α+ 1− k) = α (α− 1) ... (α− k + 1), the

Pochhammer’s symbol (or decreasing factorial). Its probability generating function
1
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(pgf) is

φα (z) := E
(
zXα

)
= 1− (1− z)α , z ≤ 1.

We note that P (Xα = k) is also P (Xα = k) = α [α]k−1 /k!, where α := 1− α and
[a]k := a (a+ 1) ... (a+ k − 1) , k ≥ 1, are the rising factorials of a with [a]0 := 1.

• Discrete-stable(µ, α) rv [66]. Consider the random variable Sµ,α given by the
random sum

Sµ,α =

Pµ∑
l=0

Xα (l) ,

where Pµ is Poisson distributed with mean µ > 0 and (Xα (l))l≥0 is an iid sequence

of Sibuya(α) rvs (Xα (l)
d
= Xα), independent of Pµ. Then φPµ (z) = E

(
zPµ
)

=

e−µ(1−z) and
φSα,µ (z) = φPµ (φα (z)) = e−µ(1−z)α

the pgf of a discrete-stable(α, µ) rv, say Sα,µ. We will come back to this distribu-

tion below. Note that, with Sα := Sα,1, and in view of Sα,µ
d
= µ1/α ◦ Sα, µ is the

scale parameter of Sα,µ.

• Scaled Sibuya(α, λ) rv. Let c ∈ (0, 1). Define the c-thinned version of the rv
Xα, say Xα,c := c ◦Xα, as the random sum

Xα,c = c ◦Xα
d
=

Xα∑
l=1

Bc (l) ,

with (Bc (l))l≥1 a sequence of independent and identically distributed (iid) Bernoulli

variables such that P (Bc (1) = 1) = c, independent of Xα. This binomial thinning
operator, acting on discrete rvs, has been defined by [66]; it stands as the discrete
version of the change of scale (note that if X = n is a constant integral rv, c ◦X is
random with bin(n, c) distribution). The pgf of Xα,c is

φα,c (z) := E
(
zXα,c

)
= φXα (1− c (1− z)) = 1− (c (1− z))α , z ≤ 1.

With λ = cα ∈ (0, 1), we shall therefore call a rv Xα,λ with pgf φα,λ (z) =

1 − λ (1− z)α a scaled Sibuya(α, λ) rv, with scale parameter λ, obeying Xα,λ
d
=

λ1/α ◦ Xα. Xα,λ ≥ 0 is now an integer-valued random variable with support
N0 = {0, 1, 2, ....} , satisfying

πα,λ (0) := P (Xα,λ = 0) = 1− λ and

(1) πα,λ (k) := P (Xα,λ = k) = λ (−1)
k−1

(
α

k

)
= αλ

[α]k−1

k!
, k ≥ 1.

Both Xα,λ and Xα = Xα,1 are heavy-tailed with exponent α : P (X > k) =
L (k) k−α for some slowly-varying sequence L (k) .

• Main properties [9]. The rv Xα,λ is infinitely divisible (ID), or compound
Poisson, iff λ ≤ 1 − α. This follows from the fact that, with µ = − log (1− λ) ≤
− logα

φα,λ (z) = 1− λ (1− z)α = e−µ(1−h(z))
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for some absolutely monotone pgf h (z) (the pgf of the sizes of the batches), obeying
h (0) = 0.

It is even discrete self-decomposable (and thus unimodal) iff λ ≤ (1− α) / (1 + α)
with Xα,λ self-decomposable ⇒ Xα,λ ID, [66]. We will come back to this self-
decomposability property below.

• Three-parameters Sibuya(α, β, λ) rv. Let β > 0. If Xα,λ is ID (else if λ ≤
1− α), then for all β > 0

φα,β,λ (z) = (1− λ (1− z)α)
β

is the pgf of some rv Xα,β,λ, called a generalized Sibuya(α, β, λ) rv. This is because,
under our assumptions, Xα,λ is compound Poisson.

1.2. Branching processes involving Sibuya rvs: discrete space-time Neveu
process. We describe here an integral-valued Bienaymé-Galton-Watson branching
process in discrete time whose branching mechanism is a Sibuya(α, λ) rv. It turns
out that the population size at generation n is itself again a Sibuya(αn, λn) rv, so
computable. We call it the discrete Neveu process. We investigate some of the
consequences of this remarkable fact.

• Branching process with Sibuya(α, λ) offspring distribution (discrete-
time). Let φα1,λ1

(z) and φα2,λ2
(z) be the pgfs of two independent scaled Sibuya

rvs with parameters (α1, λ1) and (α2, λ2) . We have the stability under composition
property

φα2,λ2

(
φα1,λ1

(z)
)

= φα2α1,λ2λ
α2
1

(z) .

In particular, with φ◦n (z) = φ (φ (...φ (z))) (n times), the n−th composition of
φ (z) with itself, then

φ◦nα,λ (z) = φαn,λ(1−αn)/(1−α) (z)

is the n−th composition of φα,λ (z) with itself. It is thus itself a Sibuya(αn, λn) rv

with αn := αn and λn := λ(1−αn)/(1−α).

Consider a supercritical Galton-Watson process whose offspring number has distri-
bution Xα,λ (so with infinite mean 1 < E (Xα,λ) =∞), defining the discrete Neveu

model. Note E
(
Xq
α,λ

)
< ∞ if q < α. Because P (Xα,λ = 0) = 1 − λ > 0, this

process has a positive (non-zero) probability of extinction. Let Nn be the num-
ber of descendants of a unique common ancestor at generation n. Then φn (z) :=
E1

(
zNn

)
:= E

(
zNn | N0 = 1

)
, the pgf of Nn, obeys the recursion

(2) φn+1 (z) = φα,λ (φn (z)) , n ≥ 0, φ0 (z) = z,

leading to

(3) φn (z) = φ◦nα,λ (z) = 1− λn (1− z)αn .

Note that if λ1 = λ ≤ 1 − α1 (Xα,λ is ID), then Nn is ID for all n ≥ 1 because

λn := λ(1−αn)/(1−α) ≤ λ ≤ 1 − α ≤ 1 − αn whereas if λ > 1 − α, Nn becomes
ID for all n ≥ n0 = inf (n : λn ≤ 1− αn) . This is because (λn)n≥1 is a decreasing
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sequence from λ to λ1/(1−α) while 1− αn is increasing from 1− α to 1. Therefore,
only after time n0,

φn (z) = e−µn(1−hn(z)), n ≥ n0,

where µn = − log (1− λn) and hn (z) a pgf (with hn (0) = 0) which can be identified
from the latter equation and (3): the branching process Nn with N0 = 1 has the
same distribution as a (time-inhomogeneous rate) compound Poisson process with
independent jumps but time dependent jumps ∆k (n) , k ≥ 1:

(4) Nn
d
=

P (µn)∑
k=1

∆k (n) .

It holds that the rate sequence µn is decreasing from− log (1− λn0
) to− log

(
1− λ1/(1−α)

)
whereas hn (z) = µ−1

n log
(

1 + λn
1−λn (1− (1− z)αn)

)
obeys hn (0) = 0 and hn (z)→

0 as n → ∞, showing that hn (z) is the pgf of some jump rv ∆ (n) taking values

in {1, 2, ...}, whose size increases with n and with ∆ (n)
d→ ∞ as n → ∞. As a

compound Poisson process with jump sizes ∆ (n) (only after time n0), the law of
Nn is the one of a process with non-decreasing sample paths.

Furthermore, from (3), with P1 (Nn = k) := P (Nn = k | N0 = 1)

παn,λn (0) : = P1 (Nn = 0) = 1− λn

παn,λn (k) : = P1 (Nn = k) = λn (−1)
k−1

(
αn
k

)
= αnλn

[αn]k−1

k!
, k ≥ 1.

Thus, P1 (N∞ = 0) = limn↑∞P1 (Nn = 0) = 1− λ1/(1−α) =: ρe, the probability of
extinction. As required, the number ρe is the smallest solution to φα,λ (z) = z. If

Nn does not go extinct, it explodes (Nn →∞ as n→∞) with probability λ1/α(1−α).

Remark: It can be checked that, with loga b = log b/ log a and A (z) = 1 −
log1−ρe (1− z), z < 1,

(5) φα,λ (z) = A−1 (αA (z)) , so that φ◦nα,λ (z) = A−1 (αnA (z)) .

This is an alternative way to see that the discrete Neveu branching model is ‘inte-
grable’.

Let τe be the extinction time (or the height of the Neveu branching process). The
events Nn > 0 and τe > n coincide so

P1 (τe > n) = P1 (Nn > 0) = λn,

with P1 (N∞ = 0) = P1 (τe <∞) = ρe = 1 − λ1/(1−α) > 0. One consequence of
this fact is the following: if the population is observed to be alive after generation
n, the probability that it will survive forever is

1−P1 (τe <∞ | τe ≥ n) = (1− ρe) /λn−1 = λα
n−1/(1−α).

This survival probability is doubly exponentially close to 1 as n grows (for instance,
if α = λ = 1/2, it is 0.9993233275 as soon as n = 12). So, if extinction is to occur,
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it occurs rapidly or nearly never. Indeed,

P1 (τe <∞ | τe ≥ n) =
P1 (τe ≥ n | τe <∞) P1 (τe <∞)

P1 (τe ≥ n)

=
(1−P1 (τe < n | τe <∞)) P1 (τe <∞)

P1 (τe ≥ n)
=

P1 (τe <∞)−P1 (Nn−1 = 0)

1−P1 (Nn−1 = 0)

= 1− 1−P1 (τe <∞)

1−P1 (Nn−1 = 0)
= 1− 1− ρe

λn−1
.

We also have [15]:

P1 (αn log (1 +Nn) ≤ x)→ F (x) as n→∞,
with x ≥ 0 and

F (x) = lim
n→∞

E1

((
1− e−α

−nx
)Nn)

= 1−λ1/(1−α)e−x =
(

1− λ1/(1−α)
)

+λ1/(1−α)
(
1− e−x

)
,

corresponding to a rv with law
(

1− λ1/(1−α)
)
δ0 + λ1/(1−α)e−x (a mixture of a rv

with Dirac mass at 0 and an exponentially distributed rv say E, with mean 1).

So if the population does not go extinct, Nn grows fast to infinity at a double-

exponential speed: (1 +Nn)
αn d→ Z = eE > 1 as n → ∞, with Z log-exponential

(or standard Pareto) distributed: P (Z > x) = 1/x, x > 1. Using martingale
arguments, this convergence can be shown to be almost sure as well, ([25], [27],
Proposition 3.8).

• Randomizing the initial condition. So far, we studied the number of de-
scendants Nn of a single individual at generation 0. Suppose the initial number
of particles is now random with geometric distribution P (N0 = n) = qpn, n ≥ 0
and q + p = 1 (the distribution of maximal entropy under the constraint that its
mean µ = p/ (1− p) is fixed). Then under the assumption of independence of all
the progenies, with φGµ (z) = 1/ (1 + µ (1− z)) the pgf of N0, the pgf of the full
process reads

(6) E
(
zNn

)
= φGµ (φn (z)) =

1

1 + µλn (1− z)αn
.

We will identify later this pgf as the one of a (discrete-) Mittag-Leffler distribution
with scale parameter µn = µλn and tail exponent αn = αn. Similarly, if the initial
number of particles were random with Poisson(µ) distribution, the pgf of the full
process would be a discrete stable law with scale parameter µn = µλn and tail
exponent αn = αn :

(7) E
(
zNn

)
= φPµ (φn (z)) = e−µn(1−z)αn = e−µn[1−(1−(1−z)αn )],

showing that Nn
d
=
∑P (µn)
k=0 ∆k (n), a compound Poisson(µn)−sum of iid parts with

distribution Sibuya(αn). Poisson distributions are maximal entropy distributions in
the class of ultra-log-concave distributions, [33]. We call such branching processes,
with discrete-stable(µn, α

n) marginals, the discrete-Neveu branching process, in
view of their continuous counterpart defined in [50]. Note finally that if N0 ≥ 1
is Sibuya(α) distributed, then, by stability, Nn is again Sibuya distributed with
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parameters λn = λα(1−αn)/(1−α) and αn = αn+1.

• Resolvent of the Neveu process. It is also clear that Nn is a discrete-time
Markov chain over the set of integers N0 = {0, 1, 2, ...}, with transition proba-
bility matrix P = [Pi,j ] satisfying Pi,j = P (N1 = j | N0 = i) =: Pi (N1 = j) =[
zj
]
φα,λ (z)

i
, i, j ∈ N0, P0,j = δj,0. The pgf φα,λ (z)

i
is the one of a three-parameter

Sibuya rv φα,i,λ (z) . Pi,j can easily be computed by the Faa di Bruno formula for

the composition of generating functions, involving ordinary Bell numbers B̂j,i, ([14],
Tome 1, p. 148). Specifically, with πα,λ (k) = P (Xα,λ = k) the probability system
given by (1)

(8) Pi,j =

i∑
k=1

(
i

k

)
πα,λ (0)

i−k
B̂j,k (πα,λ (1) , πα,λ (2) , ...) , j, i ≥ 1.

Let x (•) denote the sequence x (1) , x (2) , x (3) ... Ordinary Bell numbers B̂j,i (x (•))
are related to standard Bell numbers Bj,i (x (•)) = Bj,i (x (1) , x (1) , ...) by

B̂j,i (x (•)) = Bj,i (•!x (•)) ,

so with [14]

Bj,i (x (•)) = j!

∗∑∏
k≥1

1

ck!

(
x (k)

k!

)ck
and B̂j,i (x (•)) = j!

∗∑∏
k≥1

x (k)
ck

ck!
,

the latter star summations running over the integers ck obeying
∑
k≥1 ck = i and∑

k≥1 kck = j. Thus, with λ := 1− λ = πα,λ (0), πα,λ (k) = αλ [α]k−1, k ≥ 1

Pi,j =

i∑
k=1

(
i

k

)
λ
i−k

(αλ)
k
Bj,k

(
[α]•−1

)
= λ

i
i∑

k=1

(
i

k

)(
αλ/λ

)k
Bj,k

(
[α]•−1

)
, j, i ≥ 1.

When i = 1, recalling that Bj,1 (x (•)) = x (j), we recover that P1,j = αλ [α]j−1 ,
j ≥ 1.

What we get here for free is that for all j, i ≥ 1

Pni,j =
[
zj
] (
φ◦nα,λ (z)

i
)

=
[
zj
]

(1− λn (1− z)αn)
i

=

i∑
k=0

(
i

k

)
παn,λn (0)

i−k
B̂j,k (παn,λn (•)) = λ

i

n

i∑
k=1

(
i

k

)(
αnλn/λn

)k
Bj,k

(
[αn]•−1

)
is obtained similarly as for Pi,j simply while performing the substitution (α, λ) →
(αn, λn). For j, i ≥ 1, we also obtain the resolvent of Nn as

gi,j (z) := δi,j +

n∑
n≥1

znPni,j = δi,j +

n∑
n≥1

znλ
i

n

i∑
k=1

(
i

k

)(
αnλn/λn

)k
Bj,k

(
[αn]•−1

)
.

In particular,

gi,i (z) = 1 +
∑
n≥1

znλ
i

n

i∑
k=1

(
i

k

)(
αnλn/λn

)k
Bi,k

(
[αn]•−1

)
.
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It holds that E (zτ i,j ) = gi,j (z) /gj,j (z) where τ i,j is the first passage time to state

j 6= i of Nn given N0 = i, together with E
(

zτ
r
i,i

)
= 1− 1/gi,i (z) , where τ ri,i is the

first return time to state i of Nn with P
(
τ ri,i <∞

)
= 1− 1/gi,i (1).

The Bell numbers Bj,i
(
[α]•−1

)
appearing in the above computations obey a simple

3−term recursion with appropriate boundary conditions

Bj+1,i

(
[α]•−1

)
= Bj,i−1

(
[α]•−1

)
+ (j − iα)Bj,i

(
[α]•−1

)
.

They constitute a class of generalized Stirling numbers studied in [8].

The Markov chain Nn is possibly absorbed at {0} if extinction occurs. Let then
τ i,e = inf {n ≥ 1 : Nn = 0 | N0 = i}, i ≥ 1 with τ i,e :=∞ in case of non-extinction
(note τe = τ1,e). τ i,e is the extinction probability given i particles originally. Then,

(9) P (τ i,e ≤ n) = Pi (Nn = 0) =
[
z0
]
φn (z)

i
= (1− λn)

i

and P (τ i,e =∞) = 1 − (1− λ∞)
i

= 1 − ρie. Let P be obtained from P while
removing its first row and column (corresponding to the absorbing state {0}). Let
h ≡ (h (1) , h (2) , ...)

′
solve Ph = h with boundary condition h (1) = 1. The column

sequence h is called the scale (or harmonic) sequence of {Nn} . It is such that
h
(
Nn∧τ i,e

)
is a martingale and it holds that h (i) = h (∞) (1−P (τ i,e <∞)), [51].

It can easily be checked by hand to be

(10) h (i) =
1− ρie
1− ρe

, i ≥ 1.

• Pgf versus log-Laplace transform (LLt) and associated random walk.
Let M := Xα,λ denote the offspring number per capita in the discrete Neveu

branching process. Let ψn (p) := − log φn (e−p) and ψ (p) := − log E
(
e−p(M−1)

)
.

The recursion (2) is also

ψn+1 (p)− ψn (p) = ψ (ψn (p)) , n ≥ 0, ψ0 (p) = p.

Let M̃ := M−1, taking values in {−1, 0, 1, 2, ...}. Discrete-time branching processes
are intimately related to a random walk. Consider indeed the (skip-free to the left)

random walk Sn+1 = Sn+M̃n+1, S0 = 1, with the sequence
{
M̃n

}
iid all distributed

like M̃. Assume also that state {0} is absorbing. Then, with Nn = N1 + ... + Nn

the cumulated number of offsprings up to time n, SNn+1
− SNn =

∑Nn+1

i=Nn+1
M̃i

d
=∑Nn

i=1 M̃i, showing that

Nn
d
= SNn−1

.

Therefore Nn is a time-changed version of Sn. The one-step transition matrix
P = [Pi,j ] of the random walk {Sn} started at S0 = i with {0} absorbing, is
P0 (S1 = j) = P0,j = δj,0 and

Pi (S1 = j) = Pi,j =
[
zj−i+1

]
φα,λ (z) = πα,λ (j − i+ 1) , i ≥ 1, j ≥ i− 1.
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It is an upper-Hessenberg type matrix. The scale or harmonic function of {Sn},
say s ≡ (s (1) , s (2) , ...)

′
, therefore is the smallest solution to∑

j≥i−1

πα,λ (j − i+ 1) s (j) = s (i) , i ≥ 2,

with conventional boundary condition s (1) = 1. It is an increasing sequence. With

ρe = 1− λ1/(1−α), the smallest solution to φα,λ (z) = z and b = 1/ (1− ρe), we get

s (1) = 1, s (i) = b
(
1− ρie

)
, i ≥ 2,

with s (i) = h (i) given in (10). Indeed, if i ≥ 3∑
j≥i−1

πα,λ (j − i+ 1) s (j) =
∑
k≥0

πα,λ (k) s (k + i− 1)

= b

1−
∑
k≥0

πα,λ (k) ρk+i−1
e

 = b
(
1− ρie

)
.

If i = 2, ∑
k≥0

πα,λ (k) s (k + 1) = πα,λ (0) + b
∑
k≥1

πα,λ (k)
(
1− ρk+1

e

)
= πα,λ (0) + b (1− πα,λ (0)− ρe (ρe − πα,λ (0))) = b

(
1− ρ2

e

)
,

fixing the limiting constant b = 1/ (1− ρe) = s (∞). This is consistent with the
following result: let τ i,0 = inf (n ≥ 1 : Sn = 0 | S0 = i) . Then, by first-step analysis

([56], p. 92), E (zτ i,0) = h (z)
i
, where h (z) solves the functional equation

(11) h (z) = zφα,λ (h (z)) .

We therefore get P (τ i,0 <∞) = h (1)
i

with h (1) = ρe. Note E (τ i,0) = ∞ but

E (zτ i,0 | τ i,0 <∞) = (h (z) /h (1))
i
, leading to E (τ i,0 | τ i,0 <∞) = i/ (1− α).

We also have [51],
s (i) = s (∞) (1−P (τ i,0 <∞)) ,

together with τ i,j = inf (n ≥ 1 : Sn = j | S0 = i) , j > i and

(12) P (τ i,j < τ i,0) =
s (i)

s (j)
=

1− ρie
1− ρje

,

with P (τ i,∞ < τ i,0) = 1 − ρie, the probability of non-extinction given S0 = i, as
required. Let S∗n = max (Sm, m ≤ n) be the ladder height process of {Sn}. It
then holds from (12) that for j ≥ i, P (S∗∞ ≥ j | S∗0 = i) =

(
1− ρie

)
/
(
1− ρje

)
and

P (S∗∞ =∞ | S∗0 = i) = 1− ρie. Thus

P (S∗∞ ≥ j | S∗0 = i, S∗∞ <∞) =
ρje

1− ρje

(
ρ−ie − 1

)
, j ≥ i.

Because Nn is a time-changed version of Sn, with N∗∞ = max (Nn, n ≥ 1 | N0 = i)

P (N∗∞ ≥ j | N∗0 = i) =
(
1− ρie

)
/
(
1− ρje

)
as well.

The random variable N∗∞, the maximal value which {Nn} can take, is known as
the width of {Nn} . Its distribution is given above.

We also observe that h (z)
i
, as a solution to the functional equation (11), is the

pgf of N∞ started at i, the total limiting number of cumulated individuals which
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appeared over time in the population (possibly infinite on the set of explosion). It
can be solved by the Lagrange inversion formula, [14]. Observing E

(
zSn | S0 = i

)
=

zi−nφα,λ (z)
n
, by Lagrange formula, we get:

[zn]h (z)
i

=
i

n

[
zn−i

]
φα,λ (z)

n
=

i

n

[
z0
]
E
(
zSn | S0 = i

)
.

This yields the Kemperman formula ([56], p. 92) as

(13) P (τ i,0 = n) =
i

n
Pi (Sn = 0) , n ≥ i,

and more generally, while observing[
zn+j

]
h (z)

i
=

i

n+ j

[
zn+j−i]φα,λ (z)

n
=

i

n+ j

[
zj
]
E
(
zSn | S0 = i

)
,

(14) P (τ i,0 = n+ j) =
i

n+ j
Pi (Sn = j) , n ≥ i− j.

Finally, let i, j 6= 1 and j ≥ (i− n) ∧ 0. Given S0 = i, we have

Sn = 0 · 1{τ i,0≤n} +

(
i+

n∑
k=1

M̃k

)
· 1{τ i,0>n}.

We therefore get, for j 6= 0

Pni,j := Pi (Sn = j) =
[
zj−i+n

] (
φα,λ (z)

n)
=
n+ j

i
P (τ i,0 = n+ j) ,

so that the resolvent of {Sn} reads (j 6= 0)

gi,j (z) : = δi,j +
∑
n≥1

znPni,j = δi,j +
1

i

∑
n≥i−j

zn (n+ j) P (τ i,0 = n+ j)

= δi,j +
z1−j

i

∑
k≥i

zk−1kP (τ i,0 = k) = δi,j +
z1−j

i

d

dz

(
h (z)

i
)
.

In particular,

gi,i (z) = 1 +
z1−i

i

d

dz

(
h (z)

i
)
.

This leads to the first return time of {Sn} to state i pgf: E
(

zτ
r
i,i

)
= 1− gi,i (z)

−1
.

In particular, E
(

zτ
r
1,1

)
= 1 − 1/ (1 + h′ (z)) with, from (11), P

(
τ r1,1 <∞

)
=

1 − 1/ (1 + h′ (1)) = ρe/ (ρe + 1− α), in view of h′ (1) = ρe/
(
1− φ′α,λ (ρe)

)
and

φ′α,λ (ρe) = α ∈ (0, 1) .

• Conditioned Neveu branching processes with Sibuya(α, λ) offspring dis-
tribution. We know briefly address the problems of conditioning the latter process
either on extinction or on explosion.

- When conditioning the supercritical branching process with branching mechanism
φα,λ (z) on extinction, one needs to consider a branching process with the modified
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branching mechanism

φα,λ (z)→ φ̂α,λ (z) =
φα,λ (zρe)

ρe
=

1− λ (1− ρez)
α

ρe
.

φ̂α,λ (z) is the branching mechanism of some rv say X̂α,λ (the new modified offspring
number), now with

P
(
X̂α,λ = 0

)
= (1− λ) /ρe

P
(
X̂α,λ = k

)
=

λ

ρe
(−1)

k−1

(
α

k

)
ρke , k ≥ 1.

Remark: In view of (5), φ̂α,λ (z) = Â−1
(
αÂ (z)

)
where Â (z) = A (Ae (z)), Ae (z) =

zρe so that Â (z) = 1− log1−ρe (1− ρez), z < 1/ρe.

We have

E
(
X̂α,λ

)
= φ′α,λ (z = ρe) = λα (1− ρe)

α−1
= α < 1.

The new process is therefore subcritical. When the process starts from one particle,
it holds that

φ̂
◦n
α,λ (z) = φ̂αn,λ(1−αn)/(1−α) (z) =

1− λn (1− ρez)
αn

ρe
= Â−1

(
αnÂ (z)

)
.

The n−th composition of φ̂α,λ (z) with itself is again of the same form φ̂αn,λn (z) ,

with αn = αn and λn = λ(1−αn)/(1−α). Thus

P1

(
N̂n = 0

)
= (1− λn) /ρe

P1

(
N̂n = k

)
=

λn
ρe

(−1)
k−1

(
αn
k

)
ρke =

αnλn
ρe

[αn]k−1

k!
ρke , k ≥ 1,

now with geometric tails. As required, we have

P1

(
N̂n = 0

)
→

n→∞

(
1− λ1/(1−α)

)
/ρe = 1, (almost sure extinction).

The Yaglom limit exists, with explicit logarithmic limiting distribution. Indeed,

from the large n inspection of the probabilities P1

(
N̂n = k

)
, k ≥ 0,

lim
n→∞

P1

(
N̂n = k | N̂n > 0

)
= − 1

log (1− ρe)
ρke
k
, k ≥ 1.

The mean value of the Yaglom distribution is: ρe/ (− (1− ρe) log (1− ρe)). The
corresponding pgf

g (z) =
− log (1− ρez)
− log (1− ρe)

=: log1−ρe (1− ρez) , z < 1/ρe

solves the associated Schröder functional equation 1− g
(
φ̂α,λ (z)

)
= α (1− g (z)) ,

known to characterize the Yaglom limit, [28]. Observe that, with g (z) := 1−g (z) =

Â (z)

φ̂α,λ (z) = g−1 (αg (z)) , so that φ̂
◦n
α,λ (z) = g−1 (αng (z)) .
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The time to extinction, say τ̂e, of this new branching process is now finite with
probability 1 and

P1 (τ̂e ≤ n) = P1 (τe ≤ n | τe <∞) =
1− λn

1− λ1/(1−α)
,

with α−nP1 (τ̂e > n) →
n→∞

− log (λ)λ1/(1−α)/
(

1− λ1/(1−α)
)

translating the fact

that τ̂e is tail equivalent to a rv with geometrically decaying tails αn.

- When conditioning the supercritical branching process with branching mechanism
φα,λ (z) now on explosion, one needs to consider a branching process with the
modified branching mechanism (the Harris-Sevastyanov transform ([26], [61]))

φα,λ (z) → φ̃α,λ (z) =
φα,λ (ρe + z (1− ρe))− ρe

1− ρe

= 1− λ (1− ρe)
α

(1− z)α

1− ρe
= 1− (1− z)α =: φ̃α (z) ,

independent of λ. The transformed pgf φ̃α,λ (z) = φ̃α (z) is the branching mecha-

nism of some rv say X̃α, now with P
(
X̃α = 0

)
= 0. X̃α is an (unscaled) Sibuya(α)

rv. It is the generating function of the reproduction law of some Galton-Watson

process
{
Ñn

}
which is obtained by the restriction of {Nn} to prolific individu-

als (disregarding doomed particles of {Nn}). If Ñn is the number of offspring at
generation n of this conditioned process, we have

E1

(
zÑn

)
= φ̃

◦n
α (z) = 1− (1− z)αn .

Remark: In view of (5), φ̃α,λ (z) = Ã−1
(
αÃ (z)

)
where Ã (z) = A (Ae (z)), Ae (z) =

ρe + z (1− ρe) . Thus, with Ã (z) = − log1−ρe (1− z), φ̃
◦n
α (z) = Ã−1

(
αnÃ (z)

)
.

We note that E1

(
zÑn

)
= φn(z)−φn(0)

1−φn(0) , emphasizing that Ñn is Nn conditionally

given Nn ≥ 1. Equivalently,

P1

(
Ñn = 0

)
= 0,

P1

(
Ñn = k

)
= (−1)

k−1

(
αn
k

)
= αn

[αn]k−1

k!
, k ≥ 1.

The time to extinction of this ∼−process, say τ̃e, is τ̃e =∞ with probability 1 and

P1

(
Ñn →∞

)
= 1. And Ñn has non-decreasing sample-paths.

Remark: With φn (z) := E1

(
zNn

)
, consider a (time-inhomogeneous) branching

process whose pgf obeys φn+1 (z) = fn+1 (φn (z)) where now fn (z) = φαn,λ (z) .
Then

φn (z) = φαn,λ
(
...
(
φα2,λ

(
φα,λ (z)

)))
= 1− λn (1− z)αn ,

with now λn = λ1+
∑n−1
m=1 α

m(m+1)/2

and αn =
∏n
m=1 α

m = αn(n+1)/2. By so do-
ing, the tail (but not the scale) parameter αn of the branching mechanism fn now
depends on the number of the generation, with αn → 0 as n → ∞. When condi-
tioning on explosion (λ = 1), φn (z) = 1 − (1− z)αn and Nn is distributed like an
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(unscaled) Sibuya
(
αn(n+1)/2

)
and one expects Nn to grow fast to infinity at a rate

still faster than double-exponential: (1 +Nn)
αn

2
/2 d→ Z = eW > 1 as n→∞.

1.3. Branching processes involving Sibuya rvs: discrete-space, continuous–
time Neveu process. We now turn to discrete-space and continuous-time branch-
ing processes involving Sibuya rvs. A central and critical one will be the Neveu
process.

•Branching process with Sibuya(α, λ) offspring distribution in continuous
time. We consider a continuous-time version of the latter model in discrete-time
([26], [61]), also with independent branching particles. For continuous-time branch-
ing processes, the rates λk (dt) at which one individual gives birth to k individuals
in the time interval dt are given by (λk > 0)

λ1 (dt) = 1−

∑
k 6=1

λk

 dt+ o (dt) and λk (dt) = λkdt+ o (dt) if k 6= 1.

Each particle lives a random time with exponential distribution with frequency
parameter µ =

∑
k 6=1 λk. At the time of its death, it gives birth to a random

number M 6= 1 of particles of the same type with law

P (M = k) = λk/µ, k 6= 1.

The induced branching mechanism to consider is thus f (z) = µ (φ (z)− z) where
φ (z) =

∑
k 6=1 P (M = k) zk is the pgf of M . With λ1 > 0 arbitrary, we also have

f (z) =
∑
k 6=1

λkz
k −

∑
k 6=1

λk

 z =
∑
k

λkz
k −

(∑
k

λk

)
z = µ (φ (z)− z) ,

now with µ =
∑
k λk, φ (z) =

∑
k P (M = k) zk and P (M = k) = λk/µ, k ∈

{0, 1, 2, ...} . Thus, φ (z) is now the pgf of a rv M taking values in {0, 1, 2, ...},
including {1} . And the two models are equivalent.

Consider therefore a continuous-time branching process with Sibuya(α, λ) branch-
ing mechanism, so with φ (z) = φα,λ (z). Then:

f (z) = µ ((1− z)− λ (1− z)α) = µ
(
φα,λ (z)− z

)
.

The rates λk > 0 at which one individual gives birth to k individuals are λk =[
zk
]
f (z). We get here

λ0 = µ (1− λ) ,

λk = µλ (−1)
k−1

(
α

k

)
, k ≥ 1.

Then, φt (z) = E1

(
zN(t)

)
, t ≥ 0, the pgf of the population size N (t) at time t

started with a single individual, obeys [26]

(15) ∂tφt (z) = f (φt (z)) , φ0 (z) = z,

which can be solved explicitly to give

φt (z) = 1−
(
λ
(

1− e−µ(1−α)t
)

+ e−µ(1−α)t (1− z)1−α
)1/(1−α)

.
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We have φt (1) = 1−
(
λ
(
1− e−µ(1−α)t

))1/(1−α)
= P1 (Nt <∞) < 1 and the process

is not regular, or defective (for each t > 0, there is a positive probability that
N (t) = ∞, translating the opportunity of explosion in finite time; the process
N (t) loses mass at infinity). For small values of t > 0 already, we have

P1 (N (t) =∞) ∝ t1/(1−α).

We also have

P1 (N (t) = 0) = φt (0) = 1−
(
λ+ (1− λ) e−µ(1−α)t

)1/(1−α)

→
t→∞

ρe := 1−λ1/(1−α),

the smallest solution in [0, 1] to f (z) = 0. ρe is the probability of extinction of
N (t) ; it coincides with the one obtained in the discrete-time setup. Also,

P1 (τe > t) = P1 (N (t) > 0) =
(
λ+ (1− λ) e−µ(1−α)t

)1/(1−α)

,

giving the tail probability distribution function of the extinction time, with expo-
nential tails conditionally given τe <∞

eµ(1−α)tP1 (τe > t | τe <∞) →
t→∞

C =
(1− λ)λα/(1−α)(

1− λ1/(1−α)
)

(1− α)
> 0.

Note that from (15)

φt (z) = A−1
(
e−µtA (z)

)
where

A (z) = e−µ
∫ z
0

1
f(x)

dx =

(
(1− z)1−α − λ

1− λ

)1/(1−α)

, 0 ≤ z < ρe

and A−1 (·) is the inverse of A (·). We have that

φ̃t (z) := E1

(
zÑ(t)

)
=
φt (z)− φt (0)

1− φt (0)

is the pgf of N (t) conditionally given N (t) ≥ 1, with P1

(
Ñ (t) = 0

)
= 0. Again,

for all t > 0, φ̃t (1) = φt(1)−φt(0)
1−φt(0) = P1

(
Ñ (t) <∞

)
< P1 (N (t) <∞) < 1.

Remark:

So far, we studied the number of descendants N (t) of a single individual at gener-
ation 0. Suppose the initial number of particles is now random with Sibuya(1− α)
distribution. Then under the assumption of independence of all the progenies, with
φ1−α (z) = 1− (1− z)1−α

the pgf of N (0) ≥ 1, the pgf of the full process reads

E1

(
zN(t)

)
= φ1−α (φt (z)) = 1−

[
λ
(

1− e−µ(1−α)t
)

+ e−µ(1−α)t (1− z)1−α
]
,

which is a defective Sibuya
(
1− α, e−µ(1−α)t

)
rv in that P1 (N (t) =∞) = λ

(
1− e−µ(1−α)t

)
>

0.

• Neveu branching process in continuous-time. Let λ ∈ (0, 1] and let µ > 0.
One can check that

φλ (z) = (1− λ) + λ [(1− z) log (1− z) + z]



14 THIERRY E. HUILLET

is a pgf with [z]φλ (z) = 0. Consider a continuous-time branching process with
branching mechanism

(16) f (z) = µ ((1− λ) (1− z) + λ (1− z) log (1− z)) = µ (φλ (z)− z) .
The rates λk > 0 at which one individual gives birth to k 6= 1 individuals are
λk =

[
zk
]
f (z). We get

λ0 = µ (1− λ) and λk =
µλ

k (k − 1)
, k ≥ 2.

Each particle lives a random time with exponential distribution with frequency
parameter

∑
k 6=1 λk = µ. At the time of its death, it gives birth to a random

number M 6= 1 of particles of the same type with law

P (M = k) = λk/µ, k 6= 1.

As before, φt (z) = E1

(
zN(t)

)
, t ≥ 0, the pgf of the population size N (t) at time t

started with a single individual, obeys

∂tφt (z) = f (φt (z)) , φ0 (z) = z,

which can be solved explicitly to give

(17) φt (z) = 1− e−
(1−λ)
λ (1−e−λµt) (1− z)e

−λµt
.

It can easily be checked that

φt (z) = A−1
(
e−µtA (z)

)
,

where in the Neveu case

A (z) = e−µ
∫ z
0

1
f(x)

dx =

(
1 +

λ

1− λ
log (1− z)

)1/λ

, 0 ≤ z < 1− e−(1−λ)/λ.

ThereforeN (t) has a Sibuya
(
αt := e−λµt, λt := e−

(1−λ)
λ (1−e−λµt)

)
distribution with

P1 (N (t) = 0) = 1− λt =: λt

P1 (N (t) = k) = (−1)
k−1

λt

(
αt
k

)
= αtλt

[αt]k−1

k!
, k ≥ 1.

We conclude that N (t) is ID iff λt ≤ 1− αt (else e−
(1−λ)
λ (1−e−λµt) ≤ 1− e−λµt) or

equivalently if t > t0 := − 1
λµ log (1− x0) where x0 ∈ (0, 1) is defined implicitly by

e−
(1−λ)
λ x0 = x0. Therefore, only after time t0,

φt (z) = e−µt(1−ht(z)), t > t0

where µt = − log (1− λt) and ht (z) a pgf (with ht (0) = 0) which can be identified
from the latter equation and (17). The Neveu branching process N (t) with N (0) =
1 has the same distribution as a (time-inhomogeneous) compound Poisson process:

(18) N (t)
d
=

P (µt)∑
k=1

∆k (t) .

The right-hand-side of (18) is indeed a Poisson-P (µt) sum (with intensity µt) of
independent jumps ∆. (t) , each with time-dependent pgf ht (z).

Note that if λ = 1, N (t) ≥ 1 and absorption is not possible (explosion has prob-
ability 1) and N (t) cannot be ID (although N (t) − 1 is, [37]). If λ = 1, we have
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φt (z) = 1− (1− z)αt and, conditionally on non-extinction, N (t) has a Sibuya(αt)
distribution:

P1 (N (t) = k) = (−1)
k−1

(
αt
k

)
= αt

[αt]k−1

k!
, k ≥ 1.

In any case, we have φt (1) = P1 (N (t) <∞) = 1 and the discrete Neveu process
in continuous-time is regular or conservative (finite-time explosion is impossible).
When λ ∈ (0, 1), we also have

P1 (N (t) = 0) = φt (0) = 1− e−
(1−λ)
λ (1−e−λµt) →

t→∞
ρe := 1− e−

(1−λ)
λ ,

the smallest solution in [0, 1] to f (z) = 0. ρe is the probability of extinction of
N (t) . Also,

P1 (τe > t) = P1 (N (t) > 0) = e−
(1−λ)
λ (1−e−λµt) → 1− ρe,

the explosion probability at τe = ∞. This gives the tail probability distribution
function of the extinction time as one with exponential tails

eλµtP1 (τe > t | τe <∞) →
t→∞

C =
λ

1− λ
1− ρe
ρe

> 0,

conditionally given τe <∞. Here again, see [27], Proposition 3.8,

e−µt log (1 +N (t))
a.s.→
t→∞

ρe · 0 + (1− ρe)E, where E
d∼ exp (1) .

If the initial number of particles is i, we also note from (8) that, with i, j ≥ 1

Pi (N (t) = j) = λ
i

t

i∑
k=1

(
i

k

)(
αtλt/λt

)k
Bj,k

(
[αt]•−1

)
,

showing that the full transition probability system of the Neveu model is integrable
by quadrature. Furthermore,

gi,j (q) :=

∫ ∞
0

e−qtPi (N (t) = j) dt

is the resolvent of N (t). If j = 0, Bj,k 6= 0 only if k = 0, so that

Pi (N (t) = 0) = λ
i

t =
(

1− e−
(1−λ)
λ (1−e−λµt)

)i
= Pi (τe ≤ t) =: P (τ i,e ≤ t) .

τ i,e is the extinction time given i particles at the origin of times. This is the
continuous-time version of the discrete-time hitting time result (9).

If now the initial number of particles is random and Poisson(1) distributed, the pgf
of N (t) becomes

E
(
zN(t)

)
= EEP (1)

(
zN(t)

)
= e−(1−φt(z)) = e−λt(1−z)

αt
= e−λt(1−[1−(1−z)αt ]).

Alternatively, N (t) is discrete-stable(αt, λt) distributed. Therefore,

N (t)
d
=

P (λt)∑
k=1

∆k (t) ,
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a Poisson-P (λt) sum (with intensity λt = e−
(1−λ)
λ (1−e−λµt)) of independent jumps

∆. (t) each with unscaled Sibuya(αt = e−µt) distribution.

Remark: Recall that a Bienaymé-Galton-Watson processes with generating func-
tions φn (z) is called embeddable, if there is a continuous-time t > 0 semi-group
of probability generating functions φt (z) obeying φt+s (z) = φt (φs (z)) such that
φn (z) = φt=n (z), n = 1, 2, ... Not every Bienyamé-Galton-Watson process is em-
beddable. However, the discrete Neveu process clearly is in the continuous-time
Neveu process. Calling λc and λd the (0, 1)−valued λs appearing respectively in
the continuous and discrete-time Neveu model, the embedding goes through the
mapping σ in parameter space and its inverse σ−1

(
α

λd

)
σ→
(
µ = − logα

1−α (1− α− log λd)

λc = 1−α
1−α−log λd

)
σ−1

→
(

α = e−µλc

λd = e−( 1−λc
λc

)(1−e−µλc )

)
.

• α−stable continuous-time branching process with branching mechanism
having finite mean but infinite variance: α ∈ (1, 2).

Let m,µ > 0. Consider a continuous-time Galton-Watson process whose branching
mechanism is f (z) with f (z) /µ =: φ (z) − z = (m− 1) (z − 1) + C (1− z)α with
α ∈ (1, 2) and m/α ≥ C > m− 1. This model with three parameters (m,C, α) was
considered in [1] and [3]. We have φ (z) = E

(
zM
)

with φ′ (1) = E (M) = m > 0

and φ
′′

(1) = ∞ (finite mean number m of offspring per individual at birth but
infinite variance). It can be checked that, with N (0) = 1 and φt (z) := E1

(
zN(t)

)
,

φt (z) =

 1−
[

C
m−1

(
1− e−µ(α−1)(m−1)t

)
+ e−µ(α−1)(m−1)t (1− z)−(α−1)

]−1/(α−1)

, m 6= 1

1−
[
(α− 1)Cµt+ (1− z)−(α−1)

]−1/(α−1)

, if m = 1 (critical case).

This follows from the fact that φt (z) = A−1 (e−µtA (z)) with

A (z) = e
−µ

∫ z
0

dz′
f(z′) = e−

1
1−m I(z) =

(
1−m+ C (1− z)α−1

(1−m+ C) (1− z)α−1

)1/[(α−1)(m−1)]

,

I (z) =

∫ z

0

dz′

(1− z′) + C
1−m (1− z′)α

= log

(
1−m+ C (1− z)α−1

(1−m+ C) (1− z)α−1

)1/(α−1)

.

In particular therefore,

1− φt (0) = P1 (N (t) > 0) = P1 (τe > t) , with

P1 (τe > t) =


[

C
m−1

(
1− e−µ(α−1)(m−1)t

)
+ e−µ(α−1)(m−1)t

]−1/(α−1)

, if m 6= 1

(1 + (α− 1)Cµt)
−1/(α−1)

, if m = 1 (critical case),

with tail behaviors (for some computable constants C1, C2 > 0)

eµ(1−m)tP1 (τe > t) →
t→∞

C1, if m < 1

t1/(α−1)P1 (τe > t) →
t→∞

C2, if m = 1.
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If m > 1 (supercritical case), ρe = 1− ((m− 1) /C)
1/(α−1)

whereas ρe = 1 if m ≤ 1
(sub- and critical cases). We also have:

lim
z→1

φt (z) = P1 (N (t) <∞) = 1 for all m > 0,

and the process is always regular (no explosion in finite time). Furthermore, for
large t,

E1 (N (t)) ∼
{
eµ(m−1)t if m 6= 1

1 if m = 1
,

and the mean value of N (t) exists.

- In the subcritical case with m < 1, P1 (N (t) = k | N (t) > 0) →
t→∞

πk where the

πks, k ≥ 1, constitute a limiting system of probabilities of some discrete rv W ,
with proper probability generating function φW (z) = E

(
zW
)

=
∑
k≥1 πkz

k, here

explicit with, [26],

φW (z) = 1− exp

{
−µ (1−m)

∫ z

0

dz′

f (z′)

}
= 1−

(
(1−m+ C) (1− z)α−1

1−m+ C (1− z)α−1

) 1
α−1

.

In other words, N (t) | N (t) > 0
d→

t→∞
W . The mean of the limiting rv W exists

and takes the value (1 + C/ (1−m))
1/(α−1)

> 1.

- In the supercritical case with m > 1, e−µ(m−1)tN (t) is a martingale, with

e−µ(m−1)tN (t)
d→

t→∞
W, where the LSt of W , ϕ (s) := E

(
e−sW

)
, is the solution of

the differential equation ϕ′ (s) = f (ϕ (s)) / (µ (m− 1) s) , ϕ (0) = 1, [26]. Using the
above expression of I (z), we find explicitly

ϕ (s) = 1−

(
sα−1

1− C
m−1 (1− sα−1)

)1/(α−1)

.

Note ϕ (s) →
s→∞

ρe = 1− ((m− 1) /C)
1/(α−1)

, expressing that W has an atom at 0

with mass ρe.

- In the critical case with m = 1, it also holds that given N (0) = 1,

E1 (N (t) | N (t) > 0) = ∂z

(
φt (z)− φt (0)

1− φt (0)

)
|
z=1

=
1

1− φt (0)
= (1 + (α− 1)Cµt)

1/(α−1)
,

displaying algebraic superlinear growth in time, with exponent 1/ (α− 1) > 1 and,

N (t) | (N (t) > 0, N (0) = 1)

E1 (N (t) | N (t) > 0)

d→
t→∞

E
d∼ exp (1) .

In the critical case with m = 1, the process N (t,N0 = 1) started at N0 = 1 is
discrete-self-similar with Hurst index H = −1/ (α− 1) < 0. For all c ∈ (0, 1)
indeed, the one-dimensional marginals obey

N
(
ct, cH ◦N0

) d
= cH ◦N (t,N0) .

The continuous-time Neveu model with parameters (αt, λ) is obtained from the
(m,C, α)−branching model while putting C = λ

α−1 , m = Cα, λ ∈ (0, 1) and
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taking the limit α→ 1+ (in which m→∞, C/ (m− 1) ∼ 1 + 1−λ
λ (α− 1)→ 1 and

(α− 1) (m− 1)→ λ). Indeed, the limiting branching mechanism in this case is the
one of Neveu (16)

lim
α↓1

f (z) /µ = lim
α↓1

1

α− 1
[(λ− (1− λ) (α− 1)) (z − 1) + λ (1− z)α]

= (1− λ) (1− z) + λ (1− z) log (1− z) .
The limiting Neveu model with α = 1 is still regular. It is critical in the sense that
if the branching mechanism has tail index α < 1 (as in the branching process with
Sibuya(α, λ) offspring distribution), then the process no longer is regular, rather it
is defective. And it is regular if α ≥ 1.

• Pgf versus log-Laplace transform (LLt) and associated random walk
(continuous-time). Consider any of the three continuous-time branching pro-
cesses just considered and let M be their offspring number per capita at birth.
Let ψt (p) := − log φt (e−p) and ψ (p) := 1 − E

(
e−p(M−1)

)
= 1 − epφ (e−p) , with

φ (z) = E
(
zM
)
. The differential equation (15) also reads in terms of LLts

∂tψt (p) = ψ (ψt (p)) , n ≥ 0, ψ0 (p) = p.

Let M̃ := M − 1 taking values in {−1, 0, 1, 2, ...}. With P (t) the number of events
of a standard Poisson point process over [0, t], consider the (skip-free to the left)

compound Poisson process S (t) =
∑P (t)
n=1 M̃n, S0 = 1, with the sequence

{
M̃n

}
iid

all distributed like M̃. Suppose {S (t)} is stopped when it first hits 0 if ever. Then,
as a process with independent and stationary increments, E

(
e−p(S(t)−1)

)
= e−tψ(p).

With
∫ t

0
N (s) ds the integrated area under the profile of {N (.)} started at 1,

(19) N (t)
d
= S

(
N (t)

)
.

Therefore N (t) (also stopped when it first hits 0 if ever) is a time-changed version
of S (t) . This constitutes the continuous-time analog to the similar result discussed
above in discrete-time, [38]. Given S0 = i, defining τ i,0 = inf (t > 0 : S (t) = 0 | S (0) = i),

it holds that τ i,0
d
=
∫∞

0
N (s) ds | N (0) = i and

E
(
e−qτ i,0

)
= e−iψ

−1(−q) =: e−ia(q), q ≥ 0.

Introducing h (q) = e−a(q), h (q) obeys the functional equation

h (q) =
1

1 + q
φ (h (q)) ,

which is the continuous-time version of (11).

Any of the three continuous-time branching processes just considered N (t) are
continuous-time Markov chains over the set of integers N0 = {0, 1, 2, ...}, whose

transition rate matrix is Q = [Qi,j ] with Qi,j = λi,j =
[
zj
]
f (z)

i
, i, j ∈ N0,

i 6= j and Qi,i = λi,i = −
∑
j 6=i λi,j . This Markov chain is possibly absorbed

in finite time at {0} and possibly also at {∞} for the (not regular) α−stable
branching model. When {N (t)} is regular as in the last two examples, let τ i,e =
inf {t > 0 : N (t) = 0 | N (0) = i}, i ≥ 1 and τ i,e = inf {t > 0 : N (t) =∞ | N (0) = i},
i ≥ 1, with τ i,e = ∞ in case of explosion in infinite time. Let Q be obtained from
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Q while removing its first row and column (corresponding to the absorbing state
{0}). Let h ≡ (h (1) , h (2) , ...)

′
solve Qh = 0 with boundary condition h (1) = 1.

The column sequence h is called the scale sequence of {N (t)} and again

h (i) =
1− ρie
1− ρe

, i ≥ 1.

It is such that h (N (t ∧ τ i,e)) is a martingale, [51]. We have

P (τ i,e < τ i,e) =
h (∞)− h (i)

h (∞)
= ρie.

When dealing with the α−stable branching model, there is a positive probability
that N (t) hits ∞ in finite time. So τ i,e <∞ with positive probability. We have

P (τ i,e ≤ t) = Pi (Nt =∞) =
(
λ
(

1− e−µ(1−α)t
))i/(1−α)

> 0.

With τ i := τ i,e ∧ τ i,e, h (N (t ∧ τ i)) is a martingale and h (∞) = (1− ρe)
−1

< ∞
with again

P (τ i,e < τ i,e) =
h (∞)− h (i)

h (∞)
= ρie and ρe = 1− e−

(1−λ)
λ .

1.4. Mittag-Leffler rvs and related processes. We describe here Mittag-Leffler
rvs which can be of two different types and we also discuss some related processes.
These were briefly encountered previously.

• Type-1 Mittag-Leffler, [53]. Consider the pgf of a discrete Mittag-Leffler(α, µ)
rv obtained as the random sum

Mα,µ =

Gµ∑
l=0

Xα (l)

where (Xα (l))l≥0 is an iid sequence of unscaled Sibuya(α) rvs and Gµ is geometric

with mean µ, independent of the latter sequence. Thus, φGµ (z) = 1/ (1 + µ (1− z)),
and

φMα,µ
(z) = E

(
zMα,µ

)
= φGµ

(
φXα (z)

)
= (1 + µ (1− z)α)

−1
.

Mα,µ also has infinite mean. Clearly, Mα,µ, as a geometric-stable rv, is ID (com-
pound Poisson) and it is even discrete self-decomposable because for all c ∈ (0, 1) ,

φMα,µ
(z)

φMα,µ
(1− c (1− z))

= cα + (1− cα) (1 + µ (1− z)α)
−1

is the pgf of a mixture of discrete rvs, one of which is degenerate at 0, [54]. We
have

(1− λ (1− z)α) (1 + λ (1− z)α) =
(

1− λ2 (1− z)2α
)

or(
1− λ2 (1− z)2α

)
(1 + λ (1− z)α)

−1
= 1− λ (1− z)α .
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If α < 1/2, φ2α,λ2 (z) = 1 − λ2 (1− z)2α
is the pgf of a scaled Sibuya

(
2α, λ2

)
rv

and (1 + λ (1− z)α)
−1

the pgf of discrete Mittag-Leffler rv Mα,µ with µ = λ < 1.
Thus if α < 1/2,

φα,λ (z) = φ2α,λ2 (z)φMα,λ
(z)

and φα,λ (z) factorizes.

•A (discrete-) self-similar Type-1 Mittag-Leffler process. Consider a count-
ing process N (t), t ≥ 0, so taking integral values, whose marginal pgf is

φt (z) := E1

(
zN(t)

)
=
(
1 + tαH (1− z)α

)−1
.

This is the pgf of a type-1 discrete Mittag-Leffler distribution with scale parameter
µ = tαH and tail exponent α (α ∈ (0, 1)). For each t > 0 and each c ∈ (0, 1) , we
have {

N (ct)
} d

=
{
cH ◦N (t)

}
,

so that N (t) is discrete-self-similar (in the latter sense), with Hurst exponent H.
If H = α, this process (call it Nα (t)) is self-similar with Hurst exponent α. Its pgf

is thus φt (z) =
(

1 + tα
2

(1− z)α
)−1

, with N (t) → ∞ as t → ∞ with probability

1.

The process Nα (t) is (time-inhomogeneous) Markovian. Indeed, observing φ1 (z) =

(1 + (1− z)α)
−1

, we have

∂tφt (z) =
α2

t

(
φ2
t (z)− φt (z)

)
, t ≥ 1.

Define the (deterministic) time-change τ t = α2 log t and its inverse tτ = exp
(
τ/α2

)
.

Introducing φ̃τ (z) = φtτ (z), with φ̃0 (z) = φ1 (z), we thus obtain

∂τ φ̃τ (z) = φ̃
2

τ (z)− φ̃τ (z) , τ ≥ 0 and φt (z) = φ̃τt (z) .

Nα (t) = Ñα
(
α2 log t

)
is thus an appropriate time-changed version of the Markov

process Ñα (τ) with E
(
zÑα(τ)

)
= φ̃τ (z) = (1 + eτ (1− z)α)

−1
. The process Ñα (·)

can be interpreted as some variation of a binary branching process: start with

Ñα (0) particles, with type-1 Mittag-Leffler(α) distribution; after some random time
with exponential(1) distribution, split the initial population into two parts, each
of independent size drawn again from Mittag-Leffler(α) distribution. Iterate the
process for the two independent subfamilies and then for the subsequent families.

Ñα (τ) is the total population size at time τ ≥ 0.

Applying the (discrete-) Lamperti transformation [39] L to
{
N (t)

}
, t ≥ 0, namely:{

N (t)
} L→

{
e−αt ◦N (et)

}
=:

{
N (t)

}
, we end up with a (strictly) stationary

process
{
N (t)

}
, with N (t)

d
= N (0) for all t ≥ 0, and

E
(
zN(0)

)
=

1

1 + (1− z)α
,

emphasizing the link between self-similar and stationary processes.

Remark: The case H = 1/α is interesting as well, thus with pgf for
{
N (t)

}
:

φt (z) = (1 + t (1− z)α)
−1

. Everything works the same except that the time
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changes involved here are just τ t = log t and its inverse tτ = exp τ , independent of α.

• Type-2 Mittag-Leffler rv. There exists a type-2 (discrete-) Mittag-Leffler
distribution, defined as follows. Let α ∈ (0, 1) and

Eα (x) :=
∑
m≥0

xm

Γ (αm+ 1)
,

the standard Mittag-Leffler function, extending the exponential function obtained
as α→ 1, [46]. With µ > 0, define Nα,µ to be a discrete type-2 Mittag-Leffler rv if
it has the pgf

φNα,µ (z) := E
(
zNα,µ

)
= Eα (−µ (1− z)) .

The falling factorial moments of Nα,µ are

E (Nα,µ)m = m! [(z − 1)
m

]φNα,µ (z) = µm
Γ (m+ 1)

Γ (αm+ 1)
, m ≥ 1

so Nα,µ has all its moments finite. In particular, E (Nα,µ) = µ/Γ (α+ 1) > µ,
E (Nα,µ)2 = E [(Nα,µ) (Nα,µ − 1)] = 2µ2/Γ (2α+ 1),....

• Linnik rv [29]. Let α ∈ (0, 1) and β, µ > 0. Consider the discrete Linnik(α, β, µ)
random variable, say Lα,β,µ, with pgf

φLα,β,µ (z) = E
(
zLα,β,µ

)
= (1 + µ (1− z)α /β)

−β
.

We have Mα,µ = Lα,1,µ and Lα,β,µ
d→ Sµ,α when β → ∞. Such discrete Linnik

distributions are obtained as gamma(β, µ/β) mixtures of the scale parameter of
discrete stable(µ, α) rvs Sµ,α, namely

φLα,β,µ (z) = E
(
zLα,β,µ

)
= E

(
e−Γβ,µ/β(1−z)α

)
,

where Γβ,µ/β is a positive Gamma(β, µ/β) rv with density

f (x) =
(µ/β)

−β

Γ (β)
xβ−1e−βx/µ.

So (1 + µ (1− z)α /β)
−β

is indeed a pgf. We note that Lα,β,µ with β = 1 (which
is a Mittag-Leffler rv Mα,µ) is also obtained as an exponential(µ) mixture of the
scale parameter of a discrete stable(µ, α) rv Sµ,α.

Suppose λ ≤ 1− α < 1. Then φα,β,λ (z) = (1− λ (1− z)α)
β

is a pgf for all β > 0.
We have the identity

(1− λ (1− z)α)
β

(1 + λ (1− z)α)
β

=
(

1− λ2 (1− z)2α
)β

or(
1− λ2 (1− z)2α

)β
(1 + λ (1− z)α)

−β
= (1− λ (1− z)α)

β
.

If α < 1/2 and λ2 ≤ 1−2α, φ2α,β,λ2 (z) =
(

1− λ2 (1− z)2α
)β

is the pgf of a scaled

Sibuya
(
2α, β, λ2

)
rv and φLα,β,λβ (z) := (1 + λ (1− z)α)

−β
is the pgf of a Linnik rv

with parameters α, β, µ = λβ.
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Thus if α < 1/2 and λ2 ≤ 1− 2α, φα,β,λ (z) is also a pgf (because λ ≤
√

1− 2α <
1− α) and

φα,β,λ (z) = φ2α,β,λ2 (z)φLα,β,λ/β (z) .

Thus φα,β,λ (z) factorizes.

1.5. Discrete self-decomposability and stability and related stochastic
processes. We here briefly address the notions of discrete self-decomposability
and stability which have been met previously.

• Discrete additive self-decomposability. Let now X ≥ 0 be an integer-
valued random variable. There exists a discrete version of the notion of self-
decomposability [66]. Some accounts on the sub-class of discrete-stable random
variables may also be found here and in [12].

The pgf φ (z) := EzX is the one of a discrete self-decomposable variable X if for
any c ∈ (0, 1), there is a pgf φc (z) (depending on c) such that

φ (z) = φ (1− c (1− z)) · φc (z)

This is the standard (discrete) version of self-decomposability of probability distri-
butions on the integers, through a functional equation. We then have the charac-
terization property:

It follows from the definition of self-decomposable distributions that if φ (z) is the
pgf of the random variable X, then X can be additively decomposed as

X
d
= c ◦X ′ +Xc

where the c-thinned random variable c ◦X, for c ∈ (0, 1] , is defined above. X and
X ′ have the same distribution and c ◦X ′ is independent of the remaining random
variable Xc whose pgf is φc (z) .

Observing that for any two real numbers c1 and c2 of (0, 1], c1◦(c2 ◦X) = (c1 · c2)◦
X, and that the following convergence in law to zero holds

cn ◦X d→
n↑+∞

0,

we get, iterating the above decomposition

n∑
m=0

Xm
d→

n↑+∞
X,

where Xm
d
= cm ◦ Xc are independent random variables with pgfs: φXm (z) =

φXc (1− cm (1− z)) . �
Discrete self-decomposable random variables are thus obtained as limits in law for
sums of independent scaled discrete random variables.

A slightly different way to see this is as follows. Consider the discrete-time integral-
valued Ornstein-Uhlenbeck process

X (n+ 1) = c ◦X (n) +Xc (n+ 1) , X (0) random,
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where (Xc (n) ;n ≥ 1) is an iid driving sequence, each distributed like Xc. Then
X (n) is a discrete perpetuity [70], clearly with

X (n) = cn ◦X (0) +

n∑
m=1

cn−m ◦Xc (m)
d→ X

d
=

∞∑
m=0

Xm as n→∞.

In such models typically, a population whose fate is to die out predictably at shrink-
ing rate c is regenerated by the incoming of immigrants in random number.
The following representation result is also known to hold true [66]:

The random variable X is discrete self-decomposable iff, with R (z) the canonical
measure, defined through

φ (z) = e
∫ z
1
R(u)du,

the function h (z) := 1 − (1− z)R (z) defines a pgf such that h (0) = 0. As a
consequence, X is discrete SD iff its pgf is of the form

φ (z) = e
∫ z
1

1−h(u)
1−u du.

This means that the Taylor coefficients of R (z), say (rk, k ≥ 1), constitute a non-
increasing sequence of k.As a result, the associated probability system P (X = k) :=
pk, k ≥ 0 is unimodal, with mode at the origin iff r0 = p1

p0
≤ 1, [66]. The self-

decomposable (SD) subclass of infinitely divisible (ID) distributions therefore fo-
cuses on unimodal distributions, with mode possibly at the origin.

• Self-decomposable rvs and pure-death branching processes with immi-
gration, [69]. Consider a continuous-time homogeneous compound Poisson process
Pγ (t) , t ≥ 0, Pγ (0) = 0, so with pgf

E0

(
zPγ(t)

)
= exp−γt (1− h (z)) ,

where h (z) (with h (0) = 0) is the pgf of the sizes of the batches arriving at the
jump times of Pγ (t) having rate γ > 0. Let now

φt (z) = 1− e−t (1− z) ,

be the pgf of a pure-death branching process started with one particle at t = 0
(more general subcritical branching processes could be considered as well). The
lifetime of the initial particle is thus larger (smaller) than t with probability e−t

(respectively 1−e−t). Let Xt with X0 = 0 be a random process counting the current
size of some population for which a random number of individuals (determined by
h (z)) immigrate at the jump times of Pγ (t) , each of which being independently
and immediately subject to the latter pure death process. We thus have

Φt (z) := E
(
zXt
)

= exp−γ
∫ t

0

(1− h (φs (z))) ds, Φ0 (z) = 1,

with Φt (0) = P (Xt = 0) = exp−γ
∫ t

0
(1− h (1− e−s)) ds, the probability that the

population is extinct at t. As t→∞,

Φt (z)→ Φ∞ (z) = e−γ
∫∞
0 (1−h(1−e−s(1−z)))ds = e−γ

∫ 1
z

1−h(u)
1−u du.
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So, X := X∞, as the limiting population size of this pure-death process with

immigration, is a self-decomposable rv, [69]. With X
d
= c ◦X ′ +Xc defining the rv

Xc, we have that

φXc (z) =
Φ∞ (z)

Φ∞ (1− c (1− z))
= e−γ

∫ 1−c(1−z)
z

1−h(u)
1−u du is a pgf.

In such models typically, a subcritical population whose fate is to die out (along
the stochastic pure-death process striking each individual alive) is regenerated by
the incoming of immigrants at random times and in random number.
Example: Let us now identify the pgf h (z) (with h (0) = 0) of the number of
immigrants leading to a type-1 Mittag-Leffler(α, µ) distribution for X∞, known to
be discrete self-decomposable. For some γ > 0, we must solve

Φ∞ (z) = eγ
∫ z
1

1−h(u)
1−u du = (1 + µ (1− z)α)

−1
= φMα,µ

(z) ,

and we find γ = αµ/ (1 + µ) and

h (z) =
1− (1− z)α

1 + µ (1− z)α
.

The function h (z) is thus the product of 1 − (1− z)α (the pgf of an unscaled

Sibuya(α) rv) times (1 + µ (1− z)α)
−1

(the pgf of a type-1 Mittag-Leffler(α, µ)
rv). It is indeed a pgf, the one of the sizes of the immigrant incoming population.

Both in discrete or continuous time, the occurrence of a self-decomposable limit
law is related to a competition between a mechanism which tends to shrink the
population size at a constant rate, against another input mechanism which tends
to have it increased.

• Discrete stability, [66]. Let X be a self-decomposable rv so that X can be

additively decomposed as X
d
= c1 ◦X ′ +R. Suppose the remaining term R itself is

obtained as R
d
= c2 ◦X ′′ where X ′′ is independent of X ′, both distributed like X

(c1, c2 ∈ (0, 1)). Then, φ (z) = E
(
zX
)

obeys,

φ (z) = φ (1− c1 (1− z)) · φ (1− c2 (1− z)) ,

whose solution is φ (z) = e−µ(1−z)α , (µ > 0) iff the following structural equation
holds: cα1 + cα2 = 1, α ∈ (0, 1) . This is the pgf of a discrete-stable(α, µ) rv. The
process X (t) with pgf

φt (z) = E
(
zX(t)

)
= e−µt(1−z)

α

,

is a compound Poisson process which is discrete-self-similar with Hurst index H =
1/α.

Remark: Discrete-stable rvs are in particular self-decomposable. The pgf h (z)
(with h (0) = 0) of the number of immigrants leading to a discrete-stable(α, µ) dis-
tribution for X∞ in the latter branching with immigration construction is: h (z) =
1− (1− z)α, γ = αµ. It is an unscaled Sibuya(α) rv.
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2. Mittag-Leffler distributions in the continuum

Like in the discrete setting, there are two types of Mittag-Leffler rvs taking values
now in R+. They are related to other famous rvs such as stable or Weibull rvs.

• Type 1 Mittag-Leffler rv in the continuum. Let T > 0 be a positive rv
and α ∈ (0, 1). It is a type-1 Mittag-Leffler rv if it has the cumulative probability
distribution function, say cpdf,

P (T > t) = Eα (−tα) .

We have

φT (p) := E exp (−pT ) =
1

1 + pα
and E (T q) =

Γ (1 + q/α) Γ (1− q/α)

Γ (1− q)
,

respectively the Laplace-Stieltjes transform (LSt) and the moment generating-
function (with q < α) of T . Type-1 Mittag-Leffler rvs are heavy-tailed with tail
exponent α. Just like their discrete counterparts, type-1 Mittag-Leffler rvs are ID
and even self-decomposable.

- Weibull distribution: This is the law of Wα := E1/α where E has standard
exponential distribution. Then P (Wα > t) = e−t

α

with

E (W q
α) = Γ (1 + q/α) , q > −α.

Wα is not heavy-tailed. As we will see just below, Sα as a one-sided stable rv

with index α has moment function E (Sqα) = Γ(1−q/α)
Γ(1−q) , showing that the type-1

Mittag-Leffler rv T admits the multiplicative factorization into two independent
factors:

T
d
= Wα · Sα.

- Fréchet distribution: This is the law of Fα := E−1/α, with P (Fα ≤ t) = e−t
−α

and E (F qα) = Γ (1− q/α), q < α. Fα is heavy-tailed with tail index α. We have

T−1 d
= Fα · S−1

α ,

as a multiplicative decomposition of the reciprocal T−1 of a type-1 Mittag-Leffler rv.

• Type 2 Mittag-Leffler rv ([20], p. 453, [59]). Let T > 0 be a positive rv. It is
a type-2 Mittag-Leffler(α) rv if it has the LSt and moment function (α ∈ (0, 1))

φT (p) := E exp (−pT ) = Eα (−p) and E (T q) =
Γ (q + 1)

Γ (qα+ 1)
(q > −1).

The type-2 Mittag-Leffler(α) rv has all its integral moments finite which can be
read from E (T q) with q integer. The pdf of a type 2 rv is

(20) P (T ≤ t) =
1

π

∑
k≥1

(−1)
k−1

Γ (kα)

k!
sin (kπα) tk.

We recall that a rv, say Sα, is one-sided stable with index α if

φSα (p) := E exp (−pSα) = e−p
α

, E (Sqα) =
Γ (1− q/α)

Γ (1− q)
, q < α.
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One-sided stable rvs are heavy-tailed with tail exponent α. Note that if Sα is one-
sided stable with index α, S−αα is a type-2 Mittag-Leffler(α) rv. Thus, for a type-2
Mittag-Leffler(α) rv T ,

T
d
= S−αα .

The pdf of a type 2 Mittag-Leffler rv (20) can be obtained using this information
and the known expression

fSα (s) =
1

π

∑
k≥1

(−1)
k−1

Γ (kα+ 1)

k!
sin (kπα) s−(kα+1)

of the density of a one-sided stable rv, [68]. Type-2 Mittag-Leffler(α) rvs are neither
heavy-tailed nor infinitely divisible.

• From continuous ML rvs to discrete ML rvs.

Recall that if Pµ (t) is a Poisson process with intensity µt, µ > 0, and T a positive
random variable with LSt φT (p) , independent of Pµ (t), then the random value at
t = T of Pµ (t) , namely Pµ (T ) , has pgf

E
(
zPµ(T )

)
=

∫ ∞
0

FT (dt) e−µt(1−z) = φT (µ (1− z)) .

In particular, if T > 0 is a type-1 (respectively type-2) Mittag-Leffler positive rv
with LSt φT (p) = 1

1+pα (respectively Eα (−p)), then Pµ1/α (T ) (respectively Pµ (T ))

is a discrete type-1 (respectively type-2) Mittag-Leffler rv with pgf (1 + µ (1− z)α)
−1

(respectively Eα (−µ (1− z))). This shows that discrete type-2 Mittag-Leffler rvs
are not compound Poisson (or ID).

• Although the type-2 Mittag-Leffler(α) rv T is not infinitely divisible and thus not

self-decomposable, there is some relation of such a rv, obeying E (T q) = Γ(q+1)
Γ(qα+1) ,

with self-decomposability. Let indeed E be a standard exponential(1) rv so that
G = − logE has standard Gumbel distribution. Gumbel rvs are self-decomposable

on R, [66]. Thus, with Gα independent of G′
d
= G, for all α ∈ (0, 1)

G
d
= αG′ +Gα.

Taking the LSt on both sides and observing E
(
e−qG

)
= E (Eq) = Γ (q + 1), we

can identify T as exp (−Gα) with E
(
e−qGα

)
= E

(
e−qG

)
/E
(
e−qαG

)
. So − log T

d
=

Gα, the independent factor appearing in the additive decomposition of G. Stated
equivalently and multiplicatively, with W1/α = Eα a Weibull rv with parameter
1/α

E
d
= W1/α · T,

translating that E is log-self-decomposable. The type-2 Mittag-Leffler(α) rv T
therefore appears as an independent multiplicative factor in the multiplicative de-
composition of the standard exponential rv.
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3. Mittag-Leffler distributions and renewal processes

We first recall salient facts arising from the modelling of events occurring randomly
in time [20], [13]. Then we observe that a renewal process whose interarrival times
are continuous type-1 Mittag-Leffler(α) distributed generates a counting process
with discrete type-2 Mittag-Leffler distribution with parameter µ = tα. The lat-
ter process, as a fractional Poisson process, is also a subordinated version of the
traditional Poisson process, with time replaced by an independent inverse stable
subordinator.

3.1. Counting events. Suppose at time t = 0, some event occurs for the first
time. Suppose successive events occur in the future in such a way that the inter-
arrival times between consecutive events form an iid sequence (Tm, m ≥ 1) with

common distribution Tm
d
= T,m ≥ 1. Inter-arrival time T is assumed to have

a density function (df), say fT (t). (We shall also need FT (t) := P (T ≤ t) and
FT (t) := 1 − FT (t) i.e. the probability distribution function (pdf) of T and its
complement to one (cpdf)). We are then left with a sequence of events occurring
at times

(21) T 0 = 0, Tn :=

n∑
m=1

Tm, n ≥ 1.

Let N (t), t > 0, count the random number of events which occurred in the time
interval [0, t). Clearly,

(22) N (t) =
∑
n≥0

1{Tn≤t}

with 1{.} the set indicator function which takes the value one if the event is realized,
zero, otherwise. As a result, an essential feature of such processes is that the events
“N (t) > n” and “Tn ≤ t” coincide. Such random processes are called pure counting
renewal processes (the adjective pure is relative to the hypothesis which has been
made that the origin of time is an instant at which some event occurred; if this
not the case, the adjective delayed is currently employed and the first event occurs
at time T 0 := T0 > 0, independent of (Tm, m ≥ 1) but not necessarily with the

same distribution). If in addition
∫ +∞

0
fT (s) ds = 1 (T is “proper”) such renewal

processes are said to be recurrent; this has to be opposed to transient renewal

processes for which
∫ +∞

0
fT (t) dt < 1, corresponding to “defective” T, allowing for

a finite probability that the first event never occurs, i.e. occurs at time t = +∞.
We shall avoid transient processes in the sequel and limit ourselves to recurrent
ones. However, among recurrent processes, we shall distinguish between positive
recurrent processes for which the average renewal time ET := θ < +∞ and null
recurrent for which ET = +∞.

If ET = +∞, we shall limit ourselves to situations where this occurs as a result
of “heavy-tailedness” of the inter-arrival time: FT (t) ∼ cαt

−α, as t → +∞, with
α ∈ (0, 1). Here, cα > 0 is a scale factor for T . In other words cα = tα0 for some
t0 > 0 fixing the time-scale itself.

We note that if the inter-arrival times (Tm, m ≥ 1) are exponentially distributed,
this counting process boils down into the familiar (shifted) Poisson process.
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We shall call Λ (t) := EN (t) the intensity of the pure renewal process and λ (t) :=
dΛ (t) /dt its rate (i.e. the instantaneous frequency at which events occur at time
t); the function Λ (t) /t is called the frequency of the phenomenon.

If follows from (22) that

(23) Λ (t) = 1 +
∑
n≥1

∫ t

0

f∗nT (s) ds

where f∗nT stands for the n-fold convolution of fT with itself (the df of Tn).

If we let Λ (p) :=
∫ +∞

0
e−psΛ (t) dt, λ (p) :=

∫ +∞
0

e−psλ (t) dt and φT (p) :=
∫ +∞

0
e−ptfT (t) dt

stand for the Laplace transforms of Λ (t), λ (t) and fT (t), respectively, (23) yields

(24) Λ (p) =
1

p (1− φT (p))
, and λ (p) =

1

1− φT (p)
,

underlining the connection between probability theory and physical rate processes.

As p tends to zero, we get some informations on the way the intensity and rate
functions behave for large times. These are strongly connected to the tail distribu-
tion of the variable T and we have to distinguish between two cases.

1./ θ < +∞. In this case, φT (p) ∼ 1− θp, as p→ 0+. Hence, Λ (p) ∼ 1/
(
θp2
)

and
λ (p) ∼ 1/ (θp), as p→ 0+. This means Λ (t) ∼ t/θ and λ (t) ∼ 1/θ as t→ +∞. For
recurrent positive processes, the rate function tends to 1/θ as time drifts to infinity.

2./ θ = +∞. In this case, i.e. for recurrent null processes, the rate function tends
to zero: this is a ”rare event” hypothesis, as the expected time between consecutive
events is infinite.

For example, if time T has a heavy-tailed cpdf such that FT (t) ∼ cαt
−α, as t →

+∞, with α ∈ (0, 1), cα > 0, in such a way that θ = +∞, then φT (p) ∼ 1− cαpα,
as p → 0+. Hence, Λ (p) ∼ 1/

(
cαp

α+1
)

and λ (p) ∼ 1/ (cαp
α), as p → 0+. This

means Λ (t) ∼ tα/cα and λ (t) ∼ tα−1/cα as t→ +∞: the intensity goes to infinity
slower than t and the rate function tends to zero algebraically. As time goes to
infinity, the events get sparser and sparser, owing to the infinite average hypothesis
of the inter-arrival times.

The process N (t) counts the number of events which occurred before time t: each
time an event occurs, the counter is incremented by one unity. We have

(25) N (t)
d
= N0 · 1{T>t} + (1 +N ′ (t− T )) · 1{T≤t},

where T > 0 is a proper positive random variable known as the first renewal time of
N (t). Let us comment this identity: fix a time t at which N (t) is to be evaluated.
If the realization of time T exceeds the time t of interest, the process N (t) is in its
initial state, say N (0) = N0. If T = s ≤ t, the value of N (t) is the independent
sum of the first jump of amplitude 1 plus a statistical copy N ′ (.) of the process
N (.) in the remaining time t − s, conditionally to the event T = s. Let us now
translate the definition (25) in terms of the evolution of the pgf of N (t). Let

(26) ΦN (t, λ) := EzN(t)
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be the pgf of the cumulative process N (t). Then

(27) ΦN (t, z) = φN0
(z) P (T > t) + z

∫ t

0

ΦX (t− s, λ) fT (s) ds

where φN0
(e) := EzN0 . Introducing the Laplace transforms

(28) ΦN (p, z) :=

∫ +∞

0

e−ptΦN (t, z) dt and φT (p) :=

∫ +∞

0

e−psfT (s) ds

respectively of ΦN (., z) and fT , yields

(29) ΦN (p, z) =
(1− φT (p))φN0

(z)

p (1− φT (p) z)
,

provided φT (p) z < 1. We shall call ΦN (p, z) the Laplace functional of the counting
process N (t), t ≥ 0. The two quantities

(
φN0

(z) , φT (p)
)

completely determine the
law of the process N (t), t ≥ 0.

The pure elementary counting renewal process may be recovered from N0 = 1 which
states that the initial condition of the counting process is one. Equation (29) in
this case reads

(30) ΦN (p, z) =
(1− φT (p)) z

p (1− φT (p) z)

provided φT (p) z < 1. Thus the equation φT (p) = z−1 is the location of the poles
of ΦN (p, z).

If N0 = 0, we get a counting process N (t) with N (0) = N0 = 0 and

ΦN (p, z) =
1− φT (p)

p (1− φT (p) z)

to be compared with (30) for which N0 = 1.

3.2. Applications to the Mittag-Leffler distributions. Suppose T is a type-1
Mittag-Leffler rv so with φT (λ) := E exp (−pT ) = 1

1+pα . It is heavy-tailed with

index α indicating that the times between consecutive events are long (a rare event
hypothesis). If N0 = 0, we get a counting process N (t) with Laplace functional

ΦN (p, z) =
pα

p (1 + pα − z)
,

leading to
ΦN (t, z) = Eα (−tα (1− z)) .

Indeed, with
∫∞

0
e−pttαmdt = Γ (αm+ 1) /pαm+1

ΦN (p, z) =

∫ ∞
0

e−ptEα (−tα (1− z)) dt

=
∑
m≥0

(−1)
m

(1− z)m

Γ (αm+ 1)

∫ ∞
0

e−pttαmdt

=
1

p

∑
m≥0

(−1)
m

(
1− z
pα

)m
=

pα

p (1 + pα − z)
.

Thus the t−marginal of the corresponding count process N (t) has a type-2 discrete
Mittag-Leffler marginal distribution with parameter µ = tα. N (t) is often called
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the fractional Poisson process, [40], [2], [43]. Clearly {N (t)} is not Markov and in
particular not a process with independent increments. The process {N (t)} has a
slow algebraic growth. We have

E (N (t)) =
tα

Γ (α+ 1)
,

Var (N (t)) =
tα

Γ (α+ 1)
+ 2

t2α

Γ (2α+ 1)
−
(

tα

Γ (α+ 1)

)2

∼
large t

(
2

Γ (2α+ 1)
− 1

Γ (α+ 1)
2

)
t2α

E (N (t) , N (t+ τ)) =
tα

Γ (α+ 1)
+ 2

t2α

Γ (2α+ 1)
− (tτ)

α

Γ (α+ 1)
2 ,

so that N (t) exhibits long-range negative correlation

Covar (N (t) , N (t+ τ)) ∼
large τ, t fixed

− αtα+1

Γ (α+ 1)
2 τ
−(1−α).

The algebraic decay parameter of the correlation function is 1− α. We note that,
for each t > 0 and each c ∈ (0, 1)

N (ct)
d
= cα ◦N (t) ,

suggesting that N (t) is discrete-self-similar with Hurst exponent α ∈ (0, 1).

There exists a R+−valued mass process X (t) such that N (t) = P (X (t)), a Poisson
rv with random intensity X (t) . From this construction, N (t) is the number of
individuals carrying the mass X (t). Clearly, Ee−pX(t) = Eα (−ptα) , so that

EzN(t) = Ee−X(t)(1−z) = Eα (−ptα) |p=1−z= Eα (−tα (1− z)) .

The marginal distribution of the process {X (t)} is thus the one of a continuous
type-2 discrete Mittag-Leffler(α) rv with parameter µ = tα. It is now known (see
Example 2 in [29], p. 2639− 2641, [23] Chapter 9, [44] and [47]), that the subordi-
nating process {X (t)} can be obtained as a (non-Markovian) inverse Lévy-stable(α)
compound renewal process, namely: X (t) = inf (s > 0 : S (s) > t), with S (0) = 0
and E

(
e−pS(s)

)
= e−sp

α

.

The two Mittag-Leffler(α) distributions are thus intimately related through this
renewal process structure.

4. Möhle’s construction [49] and further developments

There is a continuous-state, continuous-time version of the Neveu process. We
briefly report here on a recent construction [49] relating type-2 Mittag-Leffler
Markov processes to Neveu continuous-state branching process. In this construc-
tion, the Mittag-Leffler parameter α is allowed to vary with time: α = αt = e−t.
Additional details are given.
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4.1. The Siegmund dual of the Neveu continuous-state branching process.

For each t ≥ 0, let X̂e−t be a type-2 Mittag-Leffler rv with parameter α = αt = e−t.

With x > 0, let X̂ (t) = xαtX̂αt > 0, so with X̂ (0) = x and X̂ (∞)
d∼exp(1) . The

marginal law at t of X̂ (t) started at x is characterized by its LSt

φX̂(t) (p) = Ex

(
e−pX̂(t)

)
= Eαt (−pxαt) .

Equivalently, X̂ (t) has marginal transition pdf

(31) Px

(
X̂ (t) ≤ y

)
=

1

π

∑
k≥1

(−1)
k−1

Γ (kαt)

k!
sin (kπαt)x

−kαtyk.

Then Ttφ (x) := Exφ
(
X̂ (t)

)
defines a Markov jump semigroup with infinitesimal

generator L acting on φ ∈ C∞ as [49]

Lφ (x) = lim
t→0+

Ttφ (x)− φ (x)

t
= f (x)φ′ (x)+

∫ ∞
0

(
φ (x− h)− φ (x) + hφ′ (x)

)
νx (dh) ,

with drift f (x) = x (ψ (2)− log x) (ψ (2) = 1 − γ, the value at point 2 of the
digamma function, γ the Euler constant) and unbounded local jump measure at
state x

νx (dh) = xh−21{h∈(0,x)}dh.

The Markov process
{
X̂ (t)

}
is continuous in probability and stochastically mono-

tone [49] in the initial condition x. Its invariant measure is standard exponentially

distributed so that if X̂ (0) is made random with standard (mean 1) exponentially

distribution,
{
X̂ (t)

}
is stationary, observing

∫∞
0
dxe−xEαt (−pxαt) = (1 + p)

−1
,

the LSt of a standard exponential distribution.

As a stochastically monotone process, a Siegmund dual of
{
X̂ (t)

}
, say {X (t)},

can be defined from [64], [49] as from

Px

(
X̂ (t) ≤ y

)
= Py (X (t) > x) .

From (31), Py (X (t) > x) is thus known, with Py (X (t) > x) ∼ Γ (αt) sin (παt)x
−αt

for large x. It turns out that {X (t)} is a continuous-state (supercritical) Neveu
branching process with log-Laplace exponent [50], [5]

ψt,x (p) := − log Exe
−pX(t) = xpαt ,

where x = X (0) (to be compared with its discrete version as from 7). We have
ψt,x (p) = xψt (p) and the quantity ψt (p) := ψt,1 (p) obeys the Markov property
ψt+s (p) = ψt (ψs (p)) with

(32) ∂tψt (p) = ψ (ψt (p)) , ψ0 (p) = p

and it has branching mechanism [4], [5], [31]

ψ (p) = −p log p = cp+

∫ ∞
0

(
1− px1{x≤1} − e−px

)
π (dx) ,
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with unbounded Lévy measure for jumps π (dx) = x−2dx obeying
∫ (

1 ∧ x2
)
π (dx) <

∞ and c a drift constant. We have

ψt (p) = B−1 (t+B (p)) , where B (p) =

∫ p dq

ψ (q)
= − log log p.

Note that ψ′ (0+) = +∞, so that Ex (X (t)) = +∞, and it may be shown, again
using martingale arguments [50], that, conditionally given X (t) drifts to ∞, it
does so at double exponential speed a.s., [25]. Note also that, as a result of∫

0+
dp/ |ψ (p)| = ∞, ψt (0) = 0 for all t ≥ 0: the continuous-state Neveu branch-

ing process is regular or conservative and there cannot be explosion in finite time.
The Neveu process is also supercritical with extinction probability ρe = e−p0 , with
p0 = 1 solving ψ (p0) = 0, [31]. Because ψt (p) is the log-Laplace exponent of a
stable(αt) random variable, we have the Mellin transform formula

Ex (X (t)
q
) = xq/αt

Γ (1− q/αt)
Γ (1− q)

, q < αt.

It can also easily be shown, following the argument in [31] stating that
∫∞

dp/ψ (p) =
− log log (p) |p=∞= −∞, that if the supercritical Neveu process started at x goes
extinct (an event with probability ρx,e = ρxe = e−x), this can only happen at time
τx,e =∞, with probability one. So both extinction and explosion times are infinite
with probability one for this model.

• The Lévy process associated to the Neveu branching process.

Let {S (t)} with S (0) = x be the Lévy process with Laplace exponent ψ (p) so with
E
(
e−p(S(t)−S(0))

)
= exp (−tψ (p)) . Suppose this process is stopped when it first

hits 0 if ever. This process has unbounded variations; it is spectrally positive (it
displays non-negative jumps) although not a subordinator and it is the continuous-
state branching process analog to the skip-free to the left compound Poisson process
discussed in the discrete-space, continuous-time version of the Neveu process. The
process {S (t)} has the scale function characterized by its LSt [4]∫ ∞

0

e−pxs (x) dx = − 1

ψ (p)
=

1

p log p
, p > p0 = 1.

We have s (x) = exs (x) where s (x) has Laplace transform

1

(p+ 1) log (p+ 1)
=

1

p

1

2− φ (p)
. Here φ (p) = 1 +

∑
n≥1

(−1)
n

n (n+ 1)
pn

is the LSt of some positive random variable Z with log-convex Stieltjes moment
sequence E (Zn) = (n− 1)!/ (n+ 1), n ≥ 1. Thus s (x) =

∫ x
0
ρ (y) dy where ρ (y)is

the density of a geometric(1/2) sum of such iid Zs, [31]. The factor s (x) is thus a
probability distribution function of some infinitely divisible random variable, and
s (x) an exponentially modulated version of s (x).

And as in the discrete set-up, if τx,y = inf (t > 0 : S (t) = y | S (0) = x), y > x > 0:

P (τx,y < τx,0) =
s (x)

s (y)
= e−(y−x) s (x)

s (y)
.
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More generally, [67], with sq (x), q ≥ 0, the function whose Laplace transform is∫∞
0
e−pxsq (x) dx = − (ψ (p) + q)

−1
, p > p0 = 1,

E
(
e−qτx,y1{τx,y<τx,0}

)
=
sq (x)

sq (y)

is a classical identity giving the law of τx,y on the event {τx,y < τx,0} .
It is also known [4] from the theory of spectrally positive processes that τx,0 is a
subordinator process with independent increments and log-Laplace exponent

(33) − log E
(
e−qτx,0

)
= xψ−1 (−q) .

In the Neveu process case under study, h (q) := ψ−1 (−q) = eW (q),where W (q) is
the Lambert function solving the functional equation W (q) eW (q) = q. This equa-
tion can be solved by the Lagrange inversion formula, leading to its principal branch

W (q) =
∑
n≥1 (−1)

n−1 nn−1

n! qn, q > −p0 and h (q) = 1+
∑
n≥1 (−1)

n−1 (n−1)n−1

n! qn.

h (q) := h (q)− 1 is a Bernstein function (i.e. h ≥ 0 and h
′

is completely monotone:

for all q > 0 : h
′ ≥ 0, h

′′

≤ 0, h
′′′

≥ 0,...). Note P (τx,0 <∞) = e−xh(0) = e−x and

E (e−qτx,0 | τx,0 <∞) = e−xh(q). The corresponding Lévy measure of the jumps

has n−moments: (n− 1)
n−1

, n ≥ 1.

Let finally {S∗ (t)}, with S∗ (0) = x be the supremum (or ladder height) process of
{S (t)}, viz

S∗ (t) = sup
0≤s≤t

S (s) .

As in the discrete set-up, from the previous arguments, with y > x, we have

P (S∗ (∞) ≤ y | S∗ (0) = x) =
s (y − x)

s (y)
,

together with [6]

P (X∗ (∞) ≤ y | X∗ (0) = x) =
s (y − x)

s (y)
= e−x

s (y − x)

s (y)
,

where X∗ (t) = sup
0≤s≤t

X (s) is the supremum process of the Neveu branching pro-

cess X (t) . This is because, [38], X (t) is a time-changed version of S (t), a fact
generalizing (19):

X (t)
d
= S

(∫ t

0

X (s) ds

)
,

with, from (33), and as in the discrete Neveu process case,

τx,0
d
=

∫ ∞
0

(X (s) | X (0) = x) ds,

recalling {X (s)} does not go extinct in finite times.

The process {S∗ (t)} enjoys some nice properties. It is known, as a result of the
Wiener-Hopf factorization for the spectrally positive process {S (t)}, that this new
process is a subordinator (with non-decreasing sample paths with bounded vari-
ations), with log-Laplace exponent ψ∗ (p) = ψ (p) / (p0 − p), [36], [65]. ψ∗ (p) is
smooth at p = p0 = 1. Therefore,

Ee−p(S
∗(t)−S∗(0)) = e−tψ

∗(p) = e−t(p log p)/(p−1).
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It can be checked that ψ∗ (p) ≥ 0, p ≥ 0, is indeed a Bernstein function, with

ψ∗ (0+) = 0 and ψ∗ (0+)
′

= +∞. As a result,

ψ∗ (p) =
p log p

p− 1
=

∫ ∞
0

(
1− e−px

)
π∗ (dx) = p

∫ ∞
0

e−pxπ∗ (x) dx,

for some new unbounded Lévy measure π∗ of its jumps with tails π∗ (x) =
∫∞
x
π∗ (dz)

(Note ψ∗ (p) has no killing component). Because π∗ (dx) integrates 1 ∧ x, {S∗ (t)}
has bounded variations.

• Randomizing the initial condition of the Neveu process.

Assuming X (0) random and standard exponentially distributed

Ee−pX(t) = Ee−X(0)pαt =

∫ ∞
0

dxe−xe−xp
αt

=
1

1 + pαt
,

which is a type-1 Mittag-Leffler rv with variable exponent e−t (to be compared

with its discrete version as from (6)). In this latter sense,
{
X̂ (t)

}
as a (station-

ary) type-2 Mittag-Leffler Markov process and {X (t)} as a type-1 Mittag-Leffler
branching process are Siegmund duals of one another.

This also suggests the following discrete-space version of Möhle’s construction:

Let {P (x)} be a Poisson process with intensity x > 0 with: E
(
zP (x)

)
= e−x(1−z),

counting the number of individuals with mass belonging to [0, x]. Consider the

Markov process N̂ (t, x) := P
(
X̂ (t)

)
where

{
X̂ (t)

}
is the type-2 Möhle-Mittag-

Leffler process started at X̂ (0) = x, giving the temporal evolution of the mass

process. The new process N̂ (t, x) is thus a subordinated version of the traditional
Poisson process, with time replaced by an independent type-2 Möhle-Mittag-Leffler

process started at X̂ (0) = x. We have

E
(
zN̂(t,x)

)
= Ex

(
zP(X̂(t))

)
= Ex

(
e−X̂(t)(1−z)

)
= Eαt (−xαt (1− z)) ,

which is a discrete type-2 Mittag-Leffler process with parameters µt (x) = xαt and

αt = e−t. Initially, N̂ (0, x)
d
= P (x). Assuming X (0) = x random and standard

exponentially distributed,
{
N̂ (t)

}
is strictly stationary with

E
(
zN̂(t)

)
=

∫ ∞
0

dxe−xE
(
zN̂(t,x)

)
=

∫ ∞
0

dxe−xEαt (−xαt (1− z)) =
1

2− z
,

the pgf of a geometric(1/2) random variable.

Consider also the Markov process N (t, x) := P (X (t)) with {X (t)} the Neveu

branching process started at X (0) = x (Siegmund dual to
{
X̂ (t)

}
). We have

E
(
zN(t,x)

)
= Ex

(
zP (X(t))

)
= Ex

(
e−X(t)(1−z)

)
= e−x(1−z)αt

which is a discrete-stable Neveu process with parameters µ (x) = x and αt = e−t.
Assuming X (0) = x random and standard exponentially distributed

E
(
zN(t)

)
=

∫ ∞
0

dxe−xe−x(1−z)αt =
1

1 + (1− z)αt
,
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which is a discrete type-1 Mittag-Leffler process with variable tail exponent αt =
e−t. Therefore, if one assumes that the continuous space-time mass process is car-
ried by a random Poisson number of individuals, then we are back to the continuous-
time discrete-space setup.

4.2. Poisson-Dirichlet PD (αt, 0) partition and the block-counting process
{I (t)}. We consider here some combinatorics related to PD (αt, 0) thereby com-
pleting some further properties of the Siegmund duality.

• Neveu process and Poisson-Dirichlet PD (αt, 0) partition. For the Neveu
process {X (t)} started at x, the log-Laplace exponent ψt,x (p) = xpαt satisfies

ψt,x (p) = x

∫ ∞
0

(
1− e−ps

)
Πt (ds) = xp

∫ ∞
0

e−psΠt (s) ds = xψt (p)

where Πt (ds) = αt
Γ(1−αt)s

−(αt+1)ds and Πt (s) = 1
Γ(1−αt)s

−αt , [31]. Therefore {X (t)}
is distributed like a subordinator whose unbounded Lévy measure of its jumps
Πt (ds) is time-inhomogeneous. Because Πt (ds) integrates 1 ∧ x, this subordinator
has bounded variations. With B (p) =

∫ p0
p
dq/ψ (q) ,

ψt (p) = B−1 (B (p)− t)

is indeed the integrated version of (32) observing − log (log (p)) is the primitive of
1/ψ.

With βt = α−1
t = et, the Poisson point-process decomposition of {X (t)} is thus

(as a generalization of (4), (18))

X (t)
d
=
∑
k≥1

Π
−1

t (Sk/x) =
∑
k≥1

(
x−1Γ (1− αt)Sk

)−βt =:
∑
k≥1

∆(k) (t) ,

where the (Sk)k≥1 are points of a standard Poisson point process on (0,∞) with

Lebesgue measure intensity: 0 < S1 < S2 < .... Note ∆(1) (t) > ∆(2) (t) > .... with
the law of ∆(k) (t) given by

P
(
∆(k) (t) ≤ z

)
= e−s

k−1∑
l=0

sk

k!
|s=z−αt/(xΓ(1−αt)) .

Thus, upon normalizing the jumps’ sizes, for each t > 0, δ(k) (t) := ∆(k) (t) /X (t),
k ≥ 1, constitute a random partition of unity into an infinite sequence of ranked
pieces, known as the Poisson-Dirichlet PD (αt, 0) partition of the unit interval,
[57]. It can also be understood as follows: consider a system (πk, k ≥ 1) of inde-
pendent random variables each with distribution beta(1− αt, kαt). Set χ1 = π1;

χk =
∏k−1
j=1 (1− πj)πk, k ≥ 2, so with Griffith-Engen-McCloskey distribution. The

ranked values of the χks are the δ(k) (t)s, with PD (αt, 0)-distribution.
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By Campbell formula [35], [34], for all non-negative measurable function g for which
the involved integrals converge:

Ee−p
∑
k≥1 g(∆(k)(t)) = exp−x

∫ ∞
0

(
1− e−pg(s)

)
Πt (ds)

= exp− xαt
Γ (1− αt)

∫ ∞
0

(
1− e−pg(s)

)
s−(αt+1)ds

E
∑
k≥1

g
(
∆(k) (t)

)
= x

∫ ∞
0

g (s) Πt (ds) =
xαt

Γ (1− αt)

∫ ∞
0

g (s) s−(αt+1)ds

and (see [58], Proposition 2.1), for the ranked segments,

(34) E
∑
k≥1

g
(
δ(k) (t)

)
=

∫ ∞
0

g (s)σt (ds) , where

σt (ds) := E
∑
k≥1

1{δ(k)(t)∈ds} =
1

Γ (1− αt) Γ (αt)
s−(αt+1) (1− s)αt−1

1{s∈(0,1)}ds,

is the structural (intensity) measure of PD (αt, 0).

In particular, if g (s) = s1{s≤ε}, the average contribution to X (t) =
∑
k≥1 ∆(k) (t)

of the ∆(k) (t) which are smaller than some ε > 0 is

E
∑
k≥1

∆(k) (t) 1{∆(k)(t)≤ε} =
xαt

Γ (1− αt)

∫ ε

0

s(1−αt)−1ds =
xαt

Γ (2− αt)
ε1−αt .

For q > αt, taking g (s) = sq in (34)

E

∑
k≥1

δ(k) (t)
q

 =
1

Γ (1− αt) Γ (αt)

∫ 1

0

s(q−αt)−1 (1− s)αt−1
ds =

Γ (q − αt)
Γ (1− αt) Γ (q)

whereas taking g (s) = s1{s>ε}

E

∑
k≥1

δ(k) (t) 1{δ(k)(t)>ε}

 =
1

Γ (1− αt) Γ (αt)

∫ 1

ε

s(1−αt)−1 (1− s)αt−1
ds

∼
ε small

1− ε1−αt

Γ (2− αt) Γ (αt)

gives the average contribution of the segments in PD (αt, 0) whose sizes are larger
than ε ∈ (0, 1) in terms of an incomplete beta function.

• Mean Shannon entropy of PD (αt, 0). Letting zt (q) = E
(∑

k≥1 δ(k) (t)
q
)

,

with ψ (x) the digamma function (ψ (1) = −γ, γ the Euler constant), we obtain the
following expression of the mean Shannon entropy of PD (αt, 0) as

(35) st := E

−∑
k≥1

δ(k) (t) log δ(k) (t)

 = −∂qzt (q + 1) |q=0= ψ (1)−ψ (1− αt) .

As t varies from 0+ to +∞, st decreases from +∞ to 0 : as t → 0+, PD (αt, 0)
is made of infinitely many segments all of very small sizes (disorder is maximal),
whereas as t→∞, as shown just below, the largest segment δ(1) (t) will dominate



ON MITTAG-LEFFLER DISTRIBUTIONS AND RELATED STOCHASTIC PROCESSES 37

the other ones with small room left for the other segments.

• The size of the largest segment in PD (αt, 0). We will consider now the
problem of computing the law of δ(1) (t) . For the functions g for which it converges,
consider the integral

(36) Ht,g (p) :=

∫ ∞
0

(
1− e−psg (s)

)
s−(αt+1)ds.

In particular, Ht,g≡1 (p) = −Γ (−αt) pαt . Then ([57], Corollary 47)

(37)

∫ ∞
0

e−pxE
∏
k≥1

g
(
xδ(k) (t)

)
dx =

1

αt
∂pKt,g (p) with Kt,g (p) = logHt,g (p) .

With b ≤ 0, take g (s) = 1{s≤b} in (36, 37). Then, with

It (p) = αt

∫ 1

0

(
1− e−ps

)
s−(αt+1)ds,

∫ ∞
0

e−pxE
∏
k≥1

g
(
xδ(k) (t)

)
dx =

∫ ∞
0

e−pxP
(
δ(1) (t)

−1
>
x

b

)
dx

= b

∫ ∞
0

e−pbyP
(
δ(1) (t)

−1
> y
)
dy

1

αt
∂p logHt,g (p) =

1

αt

bI ′t (pb)

1 + It (pb)
.

Thus, observing I ′t (p) = αt
p (It (p) + 1− e−p)

E
(
e−q/δ(1)(t)

)
= 1− q

αt

I ′t (q)

1 + It (q)
=

e−q

1 + It (q)

is the LSt of 1/δ(1) (t) . This shows that δ(1) (t)
d
= 1/ (1 + ∆ (t)) where

E
(
e−q∆(t)

)
= 1/ (1 + It (q)) = 1/

(
1 + αt

∫ 1

0

(
1− e−qs

)
s−(αt+1)ds

)
.

Next, xIt (q) is the log-Laplace exponent of a truncated Lévy subordinator x →
Lt (x) with time-inhomogeneous jumps law supported by (0, 1) and ∆ (t) = Lt (X),
where X ∼exp(1) is an independent (subordination) random variable:

E
(
e−q∆(t)

)
=

∫ ∞
0

dxe−xe−xIt(q) = 1/ (1 + It (q)) .

When t → ∞, αt → 0 and ∆ (t)
d→ 0 or δ(1) (t)

d→ 1: in the long-time run, as
already observed in the context of the Shannon entropy, the largest segment δ(1) (t)
tends to dominate the other ones.

• Moments of Zt (q) :=
∑
k≥1 δ(k) (t)

q
. Taking g (s) = 1 + sq in (36, 37), with

a := αtΓ(q−αt)
Γ(1−αt) ,

Kt,g (p) =
1

p

(
1 +

q

αt

ap−q

1− ap−q

)
=

1

p

1 +
q

αt

∑
j≥1

ajp−qj
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and∫ ∞
0

e−pxE
∏
k≥1

g
(
xδ(k) (t)

)
dx =

∫ ∞
0

e−px

1 +
∑
j≥1

xqjE
∑

k1<...<kj

j∏
l=1

δ(kl) (t)
q

 dx

=
1

p

1 +
∑
j≥1

p−qj · Γ (qj + 1) ·E
∑

k1<...<kj

j∏
l=1

δ(kl) (t)
q


Therefore,

E
∑

k1<...<kj

j∏
l=1

δ(kl) (t)
q

=
1

αtjΓ (qj)

(
αtΓ (q − αt)
Γ (1− αt)

)j
, q > αt.

More generally (proceeding as in [30] p. 740), with ql > αt, l = 1, ..., j

E
∑

k1<...<kj

j∏
l=1

δ(kl) (t)
ql =

1

αtjΓ
(∑j

l=1 ql

) j∏
l=1

αtΓ (ql − αt)
Γ (1− αt)

=:
1

j!
φj,αt (q1, ..., qj) ,

where

φj,αt (q1, ..., qj) := αj−1
t

Γ (j)

Γ
(∑j

l=1 ql

) j∏
l=1

Γ (ql − αt)
Γ (1− αt)

.

We conclude that, with the star sum a sum running over the positive integers il
summing to i, the integral moments of Zt (q) =

∑
k≥1 δ(kl) (t)

q
, q > αt are given by

E
[
Zt (q)

i
]

=

i∑
j=1

1

j!

∗∑
i1+...+ij=i

(
i

i1...ij

)
φj,αt (qi1, ..., qij) .

In particular, consistently with ([31] p. 490) and (34), taking i = 1, 2

E [Zt (q)] = φ1,αt (q) =
Γ (q − αt)

Γ (q) Γ (1− αt)
,

E
[
Zt (q)

2
]

= φ1,αt (2q) + φ2,αt (q, q) =
Γ (2q − αt)

Γ (2q) Γ (1− αt)
+

αt
Γ (2q)

[
Γ (q − αt)
Γ (1− αt)

]2

.

Note the expression of the complete LSt of Zt (q) :

(38) E
(
e−λZt(q)

)
=
∑
i≥0

(−λ)
i

i!

i∑
j=1

1

j!

∗∑
i1+...+ij=i

(
i

i1...ij

)
φj,αt (qi1, ..., qij)

and observe that

E
(
Zt (q)

β
)

=
1

Γ (−β)

∫ ∞
0

dλ · λ−β−1E
(
e−λZt(q)

)
.

With Rt (q) = 1
1−q logZt (q), the Rényi entropy of the random partition PD (αt, 0) ,

from the series expansion (38) in powers of λ, we obtain

E
(
e−βRt(q)

)
=

1

Γ (−β/ (1− q))

∫ ∞
0

dλ · λ−
β

1−q−1E
(
e−λZt(q)

)
,

as a formal expression of the LSt of Rt (q) . Recall Rt (q) →
q→1

St, the random Shan-

non entropy of PD (αt, 0) , with mean st given in (35).



ON MITTAG-LEFFLER DISTRIBUTIONS AND RELATED STOCHASTIC PROCESSES 39

• The number of segments in PD (αt, 0) with size larger than some thresh-
old 1 > ε > 0. This is I+ (t, ε) :=

∑
k≥1 1{δ(k)(t)>ε}. Taking g (s) = 1{s>ε} in (34),

we already know that

E
∑
k≥1

g
(
δ(k) (t)

)
= EI+ (t, ε) =

1

Γ (1− αt) Γ (αt)

∫ 1

ε

s−(αt+1) (1− s)αt−1
ds.

Taking into account that

εαt
∫ 1

ε

s−(αt+1) (1− s)αt−1
ds =

∫ 1/ε

1

u−(αt+1) (1− εu)
αt−1

du ∼
ε small

1

αt
,

it holds that EI+ (t, ε) ∼ ε−αt/ (Γ (1− αt) Γ (1 + αt)) = ε−αtsinc(παt) , as ε goes
small. When t is close to 0 (αt close to 1 and sinc(παt) close to 0), all segments
are very small; in the opposite direction, when t gets large (αt approaches 0 and
sinc(παt) approaches 1), only one segment (the one of biggest size) will prevail and
I+ (t, ε) tends to 1 in average.

Take now g (s) = e−q1{s>ε} = 1 + (e−q − 1) 1{s>ε} =: 1 + (e−q − 1) gε in (36, 37).

Then, with Jt (p) =
∫∞

1
e−puu−(αt+1)du,∫ ∞

0

e−pxE
∏
k≥1

g
(
xδ(k) (t)

)
dx =

∫ ∞
0

e−pxE
(
e−qI+(t,ε/x)

)
dx

Ht,g (p) : =

∫ ∞
0

(
1− e−ps

(
1 +

(
e−q − 1

)
1{s>ε}

))
s−(αt+1)ds

= Ht,1 (p)− ε−αt
(
e−q − 1

)
Jt (pε) .

Thus, recalling Ht,1 (p) = −Γ (−αt) pαt and observing J ′t (p) = 1
p (αtJt (p)− e−p)

1

αt
∂pKt,g (p) =

1

p

−Γ (−αt) pαt − ε−αt (e−q − 1) (Jt (pε)− e−pε/αt)
−Γ (−αt) pαt − ε−αt (e−q − 1) Jt (pε)

=
1

p

(
1 +

(e−q − 1) e−pε

Γ (1− αt) (pε)
αt − (e−q − 1)αtJt (pε)

)
.

Now, observing I+ (t, u) = 0 unless u ∈ (0, 1) ,∫ ∞
0

e−pxE
(
e−qI+(t,ε/x)

)
dx = ε

∫ 1

0

u−2e−pε/uE
(
e−qI+(t,u)

)
du+

1

p

(
1− e−pε

)
.

Putting λ = pε, we therefore obtain∫ 1

0

u−2e−λ/uE
(
e−qI+(t,u)

)
du =

∫ ∞
1

e−λvE
(
e−qI+(t,1/v)

)
dv

=
e−λ

λ

(
1 +

e−q − 1

Γ (1− αt)λαt − (e−q − 1)αtJt (λ)

)
.

Using αtJt (λ) ∼ 1−Γ (1− αt)λαt when λ is small, a small λ estimate of the right-

hand-side gives Γ (1− αt)λ−(1−αt) (1/ (1− e−q)− 1) . This gives a large v estimate
of E

(
e−qI+(t,1/v)

)
as

E
(
e−qI+(t,1/v)

)
∼ v−αt 1

eq − 1
.
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which means E
(
e−qv

−αtI+(t,1/v)
)
∼ q−1 as v → ∞ or εαtI+ (t, ε)

d→ 1{ε>0} as

ε→ 0.

• Sampling from PD (αt, 0) and the block-counting process {I (t)}. Throw
uniformly at random a sample of size i ≥ 1 over the unit interval partitioned accord-
ing to PD (αt, 0) and evaluate the probability of an i to (i1, ..., ij)− merger with

il ≥ 1 and
∑j
l=1 il = i, which is the probability that the i sampling particles hit any

size-j subset of segments (labeled in an arbitrary way) from PD (αt, 0), Il (t) = il ≥
1 times, l = 1, ..., j ≤ i. With [α]k := Γ (α+ k) /Γ (α) = α (α+ 1) ... (α+ k − 1)
defining the rising factorials, it is known by Pitman sampling formula (see eg [22]
p. 58) that this probability is equal to

P

(
Il (t) = il, l = 1, ..., j;

j∑
l=1

Il (t) = i

)
=

1

j!

(
i

i1...ij

)
φj,αt (i1, ..., ij)

where

φj,αt (i1, ..., ij) = αj−1
t

Γ (j)

Γ (i)

j∏
l=1

Γ (il − αt)
Γ (1− αt)

= αj−1
t

(j − 1)!

(i− 1)!

j∏
l=1

[1− αt]il−1 ,

and this defines the continuous-time-t partition-valued Bolthausen-Sznitman coa-
lescent, so with PD (αt, 0) distribution.

Let I (t) count the number of distinct pieces of the partition PD (αt, 0) which
are being visited in the sampling process, starting from I (0) = i. Then, with

cj,αt :=
∏j
l=1

Γ((l−1)αt+1)
Γ(1−αt)Γ(lαt)

,

P (I (t) = j | I (0) = i) =
1

j!

∗∑
i1+...+ij=i

(
i

i1...ij

)
φj,αt (i1, ..., ij)

= cj,αt
i!

j!

Γ (αtj)

Γ (i)

∗∑
i1+...+ij=i

j∏
l=1

Γ (il − αt)
il!

.

When t gets large, using Γ (αt) ∼ α−1
t , cj,αt ∼ j!α

j
t and

Pi (I (t) = j) ∼ αj−1
t ri,j with ri,j =

i

j

∗∑
i1+...+ij=i

1∏j
l=1 il

=
(j − 1)!

(i− 1)!
|si,j | ,

where si,j are the Stirling numbers of the first kind. It is well-known [14] that

if R = [ri,j ], then L = R−1 = [li,j ] with li,j = (−1)
i−j (j−1)!

(i−1)!Si,j and Si,j are

the Stirling numbers of the second kind. Furthermore [48], the following spectral
representation holds

(39) Pi (I (t) = j) =

i∑
k=j

e−(k−1)tri,klk,j .

In particular,

Pi (I (t) = 1) =
Γ (i− αt)

Γ (i) Γ (1− αt)
= P (τ i ≤ t) ,
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where τ i = inf (t > 0 : I (t) = 1 | I (0) = i) is the time to absorption (time to most
recent common ancestor). With ψ the digamma function again, we have

P (τ i > t) =
∑

2≤j≤i

P (I (t) = j | I (0) = i) ∼
large t

(ψ (i)− ψ (1)) e−t

and τ i is tail-equivalent to an exp(1) random variable. It follows as well from (39)
(see Lemma 3.1 of [49]) that the rising factorial moments of I (t) are given by

(40) Ei

(
[I (t)]j

)
=

Γ (1 + j)

Γ (1 + jαt)

Γ (i+ jαt)

Γ (i)
, i ≥ j ≥ 1.

We have:

E
[
(1− u)

−I(t) | I (0) = i
]

=
1

Γ (i)

∑
j≥0

Γ (i+ jαt)

Γ (1 + jαt)
uj ,

so that the pgf of I (t) given I (0) = i is given by

(41) E
(
xI(t) | I (0) = i

)
=

1

Γ (i)

∑
j≥0

(−1)
j Γ (i+ jαt)

Γ (1 + jαt)

(
x−1 − 1

)j
, x ∈ [0, 1] .

In fact, φi (x) := E
(
xI(t) | I (0) = i

)
is a degree−i polynomial pgf in x (so abso-

lutely monotone with φi (1) = 1), obeying the recurrence

(42) φi+1 (x) = φi (x)− αt
i
x (1− x)φ′i (x) , i ≥ 1, φ1 (x) = x.

As t varies, we are then left with a Markov dynamics for I (t) ∈ {1, 2, ...} which
is the block-counting process of the Bolthausen-Sznitman coalescent, so with ex-
plicit global transition probabilities Pi (I (t) = j) and moments. Introducing the
infinitesimal transition rates qi,j of I (t) from state i to state j ∈ {1, ..., i− 1} by
P (I (t+ dt) = j | I (t) = i) = qi,jdt + o (dt), these are known [55] to be given by
Λ (du) = du and (with B (a, b) = Γ (a) Γ (b) /Γ (a+ b) the beta functions),

qi,j =

(
i

j − 1

)∫ 1

0

ui−j−1 (1− u)
j−1

Λ (du) =

(
i

j − 1

)
B (i− j, j) if 1 ≤ j < i

qi,i = −
∑
j 6=i

qi,j if j = i.

The pure-death process I (t) on the positive integers with such transition rates
is known as the Bolthausen-Sznitman (block-counting) coalescent process with
Pi (I (t) = j) =

(
etQ
)
i,j

and Q the lower-triangular matrix with entries

qi,j =
i

(i− j) (i− j + 1)
if 1 ≤ j < i

qi,i = − (i− 1) if j = i.

It has {1} as an absorbing state where coalescence stops at time τ i. The Bolthausen-
Sznitman coalescent is a fundamental but particular case of Λ−coalescents with
multiple (but not simultaneous) collisions when the collision measure Λ (du) is
uniform on the unit interval, [55].

Considering the restriction ofQ to its i first rows and columns yields the Bolthausen-
Sznitman i−coalescent Ii (t) := I (t) | I (0) = i for which Möhle [49] shows, upon
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scaling, that, with Ii (0) = i = [x] ,{
Ii (t)

iαt

}
d→

i→∞

{
X̂ (t)

}
.

Note from (40) that Ei (I (t)) = 1
Γ(1+αt)

Γ(i+αt)
Γ(i) ∼

i large

iαt

Γ(1+αt)
, explaining the power-

law scaling.

• A related occurrence of the Mittag-Leffler process. The process X̂αt

appearing in the construction of the Siegmund dual X̂ (t) = xαtX̂αt to X (t) also
appears in the following context. In view of Sk/k → 1 a.s. as k → ∞ by the
strong law of large numbers, we conclude following ([57], Prop. 9) that, with

R (t) := xX (t)
−αt /Γ (1− αt) ,

R (t) := lim
k→∞

k · δ(k) (t)
αt

exists both a.s. and in q−mean, q > −1. This is an expression of the algebraic rate
of decrease of the k−th contribution ∆(k) (t) to the total current state of X (t) ,
which is δ(k) (t). As time passes by, the contribution δ(k) (t) becomes smaller and

smaller, starting from δ(k) (t) ∼ k−1 (as t→ 0), till δ(1) (t) approaches 1 as t→∞
with no room left for other δ(k) (t)s.

Taking into account that X (t)
d
= xβtSαt where Sαt has stable(αt) distribution and

recalling X̂αt
d
= S−αtαt , we get R (t)

d
= X̂αt/Γ (1− αt) with X̂αt defining a type-2

Mittag-Leffler process with moment generating function E
[
X̂q
αt

]
= Γ(q+1)

Γ(qαt+1) (or

equivalently with LSt the Mittag-Leffler function Eαt (−p)).

4.3. Moment dual process x (t) to the Bolthausen-Sznitman block-counting
process I (t). So far, we saw that the Siegmund dual to the Neveu process (in-
timately related to PD (αt, 0)) was a Mittag-Leffler process, useful in the asymp-
totic description of the block-counting process {I (t)} arising from sampling from
PD (αt, 0). Define now a [0, 1]−valued Markov process {x (t)} by the moment
duality relation, [52]:

E
(
x (t)

i | x (0) = x
)

= E
(
xI(t) | I (0) = i

)
.

{x (t)} is thus now the moment dual to {I (t)}. From (41) for instance, the mean,
variance and skewness read

E (x (t) | x (0) = x) = φ1 (x) = x, if i = 1

E
(
x (t)

2 | x (0) = x
)

= φ2 (x) = x− αtx (1− x) , if i = 2

Var (x (t) | x (0) = x) = φ2 (x)− φ1 (x)
2

= (1− αt)x (1− x) ,

Ex

(
(x (t)− x (0))

3
)

=
−x (1− x)

2

[
1− α2

t + 2x (1− αt) (2− αt)
]
,

and the full moment sequence of {x (t)} can be computed recursively using (42).
With Λ (du) = du (uniform), the dual process {x (t)} is a well-defined two-types
Λ−Fleming-Viot (Λ uniform) Markov jump process in continuous-time. It describes
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the forward in time (neutral) evolution of the fraction of type−1 alleles whose ge-
nealogical process backward in time is precisely I (t). The states {0, 1} are absorb-
ing for {x (t)}. More precisely, {x (t)}, as a martingale, has backward infinitesimal
generator G (see [7], [19], [32])

φ ∈ C2 ([0, 1])→ Gφ (x) =∫
[0,1]\{0}

[xφ (x+ (1− x)u) + (1− x)φ (x (1− u))− φ (x)]
1

u2
Λ (du) ,

which is the one of a pure jump process because Λ has no atom at {0} , so with

u (x, t) = Exφ (x (t)) obeying ∂tu = G (u) ; u (x, 0) = φ (x) .

Equivalently, the sample-paths of x (t) obey the stochastic evolution

x (t)−x (0) =

∫
(0,t]×(0,1]×[0,1]

(
1v≤xs−u

(
1− xs−

)
− 1v>xs−uxs−

)
N (ds× du× dv) ,

where N is a random Poisson measure on [0,∞) × (0, 1] × [0, 1] with intensity
ds× 1

u2 Λ (du)× dv = ds× 1
u2 du× dv.
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[59] Sato, K.-I. Lévy Processes and Infinitely Divisible Distributions; Cambridge University Press:
Cambridge, UK, 1999.

[60] Schuh, H. J.; Barbour, A. D. On the asymptotic behaviour of branching processes with infinite

mean. Adv. Appl. Prob., 9, 681–723, 1977.
[61] Sevastianov, B. A. Branching Processes. Moscow, Nauka, 1971 (in Russian).

[62] Sevastianov, B. A. Branching processes. Mat. Zametki, 4, 239–251, 1978.

[63] Sibuya, M. Generalized hypergeometric, digamma and trigamma distributions. Ann. Inst.
Stat. Math., 31, 373-390, 1979.

[64] Siegmund, D. The equivalence of absorbing and reflecting barrier problems for stochastically

monotone Markov processes. Ann. Probability 4, no. 6, 914–924, 1976.
[65] Spitzer, F. Principles of random walks. Second edition. Graduate Texts in Mathematics, Vol.

34. Springer-Verlag, New York-Heidelberg, 1976.

[66] Steutel, F. W.; van Harn, K. Discrete analogues of self-decomposability and stability. Ann.
Prob., 7, 893-899, 1979.
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