Total Variation Denoising using Iterated Conditional Expectation

Abstract : We propose a new variant of the celebrated Total Variation image denoising model of Rudin, Osher and Fatemi, which provides results very similar to the Bayesian posterior mean variant (TV-LSE) while showing a much better computational efficiency. This variant is based on an iterative procedure which is proved to converge linearly to a fixed point satisfying a marginal conditional mean property. The implementation is simple, provided numerical precision issues are correctly handled. Experiments show that the proposed variant yields results that are very close to those obtained with TV-LSE and avoids as well the so-called staircasing artifact observed with classical Total Variation denoising.
Type de document :
Communication dans un congrès
European Signal Processing Conference, Sep 2014, Lisbon, Portugal. Proceedings of the 22nd European Signal Processing Conference (EUSIPCO)
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01214735
Contributeur : Lionel Moisan <>
Soumis le : mardi 13 octobre 2015 - 11:20:19
Dernière modification le : mardi 11 octobre 2016 - 12:01:21
Document(s) archivé(s) le : jeudi 27 avril 2017 - 00:26:00

Fichier

tvice_eusipco2014_final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01214735, version 1

Collections

Citation

Cécile Louchet, Lionel Moisan. Total Variation Denoising using Iterated Conditional Expectation. European Signal Processing Conference, Sep 2014, Lisbon, Portugal. Proceedings of the 22nd European Signal Processing Conference (EUSIPCO). <hal-01214735>

Partager

Métriques

Consultations de
la notice

74

Téléchargements du document

155