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In this paper we report a new ground state potential energy surface for ethylene (ethene) C2H4 obtained
from extended ab initio calculations. The coupled-cluster approach with the perturbative inclusion of the
connected triple excitations CCSD(T) and correlation consistent polarized valence basis set cc-pVQZ was
employed for computations of electronic ground state energies. The fit of the surface included 82 542 nuclear
configurations using sixth order expansion in curvilinear symmetry-adapted coordinates involving 2236
parameters. A good convergence for variationally-computed vibrational levels of the C2H4 molecule was
obtained with a RMS(Obs. − Calc.) deviation of 2.7 cm−1 for fundamental bands centers and 5.9 cm−1 for
vibrational bands up to 7800 cm−1. Large scale vibrational and rotational calculations for 12C2H4, 13C2H4

and 12C2D4 isotopologues were performed using this new surface. Energy levels for J = 20 up to 6000 cm−1

are in a good agreement with observations. This represents a considerable improvement with respect to
available global predictions of vibrational levels of 13C2H4 and 12C2D4 and rovibrational levels of 12C2H4.

Copyright 2014 American Institute of Physics. This article may be downloaded for personal use only. Any
other use requires prior permission of the author and the American Institute of Physics. The following article
appeared in J. Chem. Phys. 141, 104301 (2014) and may be found at http://scitation.aip.org/content/
aip/journal/jcp/141/10/10.1063/1.4894419.

I. INTRODUCTION

Polyatomic molecules such as methane CH4, acety-
lene C2H2 and ethylene (ethene) C2H4 “carbon chains”
are of considerable interest for modeling of planetary at-
mospheres and other astrophysical applications. They
present strong absorption in the overtone range usually
corresponding to excitation of the CH bonds, so that
these small hydrocarbons dominate the opacity of some
brown dwarfs, exoplanets and asymptotic-giant-branch
(AGB) stars and play a primary role in the physical
chemistry of their outer atmospheres1. Thus, the emis-
sion of AGBs is partly affected by ethylene which has
been detected in the outer shell of IRC+1021641 and
IRL61842 where it is proposed that methane combus-
tion may generate C2H4 and HCN. Knowledge of rovi-
brational transitions of hydrocarbons is of primary im-
portance in many fields, as for example for identifying
the chemical composition of Titan atmosphere2 but re-
mains a formidable challenge for the theory and spectral
analysis3.

Several databases aim at collecting the correspond-
ing data4–6 but the information about C2H4 spectrum
present in databases remains limited, only some spec-
tral ranges around 1000 and 3000 cm−1 being available.

a)Electronic mail: thibault.delahaye@univ-reims.fr
b)Electronic mail: michael.rey@univ-reims.fr

Many recent studies on vibrational fundamental7–11 and
combination8,12 band analysis tend to increase these data
up to 6000 cm−1.

Both the development of high-quality ab initio poten-
tial energy surface (PES) and dipole moment surface
(DMS) and improvement in computational codes solv-
ing the rovibrational Schrödinger equation have been re-
cently achieved (see for example Refs. 13–30 and refer-
ences therein, the list being not exhaustive). All these
made the calculation of quantitatively accurate ab initio
rovibrational spectra up to five atomic molecules possi-
ble. These ab initio predictions of the PES and molecular
properties for small molecules help resolving many issues
related to the analysis of the spectra31.

Theoretical predictions proved to be very useful for
analysis of experimental spectra at high-energy ranges.
Obviously a construction of twelve-dimensional surfaces
for six-atomic molecules is a considerable challenge for
the theory. Avila and Carrington32 reported J = 0 vi-
brational energies of almost 130 states of 12C2H4 from
a CCSD(T)/cc-pVTZ modified force field, initially com-
puted by Martin et al.33 in a polynomial representation,
and extended by using Morse variables for the four C-H
stretch coordinates. Thereafter Carter et al.34 used this
modified potential to perform rovibrational variational
calculations with the Multimode code, using a basis
with typical size of VCI Ag symmetry block of 24048
for accurate determination of J = 0, 1, 2 energies and a
reduced basis (size of Ag symmetry block = 2654) for
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more qualitative predictions up to J = 40. Both stud-
ies showed a rather good description of fundamentals
and to a less extent of first overtones and combination
bands. These authors concluded that their calculations
were mostly limited by the accuracy of the potential and
pointed out the need of a new surface, obtained at a
higher level of the ab initio theory, a larger basis and
advanced fitting methods.

In this paper, we report a new PES for ethylene
which was calculated using augmented coupled cluster
CCSD(T) method and correlation consistent basis set cc-
pVQZ. In order to validate the accuracy of the surface,
we also present vibration and rotation-vibration predic-
tions using normal mode variational techniques. For a
polyatomic molecule in normal coordinates the vibration-
rotation Hamiltonian has been formulated in its most
compact form by Watson35 and is referred to as Eckart-
Watson Hamiltonian (EWH) in the following. In case of
nonlinear molecules as ethylene the EWH is given by

H(p, q,J) =
1

2

3N−6∑
k=1

ωkp
2
k + U(q) + UW (q)

+
1

2

∑
αβ

(Jα − πα)µαβ(Jβ − πβ), (1)

where α, β = x, y, z, Jα and πα are molecular frame com-
ponents of the total and vibrational angular momentum,
respectively, and µ is the reciprocal inertia tensor. U(q)
is the potential function and UW (q) = − 1

8

∑
µαα is a

small mass-dependent contribution introduced by Wat-
son that is a purely quantum mechanical term of kinetic
origin35. In this representation the quantum nuclear mo-
tion in the twelveth-dimensional vibrational space is de-
scribed by the set of rectilinear normal coordinates q.
Computations for solving the rovibrational Schrödinger
equation using this EWH were performed with our recent
in-house code Tensor. Besides providing all necessary
transformations for a systematic symmetry-adapted de-
velopment of the complete normal-mode Hamiltonian ex-
pansion, this computational code implements variational
procedure and reduction-truncation techniques for rovi-
brational spectrum predictions.

The paper is structured as follows. We give in Sec-
tions II and III computational details about the new
ab initio PES for electronic structure calculations and
for surface fitting procedures. Sections IV, V and VI
present succinct description of procedures implemented
in the Tensor code, vibrational and rovibrational en-
ergies of 12C2H4 and isotopologues 12C2D4 and 13C2H4

up to J = 20. Comparisons with experimental data and
recent works are also reported. A brief summary and
conclusions are given in Section VII.

II. ELECTRONIC STRUCTURE COMPUTATIONS

Accurate calculations of vibrational and rotational en-
ergy levels from a PES require combining high level
ab initio methods with sufficiently large basis sets in
electronic structure calculations. For this purpose, we
used the well-known coupled cluster approach includ-
ing single and double excitations36 and the perturba-
tive treatment of triple excitations, usually denoted as
CCSD(T) method37. Calculations were carried out using
well established Dunning’s correlation consistent basis
sets cc-pVQZ38. The Molpro program package version
2009.139 was used to perform all the ab initio calculations
of electronic ground state energies. Most of the calcu-
lations were using the regional “Romeo” multiprocessor
computer (Reims), “IDRIS” computer centre of CNRS
in Orsay and “JADE” cluster at CINES computer centre
in Montpellier. As a first step for the PES construction,
a set of ground state electronic energies was calculated
with cc-pVQZ basis set on a grid of 82 542 nuclear con-
figurations described in the following Section II B. To-
gether, these calculations took about 30 000 hours (CPU
time). Density distribution of included geometrical con-
figurations is given in Figure 1 with a maximum number
of configurations near 5000-7000 cm−1 but a significant
number of points extends up to 12 000-13 000 cm−1.

A. Equilibrium structure

A full PES suitable for quantitatively accurate predic-
tion of highly excited vibration-rotation states of ethy-
lene requires accurate determination of the equilibrium
structure of the molecule, otherwise the precision of rota-
tional levels dramatically decreases with increasing J val-
ues. Due to the D2h symmetry of the ethylene molecule,
the equilibrium geometry is defined by only three param-
eters, re(C-H), re(C-C) and αe(HCC). Thereafter, these
parameters are referred to as rHe

, rCe
and αe. As the

rotational constants depend on C2H4 equilibrium struc-
ture, these three parameters are of primary importance
for accurate description of rotational spectra.

Previous works considered equilibrium geometry based
on ab initio geometry optimization at CCSD(T)/cc-
pVTZ level of the theory. Nevertheless it seems clear
that even a CCSD(T)/cc-pVQZ optimized geometry can-
not reach a sufficient precision for rotational predictions.
Some results for the equilibrium geometry optimization
obtained using different level of the theory are summa-
rized in Table I. Increasing the basis set dimension does
not lead necessarily to a smooth convergence for equilib-
rium values. However, a general trend can be observed.
Both cc-pVQZ and cc-pV5Z valence basis sets result in
somewhat larger rHe

and rCe
values and smaller αe an-

gle. On the other hand, including larger core valence
basis sets cc-pCVQZ and cc-pCV5Z gives shorter bond
lengths values and wider αe angle. Including augmented
basis with diffuse functions results in a smaller effect on
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Table I. Equilibrium geometry parameters of C2H4 optimized using CCSD(T) method with different basis sets and corresponding
ground state rotational J = 1 levels.

Basis set #a re(C-H) (Å) re(C-C) (Å) αe(HCC) (◦)
Calculatedb

EJ=1,ka=0,kc=1

Calculatedb

EJ=1,ka=1,kc=1

Calculatedb

EJ=1,ka=1,kc=0
∆c (cm−1)

cc-pVQZ 230 1.082353 1.334280 121.437799 1.82015 5.67651 5.84837 0.01453
cc-pAV5Z 574 1.082217 1.333849 121.423498 1.82135 5.67672 5.84881 0.01404
cc-pV5Z 402 1.082091 1.333714 121.426600 1.82168 5.67672 5.85044 0.01273
cc-pCV5Z 510 1.080604 1.330585 121.435877 1.82927 5.69586 5.86889 0.00271
cc-pACVQZ 402 1.081178 1.331679 121.443120 1.82643 5.69026 5.86291 0.00254
cc-pACV5Z 682 1.080729 1.330734 121.432973 1.82889 5.69426 5.86728 0.00140
cc-pCVQZ 288 1.080918 1.331200 121.447357 1.82758 5.69353 5.86631 0.00113

Our Empiricd - 1.080565 1.330898 121.401760 1.82909 5.69253 5.86561 0.00005
a Number of contracted functions.
b Calculated energy levels of C2H4 in cm−1 using atomic masses and our PES in normal coordinates with corresponding equilibrium configuration
(see Section II A).
c ∆ is a RMS(obs.-calc.) deviation for the J = 1 levels with respect to Ref. 8.
d Our optimized value obtained by empirical procedure described in section II A.

parameters values but obviously tends to slightly relax
bond lengths and αe(HCH) angle. In terms of bond
lengths and angle a certain regularity can be seen: ir-
respective of core function or augmentation, the bond
length and angle get smaller when going from QZ to 5Z.
Also adding core functions or augmentation, the results
get smaller irrespective whether we use 5Z or QZ basis.
Nevertheless, the ∆(Obs.−Calc) RMS deviation for J = 1
levels was not as accurate as in our previous study for
the methane molecule 26. In order to improve the equi-
librium geometry for the purpose of variational spectra
calculations, we applied a simple iterative algorithm for
an optimization of rHe , rCe and αe parameters using ob-
served ground state J = 1 levels of C2H4 which guided
iterative corrections to Ae, Be and Ce. This simple pro-
cedure leads to an improvement by more than one order
of magnitude for the ground state EJ=1 rotation energies
compared to purely ab initio optimized geometries. The
main idea behind this optimization procedure is based
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Figure 1. Density distribution of calculated ab initio points
(red cross on the right-hand scale) and errors of the PES fit
to ab initio electronic energies (blue dots on the left-hand
side scale). (For interpretation of the references to color in
this figure, the reader is referred to the web version of this
article.)

on the assumption that PESs computed with basis sets
listed in Table I have very similar shapes at least near the
bottom of the potential and that the major contribution
to rotational levels comes from relatively small changes
in the equilibrium geometry parameters. As our best
ab initio equilibrium was very close to the final empiri-
cally corrected value (variation of ' 0.0004 Å for bonds
and 0.04 Degrees for the angle, Table I) only “fine tun-
ing” was necessary: Ae, Be and Ce were adjusted with-
out changing the PES expansion terms. We have checked
that in our case these tiny changes in equilibrium correc-
tions result in quite small changes ' 0.01 − 0.1 cm−1

in fundamental vibration energies that is less than the
accuracy of the ab initio PES. Extrapolations to higher
rotational levels discussed in Section VI confirm that this
empirically optimized equilibrium geometry is appropri-
ate for rotational calculations using atomic masses and
the PES shape determined at CCSD(T)/cc-pVQZ level
of the ab initio theory. Our procedure is quite similar
in spirit to the method for an empirical optimization
for equilibrium geometries of Pawlowski et al.40. The
main difference is that Pawlowski et al.40 used second or-
der perturbation theory for the vibration-rotation terms
limited by including quadratic and cubic force constants
only, whereas our approach is fully variational account-
ing for higher order terms of the PES expansion. It is
instructive to compare our empirically optimized equilib-
rium configuration with Pawlowski et al. results who re-
ported the following values: rHe

= 1.08068 (±0.0006) Å ,
rCe

= 1.33074 (±0.0008) Å, αe = 121.4 (±0.24) Degrees
[Tables XIII, XIV of Ref. 40]. The differences with our
optimized values are 0.0001 Å, 0.0002 Å and 0.0018 De-
grees, respectively, which are below the uncertainties of
Pawlowski et al. determinations.

B. Sampling of ab initio points in the nuclear
configuration space

Twelve internal symmetry-adapted coordinates are
necessary to describe the PES and the vibrational mo-
tion of the C2H4 molecule. To parametrize all possible
nuclear geometries of the system, it is convenient to use
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polar curvilinear valence coordinates because they are in-
ternally built in ab initio programs like Molpro. The
internal polar coordinates are defined in a standard way
via four vectors {~ri} (i = 1, 2, 3, 4) linking the four H
atoms to the closest C atom and ~r5 linking the two C
atoms together. The following coordinates were chosen as
independent ones: four CH bond lengths {r1, r2, r3, r4},
one CC bond length {r5} and four CCH bond angles
{q1, q2, q3, q4}. In addition three independent torsion an-
gles need to be defined. Though it is more convenient
to deal with four torsion coordinates corresponding to
the two trans- {t1564, t2563} and two cis- {t1563, t2564} H-
C-C-H torsion angles (with respect to atom numbering
in Figure 2), and referred as {t1, t2, t3, t4}, respectively,
only three combinations of {ti} are independent.

We follow the technique described in Refs. 18 and 26
to derive a symmetry-adapted grid of points in the coor-
dinate space suitable for a reliable determination of PES
parameters. This approach allows a determination of an
optimal set of geometric nuclear configurations sufficient
for a construction of the force field up to a certain order of
expansion. The twelve-dimensional PES was constructed
in a five step process:

(i) One dimensional curves corresponding to each of
twelve symmetrized coordinates were constructed
first. These one-dimensional curves were interpo-
lated using the sixth order power series expansions.
Then the values of the symmetrized coordinates
where the PES should take values 0, 1000, 2500,
4000, 7000, 12000, 18000, 25000 cm−1 were found.

(ii) A full set of 17000 symmetry-adapted terms for the
D2h group up to the 8th order expansion was con-
structed. Every term was represented as the sum
of products of symmetry-adapted coordinates Si,
defined by Eqs 2-3 of the next Section III.

Table II. Harmonic frequencies of 12C2H4.

This work Emp.a

ω1 Ag S. CH stretch 3156.84 3156.2
ω2 Ag CC stretch 1672.57 1656.4
ω3 Ag S. HCH bend 1369.38 1372.3
ω4 Au H2C-CH2 twist 1050.81 1044.6
ω5 B2g trans CH stretch 3222.89 3206.9
ω6 B2g A. HCH wag 1246.76 1248.5
ω7 B2u S. out of plane 966.39 968.3
ω8 B3g A. out of plane 950.19 960.3
ω9 B3u cis CH stretch 3248.71 3239.1
ω10 B3u S. HCH wag 824.97 844.1
ω11 B1u A. CH stretch 3140.91 3147.041

ω12 B1u A. HCH bend 1478.48 1471.8

All values in cm−1. S. and A. stand for “Symmetric”
and “Antisymmetric”.
a Estimations from empirical model of Ref. 42 if no
other reference is given.

(iii) A part of terms corresponding to powers > 6 of
the radial CH coordinates were suppressed from
the further calculations in order to keep reasonable
number of points. This is because preliminary esti-
mations showed that more angular points were re-
quired for converging nuclear motion calculations.

(iv) All points for the grid in the {Si} nuclear configu-
ration space necessary for finite difference method
determination of all above mentioned contributions
were found. We followed the method previously ap-
plied for the methane molecule26.

(v) Coincident configurations {Si} after permutations
of identical atoms were deleted from the final list
of grid points {Si}.

III. FITTING OF PES EXPANSION PARAMETERS TO
AB INITIO ELECTRONIC ENERGIES

The total number of 82 542 points for the optimal grid
in the nuclear configuration space was built as described
in Section II B. In order to build the PES expansion
we define then suitable elementary analytical functions
of the stretching (r) and angular (q and t) coordinates.
The following elementary functions are used:

φ(ri) = 1− exp[−a(ri − re)]
φ(qi) = qi − qe (2)

φ(ti) = ti − te

where a = 1.9. This value of the a parameter ensures that
the second order term of the potential expansion provides
a reliable representation for the one dimensional stretch-
ing cut. Terms of higher orders result in relatively small
corrections. Initially the set of equilibrium nuclear con-
figuration parameters {re, qe, te} was taken at the same
level of ab initio calculations as the PES calculations,
ie at the CCSD(T)/cc-pVQZ level. This was necessary
to minimize the deviation beetween ab initio points and
the analytical representation during the fitting proce-
dure. Thereafter, for the Hamiltonian development, the
PES was expanded around the equilibrium that ensures
the best representation of rotational levels (see empirical
equilibrium described in Section II A). This approxima-
tion implies that rotational levels are mainly determined
by rotational constants (and therefore by the equilibrium
geometry), and vibrational levels by the force field shape.
With this technique we keep the force field and translate
it to a better equilibrium representation for rotational
levels. Such an assumption is only valid if the deviation
of empirically optimized equilibrium configuration from
the ab initio one is very small. A comparison given in
Table I certifies that this is indeed the case.

For the fitting procedure, one has to choose prop-
erly the molecular axis frame. Actually, there are two
commonly used conventions, namely the IUPAC and
Herzberg axes conventions (see Fig. 2), but a third one,
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Figure 2. Molecular axis frame conventions for X2Y4 systems.

the Ir representation is generally used for the calculation
of rotational levels8. In this work we have adopted the
molecular fixed Eckart axis embedding with the Ir repre-
sentation for the rovibrational calculations. The above-
defined elementary functions of Eq. 2 were used to build

twelve symmetrized S
(Γ)
i coordinates which are nonlinear

with respect to the stretching displacements,

S
(Ag)
1 = (φ(r1) + φ(r2) + φ(r3) + φ(r4))/2

S
(Ag)
2 = φ(r5)

S
(Ag)
3 = (φ(q1) + φ(q2) + φ(q3) + φ(q4))/2

S
(Au)
4 = (φ(t3) + φ(t4)))/

√
2

S
(B2g)
5 = (−φ(r1) + φ(r2) + φ(r3)− φ(r4))/2

S
(B2g)
6 = (−φ(q1) + φ(q2) + φ(q3)− φ(q4))/2

S
(B2u)
7 = (φ(t2)− φ(t1)))/

√
2 (3)

S
(B3g)
8 = (φ(t3)− φ(t4)))/

√
2

S
(B3u)
9 = (φ(r1)− φ(r2) + φ(r3)− φ(r4))/2

S
(B3u)
10 = (φ(q1)− φ(q2) + φ(q3)− φ(q4))/2

S
(B1u)
11 = (−φ(r1)− φ(r2) + φ(r3) + φ(r4))/2

S
(B1u)
12 = (−φ(q1)− φ(q2) + φ(q3) + φ(q4))/2.

The upper case indices correspond to the irreducible
representations (irreps) of the D2h point group. In order
to determine the 12D potential expansion terms (each
of the Ag total symmetric type), formed from the sym-
metrised coordinates Si, we applied a two-step procedure.
The first step corresponds to the construction of the sym-
metrised powers of Si and the second step to the coupling

Table III. Statistics for the PES fit to ab initio electronic
energies.

Emax
a number of points rmsb

5000 14 625 0.242
10000 80 383 0.939
15000 82 542 1.369
aThreshold for electronic energies above equilibrium,
in cm−1.
brms deviation between ab initio points and analyt-
ical PES representation, in cm−1.

of the symmetrised powers of different symmetrised co-
ordinates in irreducible balanced trees according to the
algorithm of Ref. 43. The same technique has been al-
ready used for the construction of the methane PES26. A
set of all possible trees of the totally symmetric Ag rep-
resentation gives a final set of the 12D expansion terms.
The potential function was finally developed in power se-
ries of symmetry-adapted coordinates defined in Eq. (3)

V (ri, qj , tl) =
∑
n

KnR
p
n(ri, qj , tl) (4)

where i, j, l ∈ {1, 2, 3, 4} and

Rpn(ri, qj , tl) = (Sp11Ag
Sp22Ag

Sp33Ag
Sp44Au

Sp55B2g
Sp66B2g

Sp77B2u

× Sp88B3g
Sp99B3u

Sp1010B3u
Sp1111B1u

Sp1212B1u
)Ag (5)

and p =
∑12
m=1 pm. Here n is the string of indices defined

by Eq. (5). The maximum power pmax in the truncated
expansion (4) is referred to as the order of the PES. We
fitted our ab initio potential energies using the analyti-
cal symmetry-adapted representation (2)-(4). A similar
weight function (depending on energy E in cm−1)

w(E) =
tanh(−0.0005(E − 9000) + 1.002002002)

2.002002002
(6)

to that employed by Schwenke and Partridge in Ref. 44
was used in the weighted fit of PES parameters to ab ini-
tio electronic energies. This form of weighting function
minimizes the relative error, by de-emphasizing energies
above Vtop = 9000 cm−1 and keeping a maximum weight
for the lowest energy points. More details can be found
in Ref. 44. Among the 2654 parameters initially included
in the surface fit at order pmax = 6, three linear param-
eters were suppressed to avoid a shift in the equilibrium
configuration of the analytical PES representation. We
found that 2236 parameters (of 2651 included) were sta-
tistically well determined in this fit on the entire grid
of all 82 542 ab initio points with deviations presented
in Table III. We also give in Table II a comparison be-
tween our harmonic frequencies and those determined via
an empirical data fitting model42. At the second step all
poorly defined parameters were excluded. Figure 1 shows
the distribution of the final fit of the ab initio electronic
energies using our analytical PES representation. The er-
rors are quite small up to ∼ 10 000 cm−1. A larger scatter
of points above this range occurs because the weighting
function (6) quickly de-emphasizes energies above this
threshold44. In order to further improve the fit, it would
be necessary to include some higher order terms in the
PES expansion (4). We plan to do this in a future work.
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IV. VARIATIONAL CALCULATION OF VIBRATION
LEVELS OF 12C2H4

A. Theoretical background

For vibrational calculations, we use the EWH (1) and
the variational approach implemented in our codes. It
is well-known that exploiting molecular symmetry al-
lows reducing the computational cost for solving the
Schrödinger equation. One of the key features of our
codes is a full use of symmetry properties throughout
the calculation. Consequently, the Hamiltonian matrix
is divided into eight blocks corresponding to the irreps of
the symmetry point group D2h of C2H4.

Tensor program suite contains a set of procedures
designed to reduce the dimension of matrices and to
minimize the cost of the variational computation us-
ing a truncation-reduction techniques for the normal
mode EWH symmetry-adapted expansion as described in
Refs. 28 and 45. An advantage of this approach is to re-
duce the impacts of drawbacks of high-order Taylor series
PES expansion at large distance (although high-order ex-
pansion is necessary for a good description of the shape
of the potential) as recently proved to be efficient for
the methane molecule45. A vibrational sub-space (VSS)
procedure was also implemented in order to improve the
convergence of high-J rovibrational states45. This ap-
proach can be regarded as a kind of basis set compres-
sion technique for which somewhat other methods have
been previously employed for molecules with fewer num-
ber of atoms13,16,46,47. Some related aspects have also
been discussed in Refs. 48 and 49. In our case we use ac-
curate vibrational eigenfunctions with an appropriate en-
ergy cut-off as a truncated basis set for vibration-rotation
calculations. To summarize, the nuclear motion problem
of C2H4 is solved in a four-step procedure:

(i) Reduction technique is applied to the vibrational
part of the hamiltonian H : we transform a nth or-
der Taylor EWH H(n)(p,q,J ) to a mth order (m <

n) reduced Hamiltonian H
(n→m)
red (p,q,J ) according

to the method discussed in Refs. 28 and 45. Besides
reducing the number of terms in the rovibrational
expansion, making calculation of matrix elements
much faster, this procedure has a fundamental im-
pact on potential part by minimizing some impacts
of Taylor artifacts, as discussed in the following Sec-
tion IV B.

(ii) The vibrational primitive basis set {Ψ(Cv)
v } is built

as a direct product of twelve harmonic oscillator
(HO) normal mode functions,∣∣∣Ψ(Cv)
v

〉
=
∣∣∣(Ψ(Ag)

v1 ×Ψ(Ag)
v2 × ...×Ψ(B1u)

v12 )(Cv)
〉
, (7)

where v1, v2, ..., v12 are the HO quantum numbers
and Cv is the vibrational symmetry type in the D2h

group, given by the multiplication rule :

Cv = B2g
v5+v6 ×B3g

v8 ×Auv4

×B1u
v11+v12 ×B2u

v7 ×B3u
v9+v10 . (8)

A cut-off criterion is imposed to select a limited set
of primitive basis functions

Fκ(vmax) =
∑
i

κivi ≤ vmax (9)

with vi = 0, .., vmax. A default option is a homo-
geneous cut-off with all κi = 1. In the latter case
we shall consider a concise notation Fκ=1(vmax) ≡
F (vmax). For C2H4, due to the large range covered
by vibrational fundamentals (between 825 and 3100
cm−1), it is important to properly select a “prun-
ing” scheme by defining appropriate κi weight co-
efficients, and thus include a different number of
stretching, bending and torsion basis functions.

(iii) The vibrational equation HvΨv = EvΨv is varia-
tionally solved for a given basis set with the Hamil-
tonian model as described in Ref. 28. The cor-
responding eigensolutions {Ev,Ψv} are stored in
memory.

(iv) As the last step, the Hamiltonian is partitioned
as H = Hv + Hrv and the variational method is
applied using anharmonic basis set {Ψv} obtained
at the previous step (iii) that permits improving
the convergence of vibration-rotation calculations.
By defining the cut-off for full vibrational energy
Emax, we make a basis set compression equiva-
lent to a selection of an appropriate VSS spanned
by variational eigensolutions of the step (iii) such
that Ev < Emax. This compact set of vibrational
eigenfunctions is used to solve the full rovibrational
eigen-problem for each (J,C) block, where J and
symmetry labels C = Cv × Cr are used to assign
levels. The VSS depends of course of the truncation
(vmax) for the primitive HO normal mode basis set
at the step (ii). At the step (iv) a use of the max-
imum primitive basis cut-off (vmax) for big rota-
tional quantum numbers J could be too demanding.
In this case we applied a further basis reduction:
variational coefficients of wave function expansions
were first optimized with the (vmax) cut-off and
then transferred to the corresponding terms of a
smaller basis set with r < vmax. This truncation-
compression scheme which has been discussed in
detail in Ref. 28 proved to be efficient for calcula-
tions of methane spectra. The rovibrational energy
levels are obtained by diagonalizing the resulting
hamiltonian matrix expressed in the reduced vi-
brational eigenbasis. This permits handling much
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smaller matrices for the vibration-rotation eigenso-
lutions and thus better converging variational spec-
tra calculations.

In addition to drastically compressing the basis set
size, the VSS procedure allows one to smoothly introduce
empirical corrections for the band centers in rovibrational
calculations. If we just replace Ev by the observed values,
all vibrational wavefunctions and all coupling matrix el-
ements of Hrv will not be affected by this change. They
remain ab initio in origin, but vibration-rotation reso-
nances are then better described at the step (iv). This
model could provide a more realistic description of rovi-
brational perturbations in the spectra.

B. Convergence properties and computational details

Table IV summarizes the convergence tests involving
the effect of the Hamiltonian expansions and reductions
on vibrational levels. This includes the comparison of
H10 vibrational calculations withH8, H6, H10→8, H10→6,
H8→6 and with the combined scheme Ha16→8

10→6 . The lat-

ter model was built from the reduced potential V
(16→8)
red =

V
(10→6)
red + V

a(16→8)
red where the augmented angular contri-

bution V
a(16→8)
red is obtained as follows: first the PES was

expanded in bending and torsion coordinates by fixing
the stretching at the reference geometry, then the cou-
pled angular terms from 11th to 16th orders were added
and finally these supplementary terms were reduced to
the 8th order using (a+, a) representation.

One of major problem in the variational calculation
of the rovibrational level is a possible presence of non-
physical PES features (spurious minima) in the range
spanned by the wavefunctions of the considered states.
In this study we did not experience server problems for
the stretching degrees of freedom, but it was a challeng-
ing issue to describe correctly the angular behavior of the
PES. Figure 3 shows bending and torsion PES cuts to il-
lustrate an improvement of truncated Taylor expansion
using the reduction schemes. This example shows that
by choosing an appropriate reduction scheme one can

avoid holes (V
(16→8)
red , red dashed-dot curve) or push away

nonphysical features due to the PES expansion (V
(10→6)
red ,

blue dashed-dot curve). Results given in Table IV indi-
cate that deviation between vibrational levels for these
two latter versions is marginal in the considered energy
range. This table clearly shows that the accuracy in-
creases with orders and that the reduction scheme dras-
tically improves the accuracy/cost ratio confirming the
results previously obtained for methane28,45.

After having tested Hamiltonian reductions using quite
moderate vibration basis set F(9) in Table IV, we ex-
tended our final calculations to larger basis sets Fκ1(13)
and Fκ2(13). We optimized the size of these basis sets by
applying supplementary constraints vi ≤ vimax

on max-
imum quantum numbers for individual normal modes.

These limitations as well as κi weight coefficients are
summarized in Table V. Convergence tests for basis sets
are given in Figure 4 and Table VI that show rms and
maximum deviations for vibration levels with respect to
the largest one Fκ2(13). In this Table we also quote the
dimensions of the symmetry blocks before and after the
basis set compression. To compute vibrational levels with
the largest feasible basis we choose the H10→6 Hamil-
tonian model which presents an optimal accuracy/cost
ratio. With this reduction scheme all the matrix ele-
ments with

∑
∆vi > 6 have zero values. In case of the

F(9) basis only 9% of H10→6 Hamiltonian matrix ele-
ments are non-zero. In frame of our approach the ad-
vantage of the primitive harmonic basis set is that the
matrices of vibrational Hamiltonian are sparse and the
selection rules for both Hamiltonian and dipole moment
terms are very simple. But as explain above, for the final
vibration-rotation calculation our basis sets are anhar-
monic ones including inter-mode coupling and resonance
mixing. The Fκ(N) pruning scheme allows quite flex-
ible convergence/cost optimization accounting for each
vibrational mode individually. It has been shown previ-
ously50 that this scheme could provide better accuracy
for low vibrations than the “polyad scheme” with the
same number of basis functions. In a sense the Fκ(N)
scheme has some similar features to the Multimode one
though in Ref. 34 this applies to VSCF basis functions.

CPU time for the complete calculation of rovibrational
spectrum depends of course on the basis set size and on
the maximum quantum number J . For the Fκ2(13) ba-
sis, J = 0 calculation takes about 50 hours per block
(8 blocks), including the construction of the reduced
Fκ2(13 → r) basis, on an entire node of “ADA” IBM
cluster on IDRIS computer center (32 Intel Sandy Bridge
processors and 100 gB of memory). This rather large
calculation was necessary to achieve a good convergence
for vibrational levels. The Fκ2(13 → r) basis sets were
then used for J > 0 rovibrational calculation. For the
Fκ2(13 → 5) basis with the maximum J = 25 quan-
tum number this takes about 65 hours (maximum Ag
block size of 40 000) whereas it takes almost 60 hours
to compute levels up to J = 10 with Fκ2(13 → 6) ba-
sis (maximum Ag block size of 50 000). Eigenvectors
and eigenvalues are calculated with standard routines
BLAS/LAPACK for matrix algebra.

C. Results

Results for variational calculations of the vibrational
levels are presented in Table VII and compared to pre-
vious works of Avila and Carrington and Carter et al.34

who used a CCSD(T)/cc-pVTZ PES, and to available
experimental data from Ref. 51. As shown in Table
VI, the reduction of Fκ2(13) basis to Fκ2(13 → 6) and
Fκ2(13 → 5) permits to reduce the size of hamiltonian
matrix blocks by a factor of 40 and 115 respectively. For
these bases, a good convergence is achieved for funda-
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Figure 3. One dimensional cut of the potential expansions V
(16→8)
red (q), V

(10→6)
red (q), V(10)(q), V(6)(q) and Vab initio(q) as a

function of bending q10 (left figure) and torsion coordinates q8 (right figure). Vab initio(q) is obtained without Taylor expansion.

V
(16→8)
red (q) corresponds to Ha 16→8

10→6 of Table IV. It is seen that an optimal choice of the reduction procedure improves the
truncated Taylor expansion pushing away non-physical PES features (see text).

Table IV. Dimensions and convergence properties of the Hamiltonian model with respect to H10 for 12C2H4.

H6 H8→6 H8 H10→6 Ha16→8
10→6 H10→8 H10

dima 9537 10865 48556 10877 11300 65646 184246
time factorb 1 1.1 5 1.1 1.3 7 19
rmsc 2.21 0.48 0.41 0.29 0.28 0.025 -
rmsd 2.62 0.98 0.85 0.82 0.66 0.065 -
See Section IV A for the description of Hamiltonian reduction.
a

Dimension of the Hamiltonian model (number of terms in {q, p, J} representation).
b

CPU time factor with respect to computation with H6 Hamiltonian model and F(9) basis set.
c,d

rms deviation (in cm−1) up to 3200 cm−1(c) and 6400 cm−1(d) with respect to variational calculations using

H10 Hamiltonian and F(9) basis set.

Table V. Maximum vibrational quantum numbers and weight coefficients for Fκ1(13) and Fκ2(13) basis sets.

Basis Mode i 1 2 3 4 5 6 7 8 9 10 11 12
Fκ1(13) (vi)max 9 10 10 13 9 10 11 11 9 11 9 10

κi 1.45 1.30 1.30 1.00 1.45 1.30 1.19 1.19 1.45 1.19 1.45 1.30
Fκ2(13) (vi)max 9 10 11 13 9 11 13 13 9 13 9 10

κi 1.45 1.30 1.19 1.00 1.45 1.19 1.00 1.00 1.45 1.00 1.45 1.30

mentals and first overtones. The two basis sets Fκ1(13)
and Fκ2(13) specified in Table V differ by the maximum
vibrational quantum number for the two lowest bend-
ing ν3 and ν6 modes, augmented to vmax = 11, and all
torsion modes adjusted to vmax = 13. As the sizes of ma-
trices become larger as J increases, we have adopted a
strategy which consists in partitioning the rovibrational
problem as follows: for J = 0 calculations were per-
formed with Fκ2(13), for 1 ≤ J ≤ 10 with Fκ2(13 → 6)
and for 11 ≤ J ≤ 20 with Fκ2(13→ 5). For the two latter
basis sets, a vibrational VSS cut-off Emax has been fixed
to 16000 cm−1 with respect to zero-point vibrational en-
ergy. Obviously with such a cut-off we consider almost

all vibrational wavefunctions of Fκ1(13) and Fκ2(13), i.e.
there is no compression of the basis with respect to this
cut-off.

A comparison of vibrational band centers with those
predicted from the previous potential energy surface of
Martin et al.33, obtained at the CCSD(T)/cc-pVTZ PES
level of ab initio calculations, shows a significant im-
provement for both fundamentals and overtones, and
generally of all bands in the considered region. This
could be possibly explained by increasing cardinal num-
ber of the electronic basis set but also by the larger grid
of nuclear configurations included in our study. This per-
mits accounting for higher-order terms in the analytical
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Table VI. Dimensions and convergence properties of the F (vmax) basis with respect to the largest Fκ2(13) set using the H10→6

Hamiltonian modela for 12C2H4.

Basis F(8) F(9) Fκ1(13→ 5) Fκ2(13→ 5) Fκ1(13→ 6) Fκ2(13→ 6) Fκ1(13) Fκ2(13)
NAg 17000 38970 922 922 2654 2654 66039 106889
NAu 14890 35120 690 690 2122 2122 61814 101265
NB1g 14650 34670 646 646 2050 2050 61087 100366
NB1u

16550 38310 850 850 2498 2498 65008 105518
NB2g 16550 38310 850 850 2498 2498 65084 105643
NB2u

14890 35120 690 690 2122 2122 61697 101145
NB3g 14890 35120 690 690 2122 2122 61729 101255
NB3u 16550 38310 850 850 2498 2498 65121 105697
rmsb 1.51 0.54 0.20 - 0.20 - 0.20 -
rmsc 6.66 1.96 0.71 - 0.71 - 0.71 -
maxd 19.07 6.83 1.52 - 1.52 - 1.52 -
a Notation 10 → 6 means that the Hamiltonian is expanded up to 10th power in q and converted
to 6th power as described in Section IV A; NΓ denote dimensions of symmetry blocks for NΓ =
Ag, Au, B1g, B1u, B2g, B2u, B3g and B3u.
b,c,d maximum (d) and rms deviation (in cm−1) up to 3200 cm−1(b) and 6400 cm−1(c) with respect to
variational calculations with Fκ2(13) basis.
By construction, in the VSS procedure the vibrational eigenvalues associated to Fκ(N → r) and Fκ(N) basis
sets are taken equal. Consequently for J = 0 the rms deviation between the corresponding eigenvalues sets
is zero.

PES representation. Comparing now the results obtained
with our new PES and experimental data, we can see
that these purely ab initio results are in a quite good
agreement with observed bands, with the rms deviation

of less than 2.7 cm−1 for fundamentals and 4 cm−1 for
first overtones.

Table VII: Comparison of ab initio calculations of 12C2H4 vibrational energy levels (this work = TW) using Fκ2(13) basis with
Avila and Carrington32, Carter et al.34, and available experimental values51 up to 7800 cm−1.

Band Ref. 32 Ref. 34 TWa Exp.b Band Ref. 32 Ref. 34 TWa Exp.b

zpe 11004.79 11003.98 11014.91
ν10 821.74 821.15 822.42 825.92 ν8 926.81 926.13 934.29 939.86
ν7 947.22 946.49 949.51 948.77 ν4 1025.93 1025.28 1024.94 1025.58
ν6 1223.76 1223.46 1224.26 1225.41 ν3 1341.37 1341.42 1342.46 1343.31
ν12 1440.20 1439.67 1441.11 1442.44 ν2 1623.53 1623.17 1624.43 1626.17
2ν10 1655.51 1654.22 1658.39 1664.16 ν8 + ν10 1751.09 1750.05 1757.70 1765.78
ν7 + ν10 1775.36 1774.18 1778.34 1781.01 ν4 + ν10 1849.44 1848.32 1848.61 1851.51
2ν8 1855.72 1854.04 1873.73 1879.72 ν7 + ν8 1869.38 1866.06 1885.12 1888.63
2ν7 1895.21 1893.58 1901.61 1899.74 ν4 + ν8 1949.81 1946.54 1953.27 1958.27
ν4 + ν7 1964.46 1961.19 1966.50 1965.44 ν6 + ν10 2040.33 2038.34 2041.34 2047.76
2ν4 2049.11 2047.54 2046.44 2046.40 ν6 + ν8 2158.35 2157.66 2163.12
ν3 + ν10 2165.84 2164.88 2167.19 2172.50 ν6 + ν7 2173.18 2172.44 2175.40
ν4 + ν6 2250.59 2249.87 2249.08 2251.50 ν10 + ν12 2259.26 2256.73 2260.75
ν3 + ν8 2264.23 2263.77 2273.84 ν3 + ν7 2285.87 2285.37 2289.89 2291.50
ν8 + ν12 2362.40 2361.04 2363.49 ν3 + ν4 2363.47 2363.20 2372.52
ν7 + ν12 2381.19 2379.82 2387.10 ν2 + ν10 2435.60 2434.08 2436.64 2439.00
2ν6 2447.67 2446.56 2447.25 ν4 + ν12 2468.14 2467.01 2467.42
3ν10 2494.40 2492.97 2500.38 2504.00 ν2 + ν8 2542.41 2542.01 2553.41
ν3 + ν6 2562.94 2562.51 2564.39 ν2 + ν7 2564.38 2564.04 2569.48 2571.00
ν8 + 2ν10 2585.30 2583.95 2593.75 ν7 + 2ν10 2612.42 2610.83 2618.33
ν2 + ν4 2646.03 2645.42 2646.09 ν6 + ν12 2659.38 2658.13 2659.40
2ν3 2680.89 2680.54 2683.05 2685.30 ν4 + 2ν10 2683.77 2682.43 2685.01
2ν8 + ν10 2683.88 2682.68 2698.44 ν7 + ν8 + ν10 2699.66 2699.05 2714.55
2ν7 + ν10 2729.95 2728.67 2737.25 ν3 + ν12 2774.95 2774.10 2778.00
ν4 + ν8 + ν10 2776.23 2775.76 2778.04 3ν8 2784.91 2782.78 2796.68
ν7 + 2ν8 2791.98 2786.59 2818.31 2829.80 ν4 + ν7 + ν10 2794.08 2793.63 2826.52
2ν7 + ν8 2812.72 2808.06 2833.87 ν2 + ν6 2832.77 2831.56 2840.09
3ν7 2843.78 2842.37 2856.80 2854.00 ν6 + 2ν10 2867.62 2864.92 2871.07
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Table VII: (Continued)

Band Ref. 32 Ref. 34 TWa Exp.b Band Ref. 32 Ref. 34 TWa Exp.b

2ν12 2872.07 2870.54 2871.68 2877.30 2ν4 + ν10 2874.62 2873.11 2874.66
ν4 + 2ν8 2875.25 2868.85 2887.43 ν4 + ν7 + ν8 2883.78 2874.24 2898.17
ν4 + 2ν7 2903.83 2899.08 2911.66 ν2 + ν3 2957.97 2957.84 2959.07 2961.60
2ν4 + ν8 2970.01 2964.47 2969.57 ν6 + ν8 + ν10 2977.94 2979.52 2980.94
2ν4 + ν7 2979.46 2973.80 2982.16 ν11 2983.94 2985.64 2985.38 2988.63
ν6 + ν7 + ν10 2996.74 2997.95 2999.83 ν3 + 2ν10 3000.26 2998.82 3002.86
ν1 3019.66 3020.15 3018.99 3021.85 ν4 + ν6 + ν10 3068.90 3069.92 3064.61
3ν4 3069.56 3067.66 3067.58 ν2 + ν12 3072.84 3070.71 3074.92 3078.46
ν5 3076.72 3079.79 3079.86 3082.36 ν3 + ν8 + ν10 3091.06 3093.47 3099.87
2ν10 + ν12 3094.98 3092.90 3100.04 3104.33 ν6 + 2ν8 3095.86 3095.34 3101.69
ν9 3098.04 3098.70 3101.69 3104.87 ν6 + ν7 + ν8 3105.14 3107.71 3115.43
ν3 + ν7 + ν10 3117.04 3119.23 3121.54 ν6 + 2ν7 3123.62 3122.88 3129.32
ν4 + ν6 + ν8 3182.06 3181.95 3181.95 ν8 + ν10 + ν12 3184.69 3185.11 3189.86
ν3 + 2ν8 3189.21 3188.39 3192.49 ν3 + ν4 + ν10 3189.56 3192.03 3193.74
ν4 + ν6 + ν7 3191.15 3191.34 3210.44 ν3 + ν7 + ν8 3203.64 3204.24 3214.14
ν7 + ν10 + ν12 3207.28 3207.48 3222.96 ν3 + 2ν7 3230.99 3230.61 3238.79
2ν2 3238.35 3236.77 3240.19 3239.00 2ν6 + ν10 3259.31 3255.55 3259.58
ν2 + 2ν10 3267.96 3266.22 3270.53 3276.20 2ν4 + ν6 3274.61 3273.40 3272.06
ν3 + ν4 + ν8 3283.44 3284.04 3288.87 2ν8 + ν12 3285.89 3284.30 3289.05
ν4 + ν10 + ν12 3289.40 3289.81 3303.16 ν7 + ν8 + ν12 3297.05 3296.89 3309.51 3327.30
ν3 + ν4 + ν7 3299.32 3300.35 3320.87 2ν7 + ν12 3322.38 3320.95 3336.46
4ν10 3340.58 3341.94 3351.50 ν2 + ν8 + ν10 3357.40 3359.81 3367.05
ν3 + ν6 + ν10 3382.29 3381.94 3381.07 ν3 + 2ν4 3382.80 3382.51 3384.25
ν2 + ν7 + ν10 3383.76 3386.10 3388.90 ν4 + ν8 + ν12 3387.16 3385.90 3390.74
2ν6 + ν8 3390.24 3389.20 3393.14 2ν6 + ν7 3399.30 3398.20 3400.15
ν4 + ν7 + ν12 3399.91 3398.95 3405.46 ν8 + 3ν10 3426.08 3426.54 3437.52
ν7 + 3ν10 3456.40 3456.41 3459.91 ν2 + ν4 + ν10 3459.82 3461.79 3466.76
ν2 + 2ν8 3462.02 3462.25 3472.04 3496.90 ν6 + ν10 + ν12 3473.49 3470.48 3474.54 3480.10
ν4 + 2ν6 3475.38 3474.25 3488.05 ν2 + ν7 + ν8 3476.20 3478.08 3490.41 3504.59
2ν4 + ν12 3493.21 3491.55 3500.06 ν3 + ν6 + ν8 3493.69 3496.31 3500.53
ν2 + 2ν7 3504.29 3504.74 3516.66 3514.40 ν2 + 2ν4 3665.61 3664.92 3664.37 3658.70
ν8 + 2ν12 3790.03 3788.11 3801.87 3810.97 ν10 + ν11 3800.77 3801.88 3803.51 3808.97
ν6 + ν8 + 2ν10 3806.95 3808.66 3816.58 3825.05 ν1 + ν10 3833.64 3833.74 3833.27 3842.00
ν2 + ν10 + ν12 3885.22 3885.02 3888.34 3892.46 ν8 + ν11 3903.97 3907.97 3912.73 3920.50
ν9 + ν10 3918.63 3923.58 3921.08 3928.00 ν7 + ν11 3924.07 3925.56 3927.84 3931.22
ν3 + ν8 + 2ν10 3926.66 3931.07 3936.52 3946.82 ν6 + ν7 + ν8 + ν10 3929.21 3954.66 3938.84 3948.58
3ν10 + ν12 3929.63 3926.65 3941.16 3944.31 ν1 + ν8 3939.54 3941.01 3946.68 3953.81
ν7 + ν9 4039.00 4043.92 4042.51 4046.94 ν2 + 2ν6 4042.32 4040.76 4043.91 4049.49
ν7 + 2ν10 + ν12 4043.17 4043.91 4054.67 4057.72 4ν4 4087.53 4086.85 4079.89 4076.00
ν4 + ν9 - - 4119.87 4129.40 ν6 + ν11 - - 4199.86 4206.59
ν2 + ν6 + ν12 - - 4284.02 4288.41 ν2 + 2ν8 + ν10 - - 4303.53 4297.50
ν5 + ν6 - - 4302.81 4310.10 ν3 + 2ν4 + ν7 - - 4314.32 4311.40
ν6 + 2ν10 + ν12 - - 4308.11 4312.67 ν6 + ν9 - - 4316.23 4321.77
ν3 + ν11 - - 4323.42 4328.65 ν3 + ν6 + ν8 + ν10 - - 4322.80 4332.40
ν11 + ν12 - - 4401.84 4407.70 ν2 + ν3 + ν12 - - 4409.99 4411.00
ν3 + ν9 - - 4435.67 4439.79 ν1 + ν12 - - 4455.94 4460.03
ν4 +ν6 +ν10 +ν12 - - 4503.39 4508.90 ν5 + ν12 - - 4509.94 4514.65
2ν3 + ν7 + ν8 - - 4559.26 4567.60 ν2 + ν11 - - 4592.11 4596.89
ν1 + ν2 - - 4628.01 4631.80 ν2 + 2ν10 + ν12 - - 4698.07 4700.00
ν2 + ν9 - - 4724.45 4729.75 ν7 + ν10 + ν11 - - 4751.01 4748.70
ν9 + 2ν10 - - 4754.97 4764.24 ν1 + 2ν8 - - 4874.67 4887.10
2ν4 + ν11 - - 5022.36 5025.00 ν1 + ν6 + ν10 - - 5044.42 5058.50
ν5 + ν6 + ν10 - - 5115.20 5124.00 ν5 + ν6 + ν7 - - 5236.39 5245.00
2ν6 + ν11 - - 5411.16 5425.00 ν4 + ν9 + ν12 - - 5554.21 5556.00
ν1 + ν6 + ν12 - - 5667.51 5672.00 ν5 + ν6 + ν12 - - 5727.70 5735.00
ν1 + ν3 + ν12 - - 5782.24 5788.00 3ν8 + ν11 - - 5789.08 5792.00
ν2 + ν6 + ν11 - - 5791.86 5800.00 ν2 + ν6 + ν9 - - 5923.64 5918.77
ν2 + ν3 + ν11 - - 5914.00 5927.57 2ν11 - - 5934.83 5939.40
ν5 + ν6 + 2ν10 - - 5947.13 5953.70 ν1 + ν2 + ν3 - - 5952.03 5960.30
ν5 + ν11 - - 5989.60 5994.79 ν1 + ν2 + ν12 - - 6065.39 6071.58
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Table VII: (Continued)

Band Ref. 32 Ref. 34 TWa Exp.b Band Ref. 32 Ref. 34 TWa Exp.b

2ν5 - - 6131.67 6138.00 ν5 + ν9 - - 6144.92 6150.98
ν3 + ν5 + ν8 + ν10 - - 6174.83 6165.10 2ν9 - - 6190.78 6197.00
ν2 + 2ν3 + ν11 - - 7240.66 7232.00 ν1 + ν3 + ν11 - - 7273.39 7277.00
ν1 + ν3 + ν9 - - 7421.74 7417.00 ν3 + ν5 + ν9 - - 7472.40 7474.00
2ν5 + ν12 - - 7557.03 7561.00 2ν9 + ν12 - - 7611.25 7620.00
ν2 + ν5 + ν9 - - 7766.14 7763.00 ν5 + ν9 + 2ν10 - - 7796.64 7800.00

rms† c 5.12 4.98 2.68

rms† d 12.85 13.05 4.84

rms† e 14.14 14.38 5.24

rms† f - - 5.86
All values are in cm−1.
a TW : calculations made with our code with Fκ2(13) vibrational basis as described in Section IV A.
b Experimental data, Ref. 51.
† Root-mean-squares for Obs-Ev[i] for c energy levels of fundamentals, d up to 4100 cm−1, e up to 4100 cm−1 without
fundamentals and f up to 7800 cm−1.

V. CALCULATION OF 12C2D4 AND 13C2H4

VIBRATION LEVELS

An extension of the vibrational energy levels calcula-
tion for 12C2H4 was made for some isotopologues to test
the accuracy of the PES. Isotopic species 12C2D4 and
13C2H4 are considered because (i) the D2h symmetry is
not changed and (ii) there exists some experimental data
for these species. For the calculation of vibration levels
of these two species, a quite similar technique was ap-
plied. We used the same sixth order expansion of the
ab initio PES as for 12C2H4 expressed in internal coordi-
nates and we substituted the atomic masses in the kinetic
energy operator when running the above described pro-
gram for energy levels calculation. The same equilibrium
geometry as for 12C2H4 was also kept. For this work,
the eigenvectors F(9) basis set was used to compute vi-
brational line positions that is sufficient to well converge
J = 0 fundamentals of both isotopic species, at least up
to energies necessary for the comparison with the avail-
able observations.

In Tables VIII and IX we give calculated vibration lev-
els as well as the comparison with the corresponding ob-
served band centres, when available. For both species
very few bands are known: concerning the 12C2D4 iso-
topologue, Duncan et al.60 and later Tan et al.54,55,61,62

have analyzed most fundamentals and some combination
bands, however for 13C2H4 the situation is much worse
and only a few fundamentals are known58,59. In general
the agreement with observations is very good for both
isotopic species that confirms the validity of our ab initio
PES. The rms deviation between theoretically calculated
and observed band centres is 4.8 cm−1 (2.4 cm−1 for fun-
damentals) for 12C2D4 and < 3 cm−1 for 13C2H4. Cal-
culated isotopic shifts are also given in Table VIII and
are in very good agreement with isotopic shifts derived
from observed data.

VI. ROTATIONAL LEVELS OF 12C2H4

Theoretical predictions of rotational and rovibra-
tional energy levels of penta- and hexa-atomic molecules
by means of variational calculations with the preci-
sion required for high-resolution spectroscopy remains a
formidable challenge. In this section we consider a val-
idation of our new PES with respect to pure rotational
and rovibrational calculations for the ν9/ν11 bands up
to J = 20. It is well-known that ground state rotational
energies are essentially determined by the equilibrium ge-
ometry and by the shape of the PES at the bottom of the
potential well. Our previous experience in computation
of rotational levels of other systems such as CH4 or PH3

using various ab initio PESs18,26,63 suggested that rota-
tional levels J = 1 are less sensitive to small variations
of the PESs force constants but could strongly depend
on relatively small errors in the equilibrium geometry.
As shown in Table I, test calculations achieved at var-
ious levels of ab initio theory pointed out that pure ab
initio equilibrium geometries did not give a sufficient ac-
curacy for rotational levels of C2H4. Therefore we pro-
ceeded in this work by an empirical optimization of the
equilibrium nuclear configuration for our CCSD(T)/cc-
pVQZ PES in order to improve rotational predictions, as
described in Section II A, in a similar strategy as that
used by Pawlowski et al.40 to obtain reliable equilibrium
structures. This optimization leads to a set of three pa-
rameters of equilibrium geometry used for the potential
expansion in the Hamiltonian. For the calculation of rovi-
brational energies, the matrix elements of this Hamilto-
nian operator are obtained in the coupled basis written
as a product between the vibrational functions defined in
Section IV A and rotational functions as∣∣∣(ΨCv

v ×ΨJ,nCr
r )(C)

〉
, (10)
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Figure 4. Convergence of ethylene vibration levels using different vibrational basis set. Discrepancies between calculations with
F(7), F(8), F(9) and Fκ1(13), and the reference Fκ2(13) basis are given versus band centers.

where ΨJ,nCr
r is the rotational basis related to standard

basis through

∣∣ΨJ,nCr
r

〉
=

(J)∑
K

GKnC |J,K〉. (11)

Cv, Cr and C are the vibrational, rotational and rovi-
brational symmetry species in D2h group, respectively.
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Table VIII. Comparison of band centres of 12C2D4 molecule calculated in this work (Calc., F(9) basis) with observations (Obs.).
Calculated and experimentally derived isotopic shifts are reported.

12C2D4
12C2H4 Isotopic shifts ∆

Band Obs.a Calc. Obs-Calc. Obs. Calc. ∆Calc.b ∆Obs.b ∆Obs.-Calc.
ν10 593.3452 590.79 2.55 825.92 822.23 231.44 232.58 1.14
ν7 719.7752 720.45 -0.68 948.77 949.51 229.06 229.00 -0.06
ν4 729.9652 729.33 0.63 1025.58 1024.93 295.60 295.62 0.02
ν8 780.0033 774.06 5.94 939.86 934.42 160.36 159.86 -0.50
ν3 984.60 984.48 0.12 1343.31 1342.28 357.80 358.71 0.91
ν6 1001.1053 1001.51 -0.41 1225.41 1224.09 222.58 224.31 1.73
ν12 1076.9854 1075.70 1.28 1442.44 1440.68 364.99 365.46 0.47
ν2 1518.0033 1516.55 1.45 1626.17 1624.18 107.64 108.17 0.53
ν11 2201.00 2198.44 2.56 2988.63 2985.35 786.91 787.63 0.72
ν1 2261.60 2260.21 1.39 3021.85 3019.06 758.85 760.25 1.40
ν5 2315.40 2312.47 2.93 3082.36 3079.78 767.31 766.96 -0.35
ν9 2341.8455 2339.24 2.60 3104.33 3101.65 762.41 762.49 0.08
ν3 + ν12 2060.00 2054.96 5.04 2777.46 722.50
ν11 + 2ν12 4342.00 4334.58 7.41 5813.59 1479.01
ν1 + ν3 + ν12 4316.00 4308.38 7.62 5788.00 5781.40 1473.01 1472.00 -1.01
ν1 + ν11 4428.60 4426.55 2.05 5945.79 1519.24
ν5 + ν11 4476.20 4471.45 4.75 5994.79 5989.45 1518.00 1518.59 0.59
ν5 + ν9 4626.8256 4621.54 5.28 6150.98 6144.84 1523.31 1524.16 0.85
2ν11 + ν3 + ν12 6424.00 6418.04 5.96
3ν11 6538.00 6535.51 2.49
2ν1 + ν3 + ν12 6542.00 6549.89 -7.89
ν9 + 2ν11 6625.30 6623.65 1.65
2ν1 + ν11 6640.00 6639.66 0.34
2ν5 + ν3 + ν12 6649.00 6640.97 8.03
2ν9 + ν3 + ν12 6710.00 6699.69 10.31
2ν5 + ν11 6742.30 6738.56 3.74
ν5 + ν9 + 2ν12 6755.50 6750.97 4.53
2ν9 + ν11 6805.10 6800.93 4.17
ν1 + ν5 + ν9 6864.50 6861.65 2.85
2ν5 + ν9 6889.00 6881.49 7.51
3ν9 6987.0 6979.80 7.70
rmsc 2.42
rmsd 4.81

All values are in cm−1.
a From Ref. 57 if no other reference precised.
b Isotopic shifts calculated as ∆ = E(12C2H4)− E(12C2D4).
c Root-mean-squares (Obs.-Calc.) deviation for fundamentals.
d Root-mean-squares (Obs.-Calc.) deviation with respect of all observed data.

The G matrix corresponds to the transformation ma-
trix from SO(3) to D2h

64 and is nothing but a Wang
transformation65. With such a formalism, all the rovi-
brational levels are described by (J, nC) labels, where n
is the multiplicity index of the C irreducible represen-
tation, associated to |K|. The correspondence with the
standard Ka,Kc indices can be easily done65.

In this work, rovibrational functions, built as de-
scribed above and in Section IV A, are reduced func-
tions Fκ2(13 → 6) for 1 ≤ J ≤ 10 and Fκ2(13 → 5)
for 11 ≤ J ≤ 20. Vibrational J = 0 levels were matched
to observed band centers8 using the VSS empirical cor-
rections. This allows focusing more precisely on the ro-

tational dependence of residual errors with respect to J
quantum number as plotted in Figure 5 up to J = 5.
Such an empirical optimization represents a pragmatic
method for improving ab initio predictions for spectro-
scopic applications. Figure 5 shows the improvement of
rotational levels computed from our PES (using pVQZ
and pCVQZ equilibrium geometries) with respect to the
previous “morsified” version32 of the CCSD(T)/cc-pVTZ
PES originally computed by Martin33. Figure 6 gives
a similar comparison for upper vibration-rotation lev-
els of the ν9/ν11 bands, the pure vibrational error being
substracted for all versions of calculations as described
above.
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Table IX. Comparison of band centres of 13C2H4 molecule calculated in this work (Calc., F(9) basis) with observations
(Obs.)58,59. Calculated and experimentally derived isotopic shifts are reported.

13C2H4
12C2H4 Isotopic shifts ∆

Band Obs. Calc. Obs-Calc. Obs. Calc. ∆Calc. ∆Obs. ∆Obs-Calc.
ν10 821.22 825.92 822.23 1.01
ν8 921.49 939.86 934.42 12.92
ν7 944.50 948.77 949.51 5.01
ν4 1025.14 1025.58 1024.93 -0.21
ν6 1206.51 1225.41 1224.09 17.58
ν3 1328.31 1343.31 1342.28 13.96
ν12 1436.6558 1434.90 1.75 1442.44 1440.68 5.78 5.79 0.01
ν2 1583.97 1626.17 1624.18 40.21
ν11 2969.6059 2966.46 3.14 2988.63 2985.35 18.88 19.03 0.15
ν1 3008.22 3021.85 3019.06 10.84
ν5 3068.79 3082.36 3079.78 10.98
ν9 3090.52 3104.33 3101.65 11.13
rms 2.54

All values are in cm−1.
a Isotopic shifts calculated as ∆ = E(12C2H4)− E(13C2H4).

Not surprisingly, the empirical optimization of the
equilibrium geometry gives much smaller residual errors
with respect to all pure ab initio predictions. These ro-
tational levels up to J = 8 for the ground state and
J = 5 for the ν9/ν11 band are given in Tables X and XI.
A Comparison with experimental data analysis reported
by Loroño et al.8 shows a very good agreement: the rms
deviation being 0.00062 cm−1 for the ground state and
0.01 cm−1 for the ν9/ν11 band. Again, this confirms a
considerable progress in the PES accuracy reported in
the present work. Rotational study for isotopic species is
under investigation.

Figure 5. Observed minus calculated discrepancies of G.S.
rotational levels for 12C2H4 up to J = 5 for three sets of equi-
librium geometry parameters. Comparison with our calcula-
tion of rotational levels using the PES “morsified” by Avila
and Carrington32 is included. “Empirically opt.” stands for
“Empirically optimized equilibrium”.

VII. DISCUSSION AND SUMMARY

Previous works on the vibrational and rovibrational
theoretical predicitions and on spectra analyses for ethy-
lene have shown the limitation of the CCSD(T)/cc-pVTZ
PES and the need of a new more accurate PES at a
higher level of ab initio theory. The construction of such
a 12D PES for this molecule represents a challenging is-
sue. In this work we applied extended ab initio calcula-
tion on a dense grid of 82 542 nuclear configurations at
the CCSD(T)/cc-pVQZ level of the theory to determine
the shape of electronic ground state PES more precisely
involving higher-order terms. A fitting procedure of ab

Figure 6. Rotational dependence of the Obs-Calc. errors for
the ν9/ν11 bands of 12C2H4 up to J = 5 for two sets of equi-
librium geometry parameters. cc-pVTZ results correspond to
calculations made using Avila and Carrington PES32. In all
calculations the pure vibrational error was substracted (see
the text). “Empirically opt.” stands for “Empirically opti-
mized equilibrium”.
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Table X. Rotational energy levels of the ground state of 12C2H4 computed from our optimized PES compared to values deduced
from experiment (Ref. 8).

Assignment Value (cm−1) Assignment Value (cm−1)
J Ka Kc C Ref. 8 This work δa J Ka Kc C Ref. 8 This work δa

1 0 1 B1g 1.82910 1.82909 0.00001 5 3 2 B2g 63.01212 63.01223 -0.00011
2 0 2 Ag 5.48158 5.48154 0.00004 8 0 8 Ag 64.71980 64.71809 0.00171
1 1 1 B3g 5.69258 5.69253 0.00005 7 2 6 Ag 66.92058 66.92029 0.00029
1 1 0 B2g 5.86554 5.86561 -0.00007 7 2 5 B1g 67.60816 67.60873 -0.00057
2 1 2 B2g 9.17773 9.17756 0.00017 6 3 4 B2g 74.00917 74.00925 -0.00008
2 1 1 B3g 9.69662 9.69661 0.00001 6 3 3 B3g 74.01891 74.01900 -0.00009
3 0 3 B1g 10.94607 10.94597 0.00009 4 4 1 Ag 81.47055 81.47041 0.00014
3 1 3 B3g 14.40191 14.40153 0.00038 4 4 0 B1g 81.47055 81.47041 0.00014
3 1 2 B2g 15.43953 15.43970 -0.00017 8 2 7 B1g 81.48091 81.48045 0.00046
4 0 4 Ag 18.20571 18.20551 0.00020 8 2 6 Ag 82.60020 82.60111 -0.00091
2 2 1 B1g 21.28590 21.28597 -0.00007 7 3 5 B3g 86.84975 86.84980 -0.00005
2 2 0 Ag 21.29158 21.29165 -0.00007 7 3 4 B2g 86.87401 86.87410 -0.00009
4 1 4 B2g 21.36100 21.36034 0.00066 5 4 2 Ag 90.62626 90.62652 -0.00026
4 1 3 B3g 23.08966 23.09008 -0.00042 5 4 1 B1g 90.62627 90.62654 -0.00027
3 2 2 Ag 26.77280 26.77284 -0.00004 6 4 3 B1g 101.61688 101.61710 -0.00022
3 2 1 B1g 26.80114 26.80122 -0.00008 6 4 2 Ag 101.61697 101.61719 -0.00022
5 0 5 B1g 27.23881 27.23843 0.00038 7 4 4 Ag 114.44445 114.44462 -0.00017
5 1 5 B3g 30.04979 30.04878 0.00101 7 4 3 B1g 114.44477 114.44494 -0.00017
5 1 4 B2g 32.64058 32.64126 -0.00068 5 5 1 B2g 126.13059 126.13071 -0.00012
4 2 3 B1g 34.08411 34.08410 0.00001 5 5 0 B3g 126.13059 126.13071 -0.00012
4 2 2 Ag 34.16883 34.16893 -0.00010 8 4 5 B1g 129.11126 129.11139 -0.00013
6 0 6 Ag 38.02002 38.01933 0.00069 8 4 4 Ag 129.11224 129.11236 -0.00012
6 1 6 B2g 40.46218 40.46072 0.00146 6 5 1 B2g 137.11497 137.11541 -0.00044
5 2 4 Ag 43.21591 43.21584 0.00007 6 5 2 B3g 137.11497 137.11541 -0.00044
5 2 3 B1g 43.41230 43.41248 -0.00018 7 5 3 B2g 149.93316 149.93354 -0.00038
6 1 5 B3g 44.08381 44.08471 -0.00090 7 5 2 B3g 149.93317 149.93354 -0.00037
3 3 1 B3g 46.52040 46.52057 -0.00017 6 6 0 Ag 180.48994 180.49065 -0.00071
3 3 0 B2g 46.52052 46.52069 -0.00017 6 6 1 B1g 180.48994 180.49065 -0.00071
7 0 7 B1g 50.52235 50.52123 0.00112 7 6 2 Ag 193.30222 193.30290 -0.00068
7 1 7 B3g 52.59142 52.58941 0.00201 7 6 1 B1g 193.30222 193.30290 -0.00068
4 3 2 B2g 53.84670 53.84683 -0.00013 8 6 3 Ag 207.94741 207.94799 -0.00059
4 3 1 B3g 53.84751 53.84765 -0.00014 8 6 2 B1g 207.94741 207.94799 -0.00059
6 2 5 B1g 54.16334 54.16318 0.00016 7 7 0 B2g 244.53568 244.53679 -0.00111
6 2 4 Ag 54.55179 54.55212 -0.00033 7 7 1 B3g 244.53568 244.53679 -0.00111
7 1 6 B2g 57.40855 57.40966 -0.00111 8 8 0 Ag 318.25260 318.25414 -0.00155
5 3 3 B3g 63.00886 63.00897 -0.00011 8 8 1 B1g 318.25260 318.25414 -0.00155
rmsb 0.00062

All values are in cm−1.
a δ is the deviation from Ref. 8 ground state levels, deduced from experimental spectra.
b Root-mean-squares (Obs.-Calc.) deviation for ground state energy levels up to J = 8.

initio electronic energies using a sixth PES expansion
in curvilinear symmetry-adapted coordinates involving
2650 parameters were applied, with a total rms deviation
of 1.37 cm−1. This allowed a considerable improvement
of vibrational predictions compared to results presently
available in the literature. Pure ab initio variational fun-
damental band center predictions are now very close to
experimental values with an average error below 3 cm−1.
Nuclear motion calculations were carried out by a varia-
tional method accounting for all symmetry properties as

well as relevant transformations. This approach was also
applied for the vibrational levels calculation of two iso-
topic species of D2h symmetry 12C2D4 and 13C2H4, with
an error on fundamental band centers below 2.5 cm−1.
For the rotational calculations, we evaluated the impact
of changes in equilibrium nuclear geometrical parameters
on the rotational levels. Test calculations were performed
by keeping the shape of the potential function cc-pVQZ
PES (because the full grid 12D calculations at higher
levels of ab initio theory are too demanding), but only
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Table XI. Rotational dependence of energy levels for the ν9/ν11 dyad of 12C2H4 compared to values deduced from experimental
spectra (Ref. 8).

Assignment Value (cm−1) Assignment Value (cm−1)
Band J Ka Kc C Obs.c This work δa Band J Ka Kc C Obs.c This work δa

ν11 0 0 0 B1u 2988.640 2988.640 0.000 ν9 2 0 2 B3u 3110.347 3110.344 0.003
ν11 1 0 1 Au 2990.466 2990.466 0.000 ν9 1 1 1 Au 3110.551 3110.550 0.002
ν11 2 0 2 B1u 2994.113 2994.113 0.000 ν9 1 1 0 B1u 3110.724 3110.724 0.000
ν11 1 1 1 B2u 2994.321 2994.321 0.000 ν9 2 1 2 B1u 3114.029 3114.026 0.003
ν11 1 1 0 B3u 2994.497 2994.496 0.001 ν11 5 5 0 B2u 3114.546 3114.539 0.006
ν11 2 1 2 B3u 2997.798 2997.796 0.002 ν11 5 5 1 B3u 3114.553 3114.539 0.014
ν11 2 1 1 B2u 2998.326 2998.325 0.001 ν9 2 1 1 Au 3114.553 3114.544 0.010
ν11 3 0 3 Au 2999.568 2999.569 0.000 ν9 3 0 3 B2u 3115.799 3115.792 0.007
ν11 3 1 3 B2u 3003.009 3003.006 0.003 ν9 3 1 3 Au 3119.242 3119.238 0.004
ν11 3 1 2 B3u 3004.066 3004.064 0.001 ν9 3 1 2 B1u 3120.275 3120.270 0.005
ν11 4 0 4 B1u 3006.815 3006.815 0.000 ν9 4 0 4 B3u 3123.043 3123.030 0.013
ν11 2 2 1 Au 3009.891 3009.887 0.004 ν9 2 2 1 B2u 3126.089 3126.087 0.002
ν11 2 2 0 B1u 3009.897 3009.893 0.004 ν9 2 2 0 B3u 3126.095 3126.093 0.002
ν11 4 1 4 B3u 3009.950 3009.947 0.003 ν9 4 1 4 B1u 3126.186 3126.181 0.005
ν11 4 1 3 B2u 3011.711 3011.710 0.001 ν9 4 1 3 Au 3127.907 3127.909 -0.001
ν11 3 2 2 B1u 3015.370 3015.363 0.007 ν9 3 2 2 B3u 3131.564 3131.557 0.007
ν11 3 2 1 Au 3015.399 3015.392 0.007 ν9 3 2 1 B2u 3131.592 3131.585 0.007
ν11 5 0 5 Au 3015.830 3015.831 -0.001 ν9 5 0 5 B2u 3132.056 3132.034 0.022
ν11 5 1 5 B2u 3018.617 3018.613 0.004 ν9 5 1 5 Au 3134.857 3134.851 0.006
ν11 5 1 4 B3u 3021.255 3021.254 0.002 ν9 5 1 4 B1u 3137.435 3137.432 0.003
ν11 4 2 3 Au 3022.670 3022.663 0.007 ν9 4 2 3 B2u 3138.858 3138.845 0.013
ν11 4 2 2 B1u 3022.758 3022.751 0.007 ν9 4 2 2 B3u 3138.943 3138.930 0.013
ν11 5 2 4 B1u 3031.788 3031.780 0.007 ν9 5 2 4 B3u 3147.969 3147.954 0.015
ν11 5 2 3 Au 3031.992 3031.985 0.007 ν9 5 2 3 B2u 3148.166 3148.150 0.016
ν11 3 3 1 B2u 3035.083 3035.077 0.006 ν9 3 3 1 Au 3151.230 3151.225 0.005
ν11 3 3 0 B3u 3035.083 3035.077 0.006 ν9 3 3 0 B1u 3151.230 3151.225 0.005
ν11 4 3 2 B3u 3042.399 3042.383 0.016 ν9 4 3 2 B1u 3158.539 3158.528 0.011
ν11 4 3 1 B2u 3042.400 3042.384 0.016 ν9 4 3 1 Au 3158.540 3158.529 0.011
ν11 5 3 3 B2u 3051.549 3051.533 0.016 ν9 5 3 3 Au 3167.680 3167.662 0.018
ν11 5 3 2 B3u 3051.552 3051.536 0.016 ν9 5 3 2 B1u 3167.684 3167.665 0.018
ν11 4 4 1 Au 3069.973 3069.964 0.009 ν9 4 4 0 B2u 3186.043 3186.032 0.011
ν11 4 4 0 B1u 3069.973 3069.964 0.009 ν9 4 4 1 B3u 3186.043 3186.032 0.011
ν11 5 4 2 B1u 3079.116 3079.091 0.025 ν9 5 4 2 B3u 3195.177 3195.160 0.017
ν11 5 4 1 Au 3079.116 3079.091 0.025 ν9 5 4 1 B2u 3195.177 3195.160 0.017
ν9 0 0 0 B3u 3104.878 3104.878 0.000 ν9 5 5 1 Au 3230.517 3230.498 0.018
ν9 1 0 1 B2u 3106.703 3106.702 0.001 ν9 5 5 0 B1u 3230.517 3230.498 0.018
rmsb 0.010

All values are in cm−1.
a δ is the deviation from Ref. 8 ν9/ν11 dyad energy levels, band centers being matched to experimental values
in VSS procedure.
b Root-mean-squares (Obs.-Calc.) deviation for ν9/ν11 polyad up to J = 5.
c Obs.: Levels deduced from experimental spectra, Ref. 8.

changing the equilibrium geometry. Empirical optimiza-
tion of the equilibrium configuration procedure was nec-
essary to reach the accuracy expected in high-resolution
spectroscopy applications.

The final PES of the electronic ground state, con-
structed from the ab initio CCSD(T)/cc-pVQZ po-
tential function, and combined with empirically opti-
mized nuclear geometries gives considerably improved ro-
vibrational levels. Up to J = 8 the RMS(Obs. − Calc.)

deviation was below 0.0007 cm−1 for ground state ro-
tational levels of 12C2H4. A quite smooth rotational
trend for the errors was also obtained for rovibrational
bands, with a RMS(Obs.−Calc.) deviation of 0.01 cm−1

up to J = 5 for the ν9/ν11 dyad after the matching of
band centers to experimental values . An extension of
this work for rovibrational spectra of isotopic species of
D2h symmetry 12C2D4 and 13C2H4 is planned, as well as
for symmetry breaking isotopologues 12C2H3D, 12C2D3H
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and 12C2H2D2. In order to improve the accuracy of
fundamentals and first overtones band centers, empiri-
cal quadratic corrections to the PES are currently under
investigation. We provide the CCSD(T)/cc-pVQZ PES,
presented in the symmetry-adapted coordinates defined
in Eq. (3), as the electronic supplementary material67

of this paper. Expressions of the symmetry-adapted co-
ordinates Si in terms of Cartesian coordinates are also
provided in order to properly transform the PES. As
an example, we give the third order PES expansion ex-
pressed in mass-weighted Cartesian displacements. Note
that this latter form should not be considered for practi-
cal calculations.

As a next step we plan to derive effective spectro-
scopic models for vibration-rotation polyads from this
PES by high-order contact transformation method as
was recently reported for the methane molecule68. This
would help a better description of complicated resonance
perturbations for spectra analyses at extended wavenum-
ber ranges. We also plan to explore other various basis
sets as Morse, TPT, Kratzer, etc. in the future work.
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