
HAL Id: hal-01214903
https://hal.science/hal-01214903v2

Submitted on 20 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Transport Priority for Multimodal Urban Traffic
Control

Neila Bhouri, Fernando J Mayorano, Pablo A Lotito, Habib Haj Salem, Jean
Patrick Lebacque

To cite this version:
Neila Bhouri, Fernando J Mayorano, Pablo A Lotito, Habib Haj Salem, Jean Patrick Lebacque. Public
Transport Priority for Multimodal Urban Traffic Control. Cybernetics and Information Technologies,
2015, 15 (5), pp. 766-771. �10.1515/cait-2015-0014�. �hal-01214903v2�

https://hal.science/hal-01214903v2
https://hal.archives-ouvertes.fr


 17

BULGARIAN ACADEMY OF SCIENCES 
 

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 15, No 5 
Special Issue on Control in Transportation Systems 

Sofia • 2015 Print ISSN: 1311-9702; Online ISSN: 1314-4081 
DOI: 10.1515/cait-2015-0014 

 
 
 
 
 
 

Public  Transport  Priority  for  Multimodal Urban Traffic Control 

Neila Bhouri1, Fernando J. Mayorano2, Pablo A. Lotito2,  
Habib Haj Salem1, Jean Patrick Lebacque1 

1Univers. Paris-Est, IFSTTAR,COSYS/GRETTIA, 14-20 bd Newton 77447 Champs sur Marne France 
2PLADEMA-CICPBA; Fac. de Ciencias Exactas, UNCPBA; Pinto 399, 7000 Tandil, Argentina 
Emails: neila.bhouri@ifsttar.fr   fmayorano@exa.unicen.edu.ar   plotito@exa.unicen.edu.ar   
habib.haj-salem@ifsttar.fr   jean-patrick.lebacque@ifsttar.fr 

Abstract: In order to improve the travel time of surface public transport vehicles 
(bus, tramway, etc.), several cities use Urban Traffic Control (UTC) systems 
enabling to give priority to public transport. This paper reviews these systems. 
Further on after a debate on their insufficiencies in the global regulation of the 
urban traffic on a whole network, the paper proposes intermodal regulation 
strategies, operating on intersection traffic lights to regulate the traffic, favouring 
the public transport. All these strategies are based on the Linear Quadratic (LQ) 
optimal control theory, but they are different in their ways of taking into account 
the public transport in the optimization problem. The simulation tests are carried 
out in a network of eight intersections and two public transport lines. 
Keywords: Optimization, Traffic Control, Linear Quadratic, bus priority, 
multimodal control. 

1. Introduction 

The mobility of the inhabitants in agglomerations is in continuous growth. 
Unfortunately, despite everything else, the harmful effects on the environment 
(pollution, noises, occupation of space, etc.), is due to the private cars which allure 
more the road users and the growth is due more to their travelling. Several 
measurements can be done in order to improve the quality of the public transport 
and favour its use in order to improve the comfort in the vehicles and in the stations, 
to improve the safety and security, etc. But a master reason for the users is the time 
they spent on their journey. However, the travel time of the surface public transport, 
like buses, trams and more generally, high occupancy vehicles depends on the 
congestions and the traffic lights. 
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Many measurements can be used in order to improve the travel time of the 
surface public transport. We can quote: exclusive rights of the way reserved for 
public transport, prohibition to a station on the roadway system, urban toll aiming at 
reducing the road traffic, static or dynamic guidance using the panels with variable 
messages to direct the private cars to roads less attended by trunk public transport 
and priority of the public transport vehicles at signal-controlled intersections. 

Giving priority to the public transport vehicles in traffic lights makes 
improvements to their travel times. According to STIF (2001), facilitating the 
passage of buses on traffic lights could act on 40% on average on its total time of 
course. 

17% of it is concerned with the stops at traffic lights, 15% are due to the 
decelerations/accelerations and the rest would be gained on the layover time which 
will be reduced by a better regularity. However, as it will be further described, the 
majority of the existent urban traffic strategies giving priority to buses do it in a 
local way in one or a small number of intersections. Although at peak hours, when 
the roads are very loaded, giving priority to buses on the basis of the local traffic 
conditions can send them quicker to the congested places and make worse the 
global traffic situation even for the buses themselves. That is why our objective in 
this work is to build a global strategy for a large scale network. Its aim is to act on 
the intersection traffic lights in order to give priority to the public transport vehicles 
and to regulate the traffic on the whole network. To achieve this objective we chose 
to develop a bi-modal optimal control strategy on the basis of the Linear Quadratic 
(LQ) optimization theory, which has the advantage to be appropriate for use in a 
closed loop. The LQ theory has already been applied for the regulation of urban 
intersections in TUC strategy (D i a k a k i  et al. [6]). However, as it will be 
explained in Subsection 2.2.1, TUC gives an active priority to the public transport 
vehicles in the local area of the intersection. 

In this paper, the following section will address the state of the art of the 
public transport priority systems. We underline the insufficiency of these systems 
for traffic regulation on the global level of a whole network. In the third section, we 
mention the various systems of global management for both modes (PC and PT) 
and give some elements, explaining the non-existence of the global regulation 
systems for both transport modes. In the fifth section we describe the used model of 
command. The sixth section deals with the definition of the optimal command 
problems, starting with the optimization criteria. The latter enables to regulate the 
traffic on the whole network and has an additional term, enabling to favour the arcs 
which support the public transport vehicles at instants of their presence on these 
arcs. 

We show that the use of a strategy which combines different optimization 
criteria, one for the arcs where buses are present and another − for the arcs where 
there are only private cars, can solve this problem. The results of these various 
strategies applied in a simulation on a network with eight intersections, thirty two 
arcs and two lines of public transport, are given in the eighth section. The 
conclusion is given in the ninth section. 
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2. Different types of public transport priority at traffic light 
intersections 

The bus priority at traffic lights can be operated in a passive or in an active way. 
The passive way is an off-line regulation in order to favour the buses. The active 
way needs real-time detection of buses and real-time modification of the traffic 
lights in order to take into account the buses information. 

We can find several real-time urban traffic control systems in literature which 
have been developed to regulate the global traffic. They have been enlarged after 
that to include the public transport priority. 

Real-time urban traffic control systems belong mainly to one of the two 
families (see Fig. 1). The first system family is adaptive time plan based. It uses a 
fixed traffic light cycle on a given period. These systems gradually adapt the signal 
colour duration to the variations in real time of the traffic conditions (for example: 
SCOOT (H u n t  et al. [11]), SCATS (C h e n  et al. [5]) and TUC (D i a k a k i  et al. 
[6]). The second system family consists of adaptive commands, continually 
optimizing the traffic light plan on a sliding horizon (example: CRONOS 
(B o i l l o t  et al. [4]), PRODYN (H e n r y  and F a r g e s, [10]) and UTOPIA 
(M a u r o  and T r a n t o [14])). In these systems the cycle duration is not 
constrained and varies from one cycle to the next. UTOPIA, PRODYN and 
SPPORT proceed by defining initially the different stages of the intersection and 
fixing the minimum and maximum green durations. On the other hand, CRONOS 
finds the green and red durations according to the traffic conditions only and the 
safety constraints. There are no repetitive stages as in further systems. This initial 
theoretic conception influences the way these systems take into account the buses 
priority at traffic lights. Generally, in the first category, the priority to the buses is 
given on the basis of pre-established rules. The strategies of the second category 
give priority to the buses further to optimization of some criteria. 

2.1. Passive priority 

The passive priority consists in generating the plans of the traffic lights so that they 
favour the roads supporting the public transport, without detecting these vehicles 
individually. Some measures can be applied to satisfy this objective, for example: 

• To adjust the traffic lights coordination to the public transport speed instead 
of the private cars speed. 

• To reduce the duration of the traffic light cycles, in order to reduce the 
waiting times of the public transport when they arrive at traffic lights. This measure 
cannot be applied in case of large density traffic since it reduces the intersection 
capacity. 

• To split the green phase attributed to the road supporting the bus, when the 
traffic light cycle cannot be very short. However, this method also reduces the 
capacity of the intersection traffic flow. 

• To design the traffic light diagrams, taking into account the number of 
passengers rather than the number of vehicles. However, it requires knowledge 
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about the load in terms of passengers number in each transport mode. 
It is this latter method which is used to give priority to public transport 

vehicles in one of the most well known static urban traffic control system as 
TRANSYT system (V i n c e n t  et al. [19]). 

2.2. Active priority 

The second method, called dynamic priority, consists in modification of the 
intersection signals to authorize the passage of the public transport vehicle which 
has been detected. This type of priority is performed on real-time urban traffic 
control systems. Real-time urban traffic control systems belong principally to two 
families (Fig. 1). The first one uses a fixed traffic light cycle on a given period. 
They gradually adapt the traffic light plan to the variations in real time of the traffic 
conditions (for example, SCOOT, SCATS and TUC). The second family of systems 
consists in adaptive commands, continually optimizing the traffic light plan on a 
sliding horizon (for example, CRONOS, PRODYN and UTOPIA). It influences 
their way in taking into account the priority at traffic lights. In the first category, the 
priority is given to the Public Transport Vehicle Crossing (PTVC) on the basis of 
the pre-established rules. 
 

 

Fig. 1. Classification of the public transport priority strategies 
 

The strategies of the second category give priority to the public transport 
vehicle further to optimization of some criteria. 

2.2.1. Rule-based priority 

These methods consist in a short term modification of the traffic light operation to 
favour the bus approaching the intersection. It is the most widely used method by 
the control strategies that gives priority to the buses. Together with the known 
control strategies of international level, such as SCOOT, SCATS, SPPORT, 
TRAFCOD, TUC, several less known systems which were developed by cities or 
by transport organization authorities, use also the rule-based priority. 
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2.2.2. Determined priorities based on the global optimization at the intersection 
It is based on the optimization theory to find the optimal durations of lights 
enabling the buses priority; and requires traffic models and a criterion to be 
optimized. The advantage of these strategies is that they are not constrained by a 
traffic light fixed cycle. Among the existing systems, CRONOS, PRODYN, 
RHODES/BUSBAND can be mentioned. 

2.2.3. Limits of TPS regulation systems 
The intersection control systems which enable giving priority to the public transport 
on the basis of rules cannot manage more than one bus per a traffic light cycle. As 
we have seen, these systems proceed, attributing additional duration of the green 
light at the approach of the bus and restore the order of the phases later on. This 
procedure cannot be repeated several times during a cycle since the green light 
durations are limited by maximum values imposed for safety reasons. Thus it limits 
the use of this type of strategy at the intersections which are not often used by the 
public transport vehicles. The systems which manage the priority through 
optimization algorithms can take several criteria into account before attributing the 
priority; for example they can attribute the priority to the public transport vehicle 
which deserves it most and not to the one which asks it first, etc. However, these 
systems are limited by the computational time. Some of them, since they are based 
on a microscopic modelling of the intersection and others − because they need large 
data information from the urban network. The computational time very often 
increases in a sequential way with the number of studied intersections. 

From our viewpoint, a public transport priority strategy which is placed on the 
individual level of buses cannot have a global view of the traffic on a whole region. 
And as above noted, it can imply twisted effects, since it can feed the road network 
sections or congested intersections, resulting in deterioration of the traffic general 
conditions, including bus traffic conditions. Thus, it is necessary to develop 
regulation strategies which take into account the intermodal global situations of the 
traffic on a whole region (a whole route of the public transport for example). 

A global multimodal strategy for public transport and private cars has been 
developed (S c e m a m a  and T e n d j a o u i [18]). However, this strategy is an 
expert system trying to copy the operators’ behaviour to give recommendation to 
the operators and does not give the optimal solution itself. Furthermore, it acts in a 
long period of time (15 minutes) and not in the cycle as the strategies that we 
propose. 

B h o u r i  et al. [3, 2] explored an approach using multi-agent modeling to 
process the traffic control strategy. The proposed strategy, ASUR, adapts the 
individual behaviours of buses given by buses agents to the collective behaviour of 
vehicles given by aggregate data and vice-versa. The method is promising but has 
to be tested on big networks to ensure a reasonable computing time.  

The method bimodal control strategy proposed in this paper is a Linear 
Quadratic optimization method which is well adapted to real time control.  

A network of the urban roads is composed of intersections linked by sections. 
In order to explain our objective in this work and the model used, we start by giving 
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variables which characterize the traffic light intersections, before developing the 
intermodal model of command. 

3. Dynamic model 

In this work we assume that the duration of the traffic light cycle, the phasing 
diagram and the gaps are fixed on the considered time horizon. The strategy acts on 
the duration of the green lights within the cycle in order to improve the traffic 
conditions. In order to obtain the dynamic equations for the mathematical model, 
we will consider the now well established Store and Forward model due to G a z i s  
and P o t t s  [8]. The choice of this model is based on the simplifications it imposes 
on the equations that will allow us to write them as linear equations on the number 
of vehicles and the green time of the junctions. 

The network is represented by a directed graph composed of nodes and arcs. 
The nodes j א J represent intersections and the arcs a א A − the unidirectional travel 
links. 

On every arc the model consists of two equations, one of them modelling the 
progress of the total number of vehicles on the arc, expressed as a Private Vehicle 
Unit (PVU) (for example, the bus equals 2.3 PVU). The second equation models the 
number of public transport vehicles on the arc. 

3.1. The general traffic dynamic equations 

As said in the introduction, this strategy adopts the same bases as TUC inter-section 
regulation strategy and both are based on the Store and Forward model. The traffic 
on each arc a is modelled using the vehicle-conservation equation (D i a k a k i  et al. 
[6]). 

(1)   xa(k + 1) = xa(k) + T[qa(k) – ua(k)],  

where xa is the number of cars on the link expressed in PVU, ܽݍ and ܽݑ are the 
inflow and the outflow of the link ܽ during ሾ݇ܶ, ሺ݇ ൅  1ሻܶሿ where ݇ is the discrete 
time step and ܶ is the sampling time. Fig. 2 clarifies the relations between the 
variables. Herein we have neglected the traffic generated and consumed in each 
link, it would be easy to include them without substantially changing the current 
development. 

 
 

Fig. 2. Variable definition 

Arc a
Junction 

M 
q Junction
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In order to clarify the equations for q and u we will consider the saturation 
flow of each link Sa, that represents the maximum traffic flow that can exit the link, 
expressed in PVU/s. The Store and Forward model assumes that the vehicles 
reaching the arc’s end are stored there and exit with rate Sa  during the green light. 
Hence, we can write 
(2)   ua(k) = ௌ௔.ீ௔ሺ௞ሻ

஼
, 

where C is the cycle time and Ga(k) is the efficient green time of link a, i.e., the 
green light duration attributed to arc a during the traffic light cycle C of the 
intersection situated at the arc exit, and it will be the control variable in our 
approach. If the green light periods are attributed to arc a during different phases, 
 ௔ሺ݇ሻ is equal to the sum of all these green light durationsܩ
ሺ݇ሻܽܩ   (3) ൌ ∑ ௉ಿೌאே,௜ሺ݇ሻ௜ܩ ,  
where GN,i(k) is the green light duration for phase i on the junction ܰ,   the 
summation is made over all the phases such that arc ܽ has the right of way (green 
light), this set is called ேܲ

௔. It also assumes that the outflow is distributed among the 
different following links according to the coefficients τab, called turning rates that 
represent the proportion of the outflow from a entering arc b. 

If the link ܽ originates at junction ܯ, the inflow traffic rate entering arc a can 
be written as the sum of the outflow traffic rates coming from the arcs entering 
junction ܯ (other than ܽ). If the arc ܾ precedes arc ܽ, the corresponding flow is 
τbaub, so that the total flow entering arc ܽ is 
௔ሺ݇ሻݍ   (4) ൌ ∑ ߬௕,௔ݑ௕ሺ݇ሻ௕אூಾ , 
where IM  is the set of arcs entering junction M, and we have defined τaa = 0. 

Replacing all the previous definitions in Equation (1), we obtain the following 
model: 
௔ሺ݇ݔ   (5) ൅ 1ሻ ൌ ௔ሺ௞ሻݔ ൅ ೅

಴ൣ∑ ߬௕,௔ܵ௕ܩெ,௜್
ሺ݇ሻ െ ܵ௔ ∑ ூಾא௉ಿೌ௕אே,௝ሺ݇ሻ௝ܩ ൧ 

or in a matrix form 
(6)   ܺሺ݇ ൅ 1ሻ ൌ ܺሺ݇ሻ ൅  ,ሺ݇ሻܩ ܤ
where ܤ is a matrix of dimension ܰ ൈ  is the ܯ is the number of links and ܰ ,ܯ 
total number of phases on the network. 

This modelling is possible under the following assumptions: 
• the sampling time interval ܶ is at least equal to the duration of the light 

cycle ܥ, we will use ܶ ൌ  ;ܥ
• the gaps between the intersections are not taken into account; 
• variations in the queue are neglected, which means that the model considers 

that all of the input flows on the arc have the green phase at the same time. 

3.2. The public transport traffic dynamic equations 

Since we will be considering two kinds of traffic, the general one and the public 
transport one, we will distinguish the state variables as xv for the number of vehicles 
and xb for the number of public transport vehicles (buses). Knowing the sequence of 
arcs which are used by each public transport line, the progress of the public 
transport vehicles is modelled by a delay equation: 
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(7)   ,)(=)( i
a

b
a

b
a kxkx ii ζ−′  

where xa
bi is the number of vehicles of the public transport line number i on arc a, a′ 

is the arc preceding a for the line i and ζa
i  is a parameter which expresses the mean 

travel time of the vehicles on line bi to travel from arc a′ to arc a. These values 
should be real ones, however, in order to be able to write the precedent equation, we 
take ζa

i as integer, meaning that the travel time is a multiple of the sampling interval 
T. Thus we consider that ζa

i is equal to 1 if the bus line has no station on arc a, 
otherwise ζa

i is equal to 2 (for example). Substituting these values in equation (7), 
the model of the public transport becomes the following: 

(8)   
⎪⎩

⎪
⎨
⎧ ′−

+
′

′

otherwise.)(
,arctheonstopcommercialahaslinebustheif1)(=1)(

kx
abkxkx

i

i

b
a

i
b
abi

a  

This simplification complies with the dynamical modelling of the PC, since it 
consists in assuming that both the PC and public transport are “stored” during the 
red light period and then are “distributed” during the green light period, thus they 
spend a light cycle on the arc. However, the choice of the cycle duration should be 
done carefully. 

The last equation, written in a vector form, gives 

(9)   1)()(=1)( 10 −++ kXAkXAkX bbbbb , 
where matrix A0

b is the adjacency matrix corresponding to the bus line for the arcs 
without stops, A1

b is the adjacency matrix corresponding to the bus line for the arcs 
with a stop, and Xb(k) is the vector of numbers of buses at each traversed arc. It can 
be further simplified, adding if necessary supplementary state variables, such as 

(10)   )(=1)( kXAkX BbB + , 
where XB is the vector obtained after stacking Xb(k) and Xb(k – 1), and matrix Ab is 
the block matrix given by  

(11)   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

0
= 10

I
AA

A
bb

b . 

3.3. The public transport PC model 

Here we do not talk of a coupled model, because, as it is easy to see, both dynamics 
are not coupled, in fact they will be coupled, but for the objective function in the 
optimal control problem to be presented in the next section. 

The state variable of the whole system consists of a vector of dimension  
N + 2Nb, where N is the number of arcs in the system, Nb is the number of arcs 
crossed by the public transport lines. The dynamics of the system thus is 
represented by the following equation 

(12)   )()(=1)( kBGkAXkX ++ , 
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where A is a matrix of dimension (N + 2Nb)×(N + 2Nb). Matrix B is composed of 
two stacked blocks − the upper one is defined by the topology of the road network, 
i.e., when the  coefficient Baj is different from 0 means that phase j is found entering 
or leaving arc a and its value is defined according to (5). The lower block 
corresponds to the influence of the green lights on the bus, which, as it is neglected, 
has to be 0. We have then 

(13)   
0

= , =
0 0b

I B
A B .

A
⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

 

With these matrices, it is clear that it will not be possible to command the public 
transport because of the null block of matrix B. However, it does not set any 
problem because in the definition of the model we suppose that the travel times of 
the public transport are fixed. What we want is to act in such way that the buses can 
comply with their schedules. 

4. Optimal control problem 

Here we pose the optimal control problem. The control part of the problem means 
that we will be able to choose the green light times in order to modify the flows. 
The optimality will be measured in terms of the number of private cars that share 
the roads with the buses. We will explain here these definitions. When doing so, we 
keep in mind that we want to obtain a simply computable global green time. As we 
have linear dynamics, choosing a quadratic objective function and imposing no 
restrictions will make the optimal control problem over an infinite horizon 
belonging to the LQ class. The importance of this relies on the fact that the optimal 
solution can be written as a linear (constant in time) feedback law and the matrix 
that defines this law is the solution of a matrix equation (Ricatti equation) stated in 
terms of the given data. 

4.1. Optimization criteria 

From the viewpoint of the traffic regulation, our objective is to improve the traffic 
conditions of PT on the network, relative to the PC flow, without deteriorating the 
global traffic conditions. The objective function needs to be quadratic in terms of 
the state and control variables to rest in the LQ case, the general form of these 
functions is:  

(14)   ,=),( 22

0 ux QuQx uxuxJ αα +∫
∞

 

where xQ  and uQ  are positive definite matrices that allow to weigh differently the 

components of x  and u ; xα  and uα  are non-negative coefficients. These 
conditions guarantee that the function J  will be convex (strongly if 0>,uxα ), 
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which in turn guarantees the existence (and uniqueness) of the solution over the 
closed convex set defined by the linear dynamic equations. 

In our (discrete time) case we propose the following objective function:  

(15)   [ ]22

0=
)()())()((=)(min kGkXkXkXGJ b

kG
γβα ++′∑

∞

, 

where α , β  and γ  are non-negative weighting parameters and X are given by the 
dynamic equations (5) and (8). 

Even if the introduction of the objective function was made for computational 
simplicity, we can give an interpretation to each term. The first term of the criteria, 
(X (k), Xb(k)) puts forward the traffic conditions on the arcs crossed by the PT at the 
time these PT vehicles are present on it. The second member aims at reducing the 
number of vehicles on every arc in the network and thus to equalize the congestion 
on every arc. The role of this second term is mainly to not degrade too much the 
traffic in the other arcs. The last term is used in order to avoid large variations of 
the control (green light times). 

The optimization criteria (15) have three different terms weighted by 
parameters α, β and γ. The choice of the values of these parameters enables the 
modification of the objective of the regulation. For example, for α = 0, β = γ = 1, the 
strategy is equivalent to TUC, which does not take into account the presence of the 
PT. On the other hand, a significant parameter α (α >> β) will strongly penalize the 
arcs which do not support the PT. 

4.2. Control law 

The problem of optimal control consists in minimizing the criteria given by (15) 
respecting the dynamics of the system given by (12). In order to avoid working with 
the input and exit flows we define a nominal green time GN that solves BGN = 0. In 
such case the corresponding nominal state is constant and we can work with the 
following dynamic equation 
(16)   ܺ ሺ݇ ൅ 1ሻ ൌ ሺ݇ሻ ܺܣ  ൅  ,ሺ݇ሻܩ∆ܤ 
where ∆ܩሺ݇ሻ ൌ ሺ݇ሻܩ െ  ே, and now ܺ represents the deviation from the nominalܩ
state. Writing the objective (or performance) function as: 
ൌ ܬ   (17)  ∑ ܺሺ݇ሻT 

ܳܺ ሺ݇ሻ ൅  ሺ݇ሻTܩ 
ሺ݇ሻ௞ܩܴ , 

following the LQ optimization method, the applied command law is given by the 
following equation 
ሺ݇ሻܩ   (18)  ൌ ܰܩ   

െ  ,ሺ݇ሻ ܺܨ
where F is the Feedback matrix defined as 

ܨ ൌ ሺܴ ൅  ,ܣTܲܤሻെ1ܤTܲܤ
and the matrix P solves the Riccati matrix equation 

ܲ ൌ ܳ ൅ ܣTܲܣ െ  .ܨܤTܲܣ
The dependence of the objective function on the coefficients α, β, and γ is carried 
by matrices Q and R. 

Considering (18) for k and k − 1, by a simple substraction, we have 
ሺ݇ሻܩ   (19) ൌ ሺ݇ܩ െ 1ሻ െ ൫ܺሺ݇ሻܨ െ ܺሺ݇ െ 1ሻ൯. 



 27

The use of this equation rather than of equation (18) avoids the estimation of the 
nominal values of the control. 

It should be noted that the choice of an infinite time horizon in (15) implies 
that the feedback matrix F is time independent. This choice is justified by the will 
for a real time command of the intersection lights and thus by the simplification of 
the calculations for each command. However, it has the drawback to consider the 
time average of the criteria, reducing the significance of our main objective which 
is to reduce the number of vehicles on the arcs at the instants when the PT vehicles 
are on these arcs. This led to the idea to test various strategies, whether a single 
Riccati matrix, or at most a finite matrix combination is used, each of them being 
calculated for a different system state. We explain this idea in the following 
sections. 

Strategy with PT priority (PPT) 
As it was above said, the choice of the parameters α, β and γ enables to model 

various control objectives. The first strategy tested consists in slightly favouring the 
PT with the choices α = β = 1 in (15). 

Strategy with strong PT priority (PFPT) 
In this second strategy, big significance is given to the first term of the criteria 

consisting in favouring the arcs that support the buses at the instants when they are 
on it. In this case we choose α >> β (B h o u r i  and L o t i t o [1]). 

Combined strategy 
This strategy is based on the ability of detecting the presence of buses on the 

arcs which can be accomplished using appropriate sensors. We use two different 
criteria (different Riccati equations) according to the presence or the absence of the 
PT vehicle on the arc. 

This is a good compromise between a single Riccati matrix (the same for all k) 
and an infinite or very large sequence of Riccati matrices (one for every k). The 
idea is to give the control law in a practical and implementable way. The 
intersection controllers have two Riccati matrices calculated in the following way: 
the first one does not take the PT into account (TUC for example); on the contrary, 
the second one strongly takes them into account (α very large). The matrix which 
corresponds to the situation of the PT is used on each of the intersections on the 
network. 

More precisely, let us consider F1 - the feedback matrix obtained with TUC (or 
another independent criteria of the PT position). Given F2 , the feedback matrix is 
obtained with a criterion which takes into account the position of PT (α >> β). The 
optimal command is given by: 
݇ܩ   (20) ൌ nomܩ ൅ ሺ1ܨ ݇ܲߣ ൅ ሺܫ െ 2ሻሺܺ݇ܨሻ݇ܲߣ െ ܺ݇ െ 1ሻ, 

where Pk is a diagonal matrix, every element of which is equal to 1, if at the 
moment k there is a PT vehicle waiting on the corresponding arc, and λ is a 
coefficient to be determined in order to further improve congestion (see the 
Numerical experiments section for more details). 
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This strategy appears to be cleverer since it enables to reduce the congestion 
on the arcs where there are PT vehicles at the instants when they are on it, without 
increasing it on the arcs where there is none. The simulation results seem to support 
this affirmation and will be detailed in the forthcoming section about numerical 
results. 

4.3. The constraints 

The LQ methodology used to obtain the solution of the optimal control problem 
does not allow taking into account the constraints, and for the Riccati equation will 
no longer be valid when the optimal control problem is constrained. However, for 
operative needs, at every intersection j, the durations of green lights should comply 
with a certain number of constraints: 

• the cycle duration (C), 
• the phase diagram: all phases Pj must have their green light within the 

cycle,  
• the clearance times between the phases Rj, 

which implies: 
(21)   ∑ ௉ೕא௝,௜௜ܩ 

 ൅  ௝ܴ ൌ  .ܥ 

Also, the duration of every green light is limited by a maximum and minimum time. 
Indeed, a too long red light duration can be interpreted by the users as a malfunction 
of the intersection lights and imply their non-compliance : 
,݆ܩ   (22) ݅, min ൑ ,݆ܩ  ݅ ൑ ,݆ܩ  ݅, max. 

In order to obtain green times according to the previous constraints, the same 
method that appeared in (D i a k a k i  et al. [6]) is applied, i.e., the obtained control 
values are projected onto the set of feasible values defined by the constraints. It 
means to obtain the closest (for some distance) values to the optimal, but not the 
feasible ones. The projection step means to solve the following quadratic 
optimization problem that includes the constraints (21) and (22), 

(23)   
(22). and (21)s.t.

,)(min 2
,, ijij

jPiG
GG −∑

∈  

This problem belongs to the class of Quadratic Knapsacks problems and the 
numerical solution was done according to the algorithm presented in L o t i t o [13] 
(see P a t r i k s s o n [17] for a survey of available algorithms). 

After all the simplifications made in order to apply standard tools, solving 
directly the full, optimal control, the problem could appear to be easier. The full 
problem would be 

,)()(=),(min
22

0 uQu
xQx

T

F
kGkXGXJ αα +∑  

,)()(=1)(s.t. kBGkAXkX ++  
,)().(=)( kXkFGkG N −  
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,=)(, CRkG jij

jPi

+∑
∈

 

,)( max,,,min,, ijijij GkGG ≤≤  
where T is the considered time horizon and the free variables are non-constant 
feedback matrices F(k). When solving it for real examples where the time horizon is 
large, the number of variables is also large and so the infinite horizon control 
problem could be more adequate, because (assuming a nominal state), a constant 
feedback matrix is obtained, giving along the facility of practical implementation of 
a constant feedback. 

5. Numerical experiments 

In this section we expose numerical tests that we have made with a small academic 
example network. The numerical tests have been made using a micro-simulator 
designed adhoc and based on car following models (see G a b a r d [7] and 
H e l b i n g  et al. [9]). The idea is to use different models for control derivation and 
for control testing. 

5.1. Microsimulator 

The availability of mathematical models describing the dynamics of vehicles is 
fundamental in order to apply the control theory. The model presented before, 
stated in terms of continuous vehicle flows, is considered as a macroscopic model 
in contraposition to the microscopic models that consider the position of each 
vehicle. 

In order to make computational tests of the designed strategies we have 
considered as an important step to use a model of different nature from the one used 
to design the strategy. Microscopic simulators are based mostly in Cellular 
Automata (N a g e l  [15], L o t i t o  et al. [12]) or on the Car-following model 
(P a p a g e o r g i o u  [16]). The last one was chosen to develop our simulator. 
Hence, we consider a discrete event system, such that at each time step there are 
vehicles entering at fixed rates and interacting among each other following certain 
rules. These rules model the movement on straight lines and the lane change. 

The positions of vehicles evolve according to the equations 
௡ݔ   (24) െ ௡ାଵݔ ൌ ܮ ൅  ,ሶ௡ାଵݔܵ
where n is the precedent vehicle, L is the vehicle length and S is a separation 
coefficient. In this formula, the vehicle n + 1 stays separated from the precedent by 
a fixed distance (L) plus a distance proportional to its speed. 

After differentiating Equation (24) it results in 

(25)   ))()((1= 11 txtx
S

x nnn ++ − &&&& , 
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5.2. Example network 

The chosen example network has 8 intersections, 28 links and two bus lines (yellow 
and blue) as shown in Fig. 4. 

Each intersection has the general form given in Fig. 5 and three phases. In the 
nominal state, each one is given 50%, 10% and 30% of the green time respectively, 
as it is shown in Fig. 5. In this figure the turning rates for each movement are also 
shown. 

The saturation flow is 0.5 veh/s everywhere and the entering flows are given in 
the Table 1. 

Table 1 
Arc 1 3 11 16 20 26 30 

Flow (veh./s) 0.25 0.15 0.15 0.25 0.25 0.15 0.25 

The flow d originated and consumed at each link is determined in such a way 
that Bכ G¯ + d = 0, thus guaranteeing that the proposed “nominal” state is indeed 
nominal. The yellow-bus line enters node 12 and traverse intersections 1, 5, 9, 14, 
27 and 30, making a stop before intersections 1, 3 and 5 (it is shown by S in Fig. 4. 
The frequency of the buses is 1 bus at each 3 time steps. The blue-bus line enters 
node 12 and traverse intersections 1, 5, 9, 14, 27 and 30, making a stop before 
intersections 1, 3 and 5 (it is shown by S in Fig. 4. The frequency of the buses is 1 
bus at each 3 time steps. Most of the following examples were obtained considering 
only the yellow-bus line. The blue-bus line is introduced to further test the NetPrior 
strategy. 
 

 
 

Fig. 4. The example network 

5.3. The proposed strategies 

Many parameters should be set in order to compute the feedback matrices for each 
strategy. The first description was given in Subsection 4.2 where the distinction was 
made between the PC model and the PC-PT model. Here the computed strategies 
are described more explicitly. The proposed strategies and its parameters are: 
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TUC The strategy proposed in D i a k a k i  et al. [6], which is based on the PC 
model, where the matrix Q in 17 is the identity matrix, i.e., all the arcs are given the 
same weight. 

Pr-L1 The same strategy as before, except for the weights of the arcs traversed 
by line 1, which are increased by 400%. 

Comb Combination of TUC and Pr-L1, when the presence of a bus is detected 
in a junction, the green times used are those given by Pr-L1, otherwise the green 
times are given by TUC. 

PrArc5 In this case, only the weight of arc 5 is increased. 
NetPrior The strategy computed using the PC-PT model described in 

Subsection 4.2 only considering line 1. 
NetPrior2 Same as before but considering both line 1 and line 2. 
In order to see the impact of the arc weights in the computed feedback 

matrices; for the phase 1 of the intersection 2, which allows the movements 8 → 4, 
8 → 2 and 5 → 9, the corresponding rows of the feedback matrices (in absolute 
values) are shown in Fig. 6. 

 

 
Fig. 5. Diagram of a general intersection and the different phases with the proportion of the green time 

and turning rates for a given junction 

    
(a)                                                                                       (b) 

Fig. 6. Value of the coefficient in the rows of the feedback matrices for phase 1 on intersection 2  (a); 
variation on the congestion for different values of  λ   (b) 

 
The interest of this plot is that in some sense, it shows the impact of dotted line 

lights of the flows on the network arcs. As it can be observed, this importance is 
bigger for the second feedback matrix. It is so because it was computed, giving 
more importance to this arc. 
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The strategy Comb is a combination of TUC with Pr-L1, as said in Subsection 
4.2 there is a parameter to be determined in order to reduce the congestion. The 
reason is that an improvement for buses may penalize too much the arcs not 
traversed by the bus line. Hence, there is a trade-off among reducing the congestion 
on bus traversed arcs and augmenting the congestion on the remaining arcs. This 
should be analyzed for each particular case. For this example different values of the 
coefficient λ that appear in formula 20 were analyzed. In Fig. 6b, the values of the 
congestion over bus-traversed (dotted line) and bus-non-traversed arcs (down line) 
for different values of λ are shown. The correct choice of λ depends on the 
practitioner decision about the priority according to the public transport. 
 

Table 2. Simulation results for Case 1 

Strategy Total Line 1 Line 2 Arc 5 L1 Bus L2 Bus Mean time 

None 628.29 142.45 129.76 38.80 43.71 35.12 1202.94 

TUC 682.91 130.49 146.10 29.98 40.80 39.38 1182.86 

Pr-L1 665.58 125.99 143.58 27.22 39.42 38.66 1180.59 

Comb 670.10 130.11 145.91 30.07 40.35 38.78 1195.15 

Pr-Arc5 684.03 129.76 146.64 27.57 40.95 39.31 1169.41 

NetPrior 677.05 133.19 145.53 31.87 42.20 39.18 1181.76 

NetPrior2 628.38 120.72 128.86 24.87 38.70 35.38 1161.21 

 
Table 3. Simulation results for Case 2 

Strategy Total Line 1 Line 2 Arc 5 L1 Bus L2 Bus Mean time 

None 1007.07 247.80 386.55 87.84 84.04 91.72 2776.38

TUC 718.50 161.94 168.56 46.70 55.73 41.00 1261.50

Pr-L1 717.66 162.34 165.64 48.37 58.64 41.99 1233.74

Comb 725.29 163.55 169.20 47.45 56.36 41.89 1242.19

Pr-Arc5 716.60 158.78 166.52 47.49 57.41 41.61 1242.82

NetPrior 716.91 163.55 165.24 47.16 56.06 41.47 1233.39

NetPrior2 719.78 161.36 169.55 47.50 56.99 41.83 1254.99

5.4. Numerical results 

In order to see the control in action two perturbed cases were considered: 
• In the first case, the entering rates on arcs 1 and 20 are increased 30% 

during 10 minutes each hour. 
• In the second case the perturbation stayed for 30 minutes each hour. 
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Fig. 7. Strategies comparison for total congestion in both cases 

The congestion experimented by the buses for each strategy on a given arc a 
can be measured as ∑ ௔ሺ݇ሻ௞ݔ . The results obtained with the simulations are 
presented in Table 1. It corresponds to an average of 100 runs of the simulator. The 
total congestion for each strategy is shown in the column “Total”, in columns “Line 
1” and “Line 2” the measured simulated congestion corresponding to the arcs 
belonging to those lines is given. In column “Arc 5” the congestion is computed 
only on that arc. In columns “L1 Bus” and “L2 Bus” the congestion is only 
computed when the buses are present. Finally, in the last column the mean travel 
time of the buses is shown. 
 

 
Fig. 8. Strategies comparison for bus mean travel time in both cases 
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(a)                                                                                 (b) 

Fig. 9. Multicriteria graphics for the strategies in Case 1 (a) and Case 2 (b) 
 

These results are compared together in Fig. 7, showing on the x-axis the 
strategies and the mean time, and on the y-axis the obtained congestion for the 
strategies and the values of the mean-time. 

With respect to the bus travel time, the best strategy seems to be NetPrior2, 
because it reduces the bus travel time without increasing the total congestion. On 
the contrary, the strategy NetPrior reduces the travel time of Line 1 buses increasing 
the total congestion, but this one penalizes too much the arcs not traversed by the 
bus line. 

6. Conclusions 

In this paper traffic regulation strategies for urban networks have been presented. 
They were tested in simulation and compared to TUC strategy which does not 
include the PT in the command. The paper shows that the best way to favour the PT 
without deteriorating the general traffic conditions is to use a combined command: 
the green light duration of the intersections is calculated without taking into account 
the position of the PT for the arcs used by the PT. On the contrary, in the 
optimization criteria, a strong weight is given to the arcs which support the PT at 
instants when they are on these arcs. This strategy based on the LQ theory is 
realistic from the viewpoint of its implementation and the numerical results show its 
efficiency. More advanced tests and analysis of the networks with traffic real data 
will be necessary to validate it completely. 
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