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Abstract

When the explosion of condensed materials occurs in square or circular

cross-section tunnel, the subsequent blast wave reveals two patterns: three-

dimensional close to the explosive charge and one-dimensional far from the

explosion. Pressure decays for these two patterns have been thoroughly stud-

ied. However, when the explosion occurs in rectangular cross-section tunnel,

which is the most regular geometry for underground networks, the blast wave

exhibits a third, two-dimensional, patterns. In order to assess the range of

these three patterns, several numerical simulation of blast waves were car-

ried out varying the width and the height of the rectangular cross-section

as well as the mass of the charge. Laws are presented to localize the tran-

sition zones between the 3D and the 2D patterns, and between the 2D and

the 1D patterns, as functions of non-dimensional width and height. The

numerical results of the overpressure are compared to existing 3D and 1D

laws. An overpressure decay law is proposed to represent the 2D pattern.

Knowing the two transition zones and the overpressure decays within these
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zones, an algorithm is presented to efficiently predict an overpressure map.

This algorithm is validated by comparison with experimental data.

Keywords: Damage assessment for explosions, three-dimensional

simulation, blast wave, confined domain, adaptive grid

Nomenclature

Greek letters

αx = 100dc/x ratio of the explosive diameter dc to the tunnel hydraulic di-

ameter dH , height H , width H or W −H

∆x mesh cell size (m)

λ mesh wavenumber, λ = m
1/3
c /∆x (kg1/3/m)

ω constant for Jones-Wilkins-Lee (JWL) equation of state

Φ tunnel cross-section diameter (m)

ρ density (kg/m3)

Latin letters

A tunnel cross-sectional area (m2)

A, B, C, R1, R2 constants for the JWL equation of state

Cp pressure coefficient Cp = (p− p0)/p0

d diameter (m)
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E total specific internal energy, E = e +
1

2
(u2 + v2 + w2) (J/kg)

e specific internal energy (J/kg)

H height of the tunnel (m)

L length of the tunnel (m)

M Mach number

p pressure (Pa)

r radial coordinate (m)

T total simulation time (s)

t time (s)

W width of the tunnel (m)

Z reduced distance, Z = r/m
1/3
c (m/kg1/3)

Zx position of transition zones between 3D and 2D patterns (x = H), and

between 2D and 1D patterns (x = W ). ZW−H = ZW − ZH (m/kg1/3)

m weight (kg)

Indices

0 reference conditions

c explosive charge
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H height

h hydraulic

Trans transition

W width

1. Introduction

Blast wave is a topical research subject as shown by the several recent

works [10, 12, 11], and in particular confined blast wave [18, 5]. One of the ap-

plication of the confined domain is the underground network. Underground

networks such as subway station have rectangular cross-section. Typically,

the height is smaller than the width. Therefore, blast waves occurring in such

a domain exhibit three patterns: (a) a free-field pattern, known to yield fast

overpressure decay, while the blast wave does not reach any obstacle; (b) a

two-dimensional (2D) pattern after the first reflection (vertical: in the direc-

tion of the height) and (c) a one-dimensional (1D) pattern after the second

reflection (transversal: in the direction of the width). 2D and 1D patterns

obviously induced lower overpressure decays involving more dramatical dam-

ages not only for the structures but also for the peoples. The knowledge of

the global behavior of blast waves in such a confined domain is thus decisive

for safety reasons.

The first pattern cited above, ie. the free-field pattern, is indubitably

the most studied. From these studies, scaling laws were derived, as the laws
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from Baker, Cox, Westine, Kulesz and Strehlow [1], [15], [4] or [9] relating

the maximum overpressure peak to the distance from the explosive charge.

In fact, [9] proposed one of the most common free-field decay law, which is

expressed as:


























∆Pmax
Pref

∣

∣

∣

Henrych
=

14.072

Z
+

5.54

Z2
−

0.357

Z3
+

0.00625

Z4
if 0.05 ≤ Z ≤ 0.3

∆Pmax
Pref

∣

∣

∣
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=

6.194

Z
−

0.326

Z2
+

2.132

Z3
if 0.3 ≤ Z ≤ 1

∆Pmax
Pref

∣

∣

∣

Henrych
=

0.662

Z
+

4.05

Z2
+

3.288

Z3
if 1 ≤ Z .

(1)

The third propagation pattern is the case of a confined explosion, which

considers that the blast wave propagates inside a confined space that is strong

enough to withstand the explosive charge impulse (e.g., a tunnel). Among

the few reported experiments investigating air detonation in underground en-

vironments, some gave overpressure decays laws during this third pattern. [6]

proposed the following pressure-distance law for various explosives weights:

∆p

p0
=

(

M

Φ2 x

)0.8

. (2)

[17] determined the following overpressure-distance decay relationship:

∆p

p0
= 7.028

(

M

Ar

)0.514

. (3)

Applying the energy concentration concept (ECF), which is detailed in sec-

tion 2.3, [16] the very similar law:

∆p

p0
= 7.43538

(

M

Ar

)0.51

. (4)

[3] have investigated the position of the transition zone between the

three-dimensional (3D) and the 1D patterns for a square cross-sectional tun-

nel. They performed detonations of charges ranging between 0.150 kg and
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15.000 kg of trinitrotoluene (TNT) in a 5m2 cross-sectional tunnel. Defining

the ratio size α = 100dc/dh, where dc was the charge diameter and dh was the

hydraulic diameter of the tunnel. They shown the transition zone is located

at :

Ztrans =
0.0509

(α/100)13/9
. (5)

However, in square cross-sectional tunnel the four Mach reflections (up-

per and lower in both transversal and vertical coordinates) occur at the same

time producing a large pressure increase when the Mach reflections catch up

the incident wave. The shape of the blast wave looks totally different in

rectangular cross-sectional tunnel where transversal and vertical reflections

do not occur simultaneously.

The objective of this paper is to determine the position of both the 3D-

2D and the 2D-1D transition zones and to predict the overpressure occur-

ring in these three zones. To accomplish this, the detonation of different

quantities of TNT explosives inside a perfectly rigid tunnel was simulated.

The following section presents the geometrical configuration, the numerical

methodology and the ECF method. Moreover, scaling laws that eliminates

the solution’s parametric dependence on the explosive energy, the weight of

the explosives and the real tunnel cross-sectional size are provided. These

scaling laws transform the infinite number of solutions into a single solution

that demonstrates a monotonic transition from one wave pattern to another

pattern. Afterwards, the numerical results are brought in section 3. These

numerical results consisted of overpressure history for different widths and
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heights of the cross-section, and of different detonation mass. In section 4,

fitting power law are proposed to estimate the locations of both transition

zones. Furthermore, an algorithm giving the complete map of the overpres-

sure pattern is introduced. This algorithm is validated by comparison with

previous experimental data.

2. Configurations, numerical details and ECF method

2.1. Calculation domains and non-dimensional numbers

The calculation domains are presented in figure 1. They consist on rect-

angular cross-sectional tunnel of length L = 25m. The cross-sectional widths

and heights ranged from 3 to 7 meters and 2 to 5 meters respectively. Espe-

cially, a square cross-sectional tunnel of 3 m2 area was considered to verify

results from [3]. In order to study the effect of the width, four additional

configurations with 3m height and width ranging from 4 to 7m are investi-

gated. A 6m width and 2m height domain is considered because it yields the

same hydraulic diameter as the 3m side square section. Then, two additional

configurations with 6m width and respectively 4 and 5m height are studied

to evaluate the effect of the height. Furthermore, TNT charge ranging from

1.000 to 10.000 kg are investigated.

It can be anticipated that the first reflection modifying the 3D shape

of the blast wave in a 2D shape depends on the height of the domain H .

Therefore a first parameter αH , inspired by the work of [3] is considered:

7



Figure 1: Calculation domains.

αH = 100
dc
H
. (6)

In the same way, the difference between the second and the first reflection

modifying the 2D shape of the bast wave in a 1D shape depends on differ-

ence between the width, W , and the height of the domain. Thus, a second

parameter is:

αW−H = 100
dc

W −H
. (7)

The parameter αW based on the width of the domain will also be used
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for convenience.

The numerical results are highlighted by the pressure coefficient defined

as:

Cp =
p− p0
p0

. (8)

2.2. Numerical details

1D calculation was performed as long as the incident blast wave did not

encounter any obstacle. This strategy obviously yield a faster and more accu-

rate computations. During this 1D calculation, the TNT gases, composed of

hot detonation products, obey the Jones-Wilkins-Lee law, which is expressed

by [14]:

p = A

(

1−
ω

R1

ρ

ρc

)

exp(−R1ρc/ρ) +B

(

1−
ω

R2

ρ

ρc

)

exp(−R2ρc/ρ) + ωρe,

(9)

where the parameters A, B, R1, R2, ω and ρc depend on the explosive ma-

terial. Table (1) provides these parameters. Details of the 1D solver, as well

as the 1D-3D transfer method are available in [2]. The same 1D calculation

was used for all configurations.

The initial condition for the 3D calculation, thus the result of the 1D

calculation, was located in the center of the cross-section, see figure 1, using

a symmetry condition in the longitudinal axis.

9



Table 1: Parameters used for the JWL law describing the T.N.T. explosive material

Specific

energy, ec

Density,

ρc

A B R1 R2 ω

kJ/kg kg/m3 1011Pa 109Pa – – –

4870 1580 3.73 3.74 4.15 0.90 0.35

Blast wave propagation is governed by the unsteady Euler equations,

which were solved by a proprietary software [2]. The numerical method

on which this software’s solver is based is a unstructured finite-volume cell-

centered approach using the traditional upwind scheme and a two-stage ex-

plicit time integration technique, yielding a second-order accuracy in both

space and time. In order to prevent numerical oscillations, which may oc-

cur in regions with strong gradients, the Total Variation Diminishing (TVD)

minmod scheme is used [13]. The spatial discretization is performed with an

automatic Cartesian grid generator [7]. In addition, the Courant-Friedrichs-

Lewy (CFL) condition has to be satisfied in order to guarantee the stability

of the time integration technique. The successive gauges, also centered into

the cross-section, were located 0.2m from each other knowing that the first

one was 1m from the explosive charge.

The initial computational domains are split into 0.5 m cube elements and

a dynamic adaptive mesh method was applied to finely catch the incident

wave: the refinement criterion was based on the density value. A fine mesh
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was kept after the incident wave passage to guarantee an accurate prediction

of the complex waves pattern following the incident wave. The averaged

number of elements was ranged from 4× 106 for the smallest domain to 107

for the largest one. The smallest refined elements were 1.5×10−2m ensuring

a mesh wave number λ of 67, 106, 128 and 144 for the TNT charges of

1.000, 4.000, 7.000 and 10.000 kg, respectively. The mesh wave number has

to satisfy in the ideal case λ > 100 [2].

2.3. The concept of Energy Concentration Factor

The concept of energy concentration factor introduced by Silvestrini et al.

[16] is adapted in the present paper. The idea is to scale the abscissa of free-

field decay law, for instance Henrych’s law (1), by geometrical consideration.

As shown in figure 2, for the same volume the cylinder shape blast wave

(2D) has a radius R′ defined as R′ =
√

4R3/3W where R is the radius of the

equivalent spherical shape blast wave (3D). Then, the new scale distance is:

Z ′ =
R′

M
1/3
c

=

√

4Z3M
1/3
c

3W
.

It has to be noted that the ECF method was essentially developed and

validated for 3D to 1D transition. Therefore, one objective of the present

paper is to see whether the ECF method is available for 3D to 2D transition.

3. Results and discussion

3.1. Effects of the width, αH = 3.55, Mc = 1.000 kg

Figure 3 shows the distribution of the overpressure peak of the incident

wave for αH = 3.55 (typically H = 3m and Mc =1.000 kg). The square
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Figure 2: Scaling used for the ECF method.

section and rectangular sections with αW−H ranging from infinity to 10.64

were investigated. The numerical results are compared with 3D law, and

2D and 1D laws calculated with the ECF method for αW = αH = 3.55,

then αW−H = ∞. As can be seen, the square configuration (αW−H = ∞)

produced an unique jump while rectangular configurations yield two jumps

corresponding to the height reflection and the width reflection. The first

jump occurred at the same location for every rectangular configurations,

slightly after the square jump, showing the first reflection is only function

of the height. The slight delay cited above is because the Mach reflection

in the square section is composed of four parts (two for both the width and

12



Z (m/kg1/3)

C
p

5 10 15 20 25
10-2

10-1

100

101

Free-field law
2D law 
1D law

W-H=

W-H=10.64

W-H=5.33

W-H=3.55

W-H=2.66

Figure 3: Distribution of the maximum pressure over the axial gauges for different domain

height, αH = 3.55, Mc =1.000kg. 2D and 1D laws were calculated on αW−H = ∞.

the height) and is thus stronger, and then faster, than the height reflection

of rectangular configurations. It is shown that after the height reflection and

before the width reflection, the overpressure peak of every rectangular config-

urations follow the same law which is very close to the 2D law determined by

the ECF method. Finally, after the width reflection, the overpressure peaks

show different patterns. Nevertheless, 1D law calculated from ECF method

gives a good representation of the configuration αW−H = ∞ especially after

Z = 13 m/kg1/3.
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3.2. Effects of the height, αW = 1.77, Mc =1.000 kg

Figure 4 shows the distribution of the overpressure peak of the incident

wave for , αH ranging from 1.95 to 5.33. The numerical results are compared

with 3D law, and 2D and 1D laws calculated with the ECF method on the

configuration αH = 5.33. For the configuration αH = 1.95, both reflections

are too close. It means the width reflection has too large impact on the height

reflection and strengthens it. Therefore, the incident wave becomes almost

immediately one-dimensional. 2D and 1D laws seem to perfectly match the

numerical result of αH = 5.33 but are totally different to other configurations.

However, the 2D pattern of the configuration αH = 5.33 seems to go towards

the 2D pattern of the configuration αH = 3.55 before Z = 7 m/kg1/3. In the

same way, the 2D pattern of the configuration αH = 3.55 seems to go towards

the 2D pattern of the configuration αH = 2.66. These two observations yield

the conclusion that the overpressure peak does not depend on the height.

3.3. Effects of the charge of the mass

Figure 5 shows the distribution of the overpressure peak of the incident

wave for mass of the charge ranging from 1.000 kg to 10.000 kg. Every calcu-

lation were done on the same domain, W = 6m and H = 2m. The numerical

results are compared with 3D law, and 2D and 1D laws calculated with the

ECF method on αH = 11.15 and αW−H = 5.73, ie. for a charge of 10.000 kg.

The main information in figure 5 is that 2D patterns are the same for every

mass. Configurations αH = 11.15, αH = 10.19 and αH = 8.45 clearly have

overpressure peaks superimposed between both jumps. Furthermore, the 2D

pattern of αH = 5.33 seems to be the continuity of the three configurations

14



Z (m/kg1/3)

C
p

5 10 15 20 25
10-2

10-1

100

101

Free-field law
2D law
1D law

H=5.33, W-H=2.66

H=3.55, W-H=3.55

H=2.66, W-H=5.33

H=1.95, W-H=10.64

Figure 4: Distribution of the maximum pressure over the axial gauges for different domain

height, αW = 1.77, Mc = 11.000kg. 2D and 1D laws were calculated on αH = 5.33.

cited above.

The 1D law developed from ECF method well predicts the 1D pattern of

αH = 11.15. However, figure 5 shows the disability of the ECF method to

predict the overpressure peak during the 2D behavior of the wave when the

first reflection is occurring quickly, e.g. for a low value of Z.
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Z (m/kg1/3)

C
p

5 10 15 20 25
10-2

10-1

100

101

Free-field law
2D law
1D law

H=5.33, W-H=2.66

H=8.45, W-H=4.23

H=10.19, W-H=5.1

H=11.15, W-H=5.73

Figure 5: Distribution of the maximum pressure over the axial gauges for different mass

of the charge. 2D and 1D laws were calculated with αH = 11.15 and αW−H = 5.73.

4. Determination of ZH , ZW and the overpressure peak value in

2D and 1D

The results of the previous sections have shown the ECF method is par-

ticularly accurate for the 1D pattern of blast waves. It has been also shown

that this method is not suitable for the 2D pattern especially for high value

of αH . However, it has been proved that the 2D pattern of the incident blast

wave is the same for every configurations. Therefore, a polynomial inter-

polation, as the one of equation (1) can be proposed. Finally, knowing the

transition locations, ZH and ZW , the complete incident wave pattern can be
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deduced.

Figure 6 shows the distributions of the discontinuity locations ZH and

ZW−H = ZW − ZH versus αH and αW−H , respectively. It is shown both

discontinuity locations depend linearly on the parameter α. Using the least-

square algorithm, best correlations are gave by:

ZH =
0.07992

(αH/100)1.317
, (10)

and

ZW−H =
0.07994

(αW−H/100)1.351
. (11)

The first fit has a correlation coefficient of 0.999, while the second one

has a correlation factor of 0.971. Actually, it even sounds possible to use a

common power fit for both discontinuity locations. Finally, it has to be said

that these laws are close to the law giving the transitional zone 3D-1D (5)

found in [3] for square sections.

Interpolating the clearest points of 2D patterns superimposition gives the

2D law:

(Cp)2D =
33.78

Z3
+

3.74

Z2
+

1.52

Z
. (12)

Finally the algorithm of calculation of the overpressure peak can, then,

be written as:

1. calculate ZH =
0.07992

(αH/100)1.317
,
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w, h-w

Z
H
, Z

W
-H

5 10 15 20 25

100

101

ZH=f( H) numerical results
ZH=0.0799/( H/100)1.317

ZW-H=f( W-H) numerical results
ZW-H=0.0799/( W-H/100)1.351

Figure 6: Discontinuity locations ZH and ZW−H as functions of αH and αW−H .

2. for Z ≤ ZH , the pressure is given by (1),

3. calculate ZW = ZH +
0.07994

(αW−H/100)1.351
,

4. for ZH < Z ≤ ZW , the pressure is given by (12),

5. for Z > ZW , Z ′ =

(

3ZWH

2π

)1/3

,

6. for Z ′, the pressure is given by (1).

5. Validation of the algorithm

Validation is done by comparison with experimental data from a series

of trials carried out by INERIS (French Institute of Industrial Environment

and Risks) and already presented in [3]. The trial used in the present pa-
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Z (m/kg1/3)

C
p
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10-1

100

101

Predicted
Experimental

Figure 7: Comparison between experimental data and predicted value of pressure peak.

per concerns on the detonation of 0.300 kg of NP91 in the center of 80m

length mine tunnel with an averaged rectangular cross-section of 3.5× 3 m2.

Based on the maximum pressure effect [8, 19], the TNT equivalence factor

was found to be 1.18. In the experimental setup, 5 sensors located every 2m

from the charge were considered.

Figure 7 shows the peak of overpressure of the incident wave for the

experimental data and the predicted map done by the algorithm. It is shown

the predicted pressure is in good convenience with experimental data. The

transition zones are correctly determined by the algorithm. Moreover, the

values of experimental pressure peak are well fitted by the predicted pressure.
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6. Conclusion

Numerical computations are carried out to predict the locations of the

3D-2D transition and the 2D-1D transition of a blast wave in a rectangular

cross-sectional tunnel. In order to avoid any lack of generality, different width

and height domains as well as different charge of mass were investigated. The

numerical results were compared to free-field law and to the ECF method

for the 2D and the 1D patterns.

The main results of this work are:

• the 3D-2D transition is only a function of αH

• as soon as the wave became 2D, the transition to the 1D pattern is

only a function of αW−H

• the ECF method is suitable to predict the overpressure of the 2D pat-

tern for the lower value of αH

• a polynomial function is proposed to predict the overpressure peak of

the 2D pattern to provide the lacks of the ECF method for high value

of αH

• the ECF method is suitable to predict the overpressure of the 1D pat-

tern

An algorithm has been proposed to efficiently predict the overpressure

pattern. This algorithm has been validated by comparison with experimen-

tal data. This algorithm may be very helpful to efficiently drawing up the

blast wave damages.
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