Microtexture Inpainting through Gaussian Conditional Simulation

Abstract : Image inpainting consists in filling missing regions of an image by inferring from the surrounding content. In the case of texture images, inpainting can be formulated in terms of conditional simulation of a stochastic texture model. Many texture synthesis methods thus have been adapted to texture inpainting, but these methods do not offer theoretical guarantees since the conditional sampling is in general only approximate. Here we show that in the case of Gaussian textures, inpainting can be addressed with perfect conditional simulation relying on kriging estimation. We thus obtain a micro-texture inpainting algorithm that is able to fill holes of any shape and size in an efficient manner while respecting exactly a stochastic model.
Type de document :
Communication dans un congrès
IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar 2016, Shanghai, China. Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International Conference on, 2016, <10.1109/ICASSP.2016.7471867>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01214695
Contributeur : Lionel Moisan <>
Soumis le : lundi 5 septembre 2016 - 17:41:27
Dernière modification le : samedi 18 février 2017 - 01:17:46

Fichier

2015-32r2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Bruno Galerne, Arthur Leclaire, Lionel Moisan. Microtexture Inpainting through Gaussian Conditional Simulation. IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar 2016, Shanghai, China. Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International Conference on, 2016, <10.1109/ICASSP.2016.7471867>. <hal-01214695v3>

Partager

Métriques

Consultations de
la notice

117

Téléchargements du document

65