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Foreword

Analysis of Random Structures, as studied by the world-wide network AofA (Analysis of Algorithms) and
by the European ALEA network, relies on the interplay between analytic and probabilistic approaches.
Philippe Flajolet (1948-2011) played a fundamental and inspiring role in the development of these methods
and their scientific communities.

The Nablus 2014 CIMPA summer school was a unique opportunity to introduce both the analytic
and the probabilistic approaches to the Palestinian students.
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“Analytic combinatorics
aims to enable precise
quantitative predictions
of the properties of large
combinatorial structures.
...”

Amazon As pdf See also Philippe Flajolet’s lectures and courses

“... The theory has emerged over recent decades as essential both for the analysis of algorithms and for
the scientific models in many disciplines, including probability theory, statistical physics, computational
biology and information theory. With a careful combination of symbolic enumeration methods and
complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that
can be applied to fundamental structures such as permutations, sequences, strings, walks, trees, graphs
and maps.”
Foreword to “Analytic Combinatorics”, Flajolet-Sedgewick 2009, Cambridge University Press.

Philippe Flajolet (1948-2011) laid the foundations of Analytic Combinatorics and extensively developed
the methods and techniques used in this field.

Examples

Binary trees. If you ask to a five or six years old child to draw binary trees with 1, 2, 3, 4, and 5 external
nodes, and ask him about how many (different) ones there are, he will tell you the sequence (provided he or she
does not get tired)

1, 1, 2, 5, 14 . . .

Counting is also natural for mathematicians. Considering the sequence (Bn) enumerating binary trees and its
OGF (ordinary generating function) B(z), we have

(Bn) = (B1, B2, B3, B4, . . . ) = (1, 1, 2, 5, 14, . . . ) and B(z) =
∑

n≥1

Bnz
n.

Now, if there are more than one external node in a binary tree, removing the root gives two subtrees that are
equivalent (from a counting point of view) to any binary tree: there is a recursive decomposition that translates
to a functional equation verified by the generating function B(z), from which it is possible to extract the n-th
Taylor coefficient Bn (see next figure).

(From Flajolet, Bologna course, 2010)

The example of binary trees is typical of the process of Analytic Combinatorics which works as follows.

1. Construct a symbolic equation on the combinatorial classes occurring in your problem (in the case
of binary tree, these are the class B and the class � representing a leaf with OGF z).
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2. Translate the symbolic equation into a functional equation on generating functions.

3. Extract the Taylor coefficient of interest; asymptotically, this is often done by complex analysis and
Cauchy integrals or variants of these.

The counting is much more general than univariate counting as we see next.

Cycles in permutations. The cycle construction puts in equivalence classes sequences taken up to a circular
shift; considering the permutations of the symmetric group S4 of size 4!, we have

1234 ≡ 2341 ≡ 3412 ≡ 4123, 1243 ≡ 2341 ≡ . . . , 1324 ≡ . . . , 1342 ≡ . . . , 1423 ≡ . . . , 1432 ≡ . . . .

If Cn = n!/n is the number of classes of the symmetric group Sn quotiented by the cycle construction, the
corresponding exponential generating function verifies

C(z) =
∑

n≥0

Cnz
n

n!
=
∑

n≥0

zn

n
= log

(
1

1− z

)
.

Considering any permutation, we can decompose it as a set of cycles, as seen in the following example
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
11 12 13 17 10 15 14 9 3 4 6 2 7 8 1 5 16

)
,

one of the cycle being 4→ 17→ 16→ 5→ 10→ 4.
If C is a generic cycle, and P a generic permutation, the decompositions is written symbolically as

P = {ε}+ C + (C ? C) + (C ? C ? C) + . . . (Permutation = Set of Cycles).

As Set  exp and Cycle  log, using again exponential generating functions that count labelled objects, and
moreover a variable u that counts the number of cycles, we have (being very sketchy)

P (z, u) =
∑

n≥0
u≤n

[
n
k

]
ukzn = 1 + uC(z) +

1

2!
u2C2(z) +

1

3!
u3C3(z) + · · · = exp

(
u log

(
1

1− z

))
= (1− z)−u,

where

[
n
k

]
is the Stirling cycle number that counts the number of permutations of size n with k cycles.

We obtain by the binary theorem

[zn](1− z)−u =
∑

k≤n

[
n
k

]
uk = u(u+ 1)(u+ 2) . . . (u+ n− 1),

and, by logarithmic differentiation, the expected number of cycles µn =
∑

k

k

n!

[
n
k

]
in a random permutation of

size n is the n-th harmonic number,

µn = Hn ≡ 1 +
1

2
+ · · ·+ 1

n
( µ100 ≡ H100 = 5.18738).

Second moment follows easily, and an asymptotic method known as quasi-powers theorem leads to a limiting

Gaussian law. (There are equivalent probabilistic approaches.)

What can you learn from Analytic Combinatorics?

The projected courses will aim providing a thorough introduction to Flajolet-Sedgewick book “Analytic Com-
binatorics”; an additional course will be related to the Boltzmann random generation of objects. If you are a
mathematician or a physicist, you cannot avoid being touched by the beauty of symbolic structures and by rela-
tively simple mathematical concepts that lead to deep results with “real life” applications. If you are a computer
scientist you will learn evaluating combinatorial structures that have algorithmic counterparts; i.e the (general-
ized) birthday paradox provides an analysis of collisions in data hashing.
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Summer School Project for 2014 in Palestine - Random structures, Analytic and
Probabilistic Approaches
Contact: Pierre Nicodème, CNRS, http://www-lipn.univ-paris13.fr/CALIN/members/nicodeme

Random structures: a probabilistic approach

1

Together with analytic combinatorics, methods
coming from modern probability theory provide
natural tools to study random structures. Being
often of different nature, results from both comple-
mentary points of view enrich one another.

1

Example

Pólya urns provide a rich model for many situations in algorithmics. In this model, one considers an urn
that contains red and black balls (this can be generalized to any finite number of colors). One starts with
an initial configuration. At any step of time, one chooses one ball at random in the urn, checks its color and
puts it back into the urn. Depending on its color, one adds new balls of different colors according to some
fixed replacement rule. The random process is defined by iterating this procedure.

Take for instance the urn process having

(
0 3
2 1

)
as replacement matrix. This means that when a red ball

is drawn, it is placed back into the urn together with 3 black ones; when one draws a black ball, one adds 2
red balls and 1 black one.

The composition sequence (i.e. the respective numbers of red and black balls it contains) of a Pólya urn is

a Markov chain. This follows from the fact that the random composition at a given time depends only on

the probability distribution of the preceding composition. This is the so-called forward point of view of the

growing random structure that implies immediately, for example, hat the urn contains asymptotically 40%

of red balls, with probability 1.

The forward point of view leads to represent all successive configuration in one global object:
the random process, giving access to powerful probabilistic tools like
- martingales, after suitable rescaling of the urn process. Most of limit theorems come from this
beautiful theory;
- embedding in continuous time, illustrated in our example by the underlying tree structure of
the urn process as follows.

One can usefully represent the evolution of the urn by the growing of a tree. The leafs are colored red and
black and represent the balls in the urn. Drawing a ball amounts to choosing a leaf. The corresponding
added balls are represented as daughter leafs. In the figure below, one chooses the black pointed leaf in the
tree on the left; one obtains the new tree drawn on the right.

 

1
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In the discrete time urn, the subtrees are not stochastically independent. Embedding the process in con-

tinuous time consists in making the time intervals between two drawings random. When this random times

are exponentially distributed, the subtrees of the continuous time urn process become independent. The

resulting process is well-known by the probabilists: it is a branching process, giving rise to – Gaussian or

not – limit laws.

After embedding in continuous time, the gained independence allows us to use the recursive
properties of the random structure through the divide and conquer principle. This is to the
backward point of view. Applied to generating functions, it is the base tool for analytic
combinatorics methods. In the probabilistic domain, it translates the recursivity in terms of
distributional equations on random variables, often of the type

W
L
=
∑

AiW
(i)

where the Ai are known random variables, the W (i) are independent copies of W , independent
of the Ai as well. By means of Fourier analysis for instance, one derives properties of the limit
distributional behavior of the random structure.
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A note on conditional expectation 1

The conditional probability of one event A with respect to another event B of non-zero

probability is known as: P(A|B) :=
P(A ∩B)

P(B)
. If we consider a random variable X with

(continuous) density, and we want to condition with respect to a value taken by X, it is not
possible to apply the preceding formula since the event {X = x} has null probability. With
X and Y two random variables, the probability of Y conditioned to X may be viewed as
taking a couple (X, Y ), assuming known the value of X and doing a “prediction” of Y , i.e
finding a function of X that approximates as well as possible Y . This is expressed in the
following as E(Y |B(X)) where B(X) is the σ-algebra generated by X.

Mathematically, the conditional expectation of Y with respect to X is defined as the orthog-
onal projection of Y in the Hilbert space of square-integrable functions onto the space of
B(X)-measurable functions (see below).

Definition 1 Let (Ω,A,P) be a probability space. Let also L2(A) be the space of real-valued
fonctions that are measurable on (Ω,A) and square-integrable with respect to the measure P.
It is a Hilbert space for the scalar product 〈f, g〉 =

∫
Ω
fg dP.

let B be a sub-σ-algebra of A and let L2(B) be the space of real-valued fonctions that are
measurable with respect to B and square-integrable. The orthogonal projection of L2(A) on
L2(B) is called conditional expectation with respect to B (or knowing B).

Notation. The conditional expectation of X knowing B is noted EB(X) or E(X|B).

A frequent particular case occurs when the σ-algebra B is one of the σ-algebras of a filtration
(Fn)n≥0. Typically, when one considers a discrete-time process (Xn)n≥0, and when Fn is the
σ-algebra generated by the Xp for p ≤ n. The σ-algebra Fn is called the σ-algebra of the
past before n and E(X | Fn) or EFn(X) denotes the conditioning of X by the past before n.

Since L2 is dense in L1 for a finite positive measure, the last notion can be extended to all
integrable functions. This leads to the following characterization that is in practice more
useful that the definition:

Proposition 1 (characterization of the conditional expectation)

Let X ∈ L1(Ω,A,P) and let B ⊂ A. Then E(X|B) is the unique random variable such that:

• E(X|B) is B-measurable;

• for every B-mesurable and bounded random variable Y , we have E(Y X) = E(Y E(X|B)).

It is necessary to remark that E(X|B) is a random variable B-measurable; this is generally
speaking not the case for a constant like E(X). The conditional expectation with respect to
the trivial σ-algebra reduced to {∅,Ω} is the usual simple expectation. If X is independent
of B, we get E(X|B) = E(X).

1Translation to English by Pierre Nicodème of a note of Brigitte Chauvin written in French.
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Proposition 2 (properties of the conditional expectation)

• linearity : ∀a, b ∈ R, E(aX + bY |B) = aE(X|B) + bE(Y |B)

• |E(X|B)| ≤ E(|X| |B)

• If C is a σ-algebra and if C ⊂ B, then E(E(X|B)|C) = E(X|C)
In particular, E(E(X|B)) = E(X)

• If X is integrable and Z is B-measurable, then E(XZ|B) = ZE(X|B). Moreover, when Z
is B-measurable, we have E(Z|B) = Z and E(E(X|Z)) = E(X)

Link with the conditional probabilities

Let A and B be two events, with P(B) 6= 0. Let us choose as B the σ-algebra B =
{∅, B,Bc,Ω}. Then, one verifies with the characterization that

E(11A|B) =
P(A ∩B)

P(B)
11B +

P(A ∩Bc)

P(Bc)
11Bc

which gives
E(11A|B) = P(A|B)11B + P(A|Bc)11Bc .
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A Gentle Introduction to Analytic Combinatorics

Jérémie Lumbroso Basile Morcrette

Oxford, September 5-7, 2012

"These notes were written by Jérémie Lumbroso and Basile Morcrette for the 1st
French-British Young Research Workshop that took place in Oxford in 2012, and of
which the purpose was to foster collaborations between French and British young
researchers over topics common to them - probabilistic analyses, or analytic combi-
natorics. There have since been subsequent editions, most recently in Paris in 2014.
Another edition is scheduled in Bath in 2015."
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1 Introduction

1.1 General Aim.
• Study combinatorial structures in a simple, unified and automatic way.

• Do exact (with formal, symbolic methods) and asymptotic (with C-analytic methods) counting.

• Examples of combinatorial structures: integers, words, permutations, trees, functional graphs.

1.2 Catalan numbers, by hands
Let’s begin with one of the most famous objects in combinatorics. The approach presented here, is the typical approach
one would use to find the enumeration of combinatorial objects from a recurrence, as it would be described for instance
in Wilf’s popular textbook [4, §1].
Consider Cn the number of binary trees of size n (i.e. with n internal nodes). A simple exhaustive study leads to the first
terms C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, . . .
A classical way of counting those numbers is to find a recurrence. A binary tree of size n + 1 is composed of a root and
two subtrees: its left child is a binary tree of size k, its right child is a binary tree of size n − k, and the choice of the
integer k is in the set {0, 1, . . . , n}. So, it is possible to write the recurrence scheme

Cn+1 =

n∑

k=0

Ck Cn−k .

The hint is now to use a generating function: C(z) =
∑
n≥0 Cn z

n, where the variable z is just some parameter. The
sequence (Cn)n≥0 is now encoded by the function C(z). From the previous equation, we multiply each side by the
monomial zn+1, and then make the sum for n = 0, 1, . . ..

∑

n≥0
Cn+1z

n+1 =
∑

n≥0

n∑

k=0

Ck Cn−k z
n+1 ,

which can be re-written
∑

n≥1
Cnz

n = z
∑

n≥0

n∑

k=0

(
Ck z

k
) (
Cn−k z

n−k)

Now, using the generating function C(z), we find the classical equation

C(z)− 1 = z C(z)2

Solving this second order equation, and using the initial condition C0 = 1 (which translates into C(0) = 1), the solution
is

C(z) =
1−
√

1− 4z

2z
.

Finding the exact coefficients Cn is done by the formal power series expansion of C(z). We use the classical Newton’s
generalised binomial theorem

(1 + x)α = 1 + αx+
α(α− 1)

2
x2 + . . .+

α(α− 1) . . . (α− k + 1)

k!
xk + . . . ,

and find

C(z) =
∑

n≥0

1

n+ 1

(
2n

n

)
zn .
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So we conclude saying the number of binary trees of size n is the Catalan numbers Cn = 1
n+1

(
2n
n

)
. And if we want an

asymptotic formula of Cn, we use the classical Stirling formula n! ∼
√

2πn e−n nn, and find

Cn =
1

n+ 1

(
2n

n

)
∼ 4n n−3/2√

π
.

This course’s aim is to directly get the framed results—the exact and asymptotic enumeration—from a symbolic speci-
fication of the combinatorial objects. In our current case, a binary tree can be symbolically specified as being: either a
single leaf (noted ◦), or a node (noted •), with a pair of binary trees (the left and right children), thus

B = ◦ or (•,B,B)

which of course bears a striking resemblance with the functional equation satisfied by the generating function, C(z) =
1 + zC(z)C(z)...

2 Unlabelled objects
This section summarizes the main aspects of the first chapter of the reference book [2, §I].

2.1 Basic definitions: combinatorial classes, generating functions
Definition 1. A combinatorial class A (sometimes simply a class) is a finite or denumerable set on a which is defined a
size function, | · | : A → Z>0, such that, for every size there is only a finite number of elements, that is

∀n ∈ Z>0, an := |{x ∈ A | |x| = n}| <∞.

Remark. Following the common usage (as formalized in Flajolet and Sedgewick’s reference text [2]), we will always denote combi-
natorial classes using upper-case calligraphic letters such as A, subclasses containing only elements of a given size n as An, and the
counting sequences using the lower-case roman type, an.

As the definition suggests, for a given combinatorial class, there may be several different valid size functions. A well-
known example in combinatorics is that of planar1 binary trees: we can for instance enumerate them according to the
number of internal nodes, the number of external nodes (also called leaves), or by counting both.
On the other hand, a trivial measure of size that would not be valid would be to count the number of children of the root
(either 0, 1, or 2) as we would then have an infinite number of trees of “size” 1 and 2.

Definition 2. Let A be a combinatorial class, and let (an)n∈Z>0
be its counting sequence. We call A(z) the ordinary

generating function (or OGF) associated with A,

A(z) :=

∞∑

n=0

anz
n.

In some cases, it is also sometimes convenient to consider the equivalent definition of generating function as the sum over
the objects of combinatorial class A

A(z) :=
∑

α∈A
z|α|.

1The term planar is here used to express that a combinatorial structure is embedded in the plane; in the case of binary trees, that means that we
distinguish a left and a right child.
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Combinatorial class Counting sequence OGF

Words on {0, 1}∞ 2n W (z) =
1

1− 2z

Integer compositions 2n−1 I(z) =
1− z
1− 2z

Binary trees (counting internal node)
1

n+ 1

(
2n

n

)
B(z) =

1−
√

1− 4z

2z

Permutations n! P (z) =
∞∑

n=0

n!zn

Table 1. Some standard combinatorial classes, their enumeration sequence, and their ordinary generating function (OGF).
Note permutations do not have an analytic ordinary generating function, i.e., the radius of convergence of P (z) is 0.

Exercise 1. Show that these two definitions are equivalent.

The generating function is a traditional object in combinatorics. But where it is usually considered as a formal object,
algebraically manipulated, analytic combinatorics shows that there is considerable power in instead considering them as
analytic objects.
Once given a generating function, our main goal will be to extract its coefficients. Let f(z) be a generating function, we
use the notation [zn] to note the coefficient of the variable zn,

[zn]f(z) = [zn]

( ∞∑

i=0

fiz
i

)
= fn.

Here are some elementary but very fundamental operations on coefficients, which will also be revisited later on.

• Scaling: [zn]f(λz) = λn[zn]f(z), as

[zn]f(λz) = [zn]

( ∞∑

i=0

fi(λz)
i

)
= [zn]

( ∞∑

i=0

(fiλ
i)zi

)
= λn[zn]f(z).

• Right shifting: [zn]zkf(z) = [zn−k]f(z), because

[zn]zkf(z) = [zn]

( ∞∑

i=0

fiz
i+k

)
= [zn]

( ∞∑

i=k

fi−kz
i

)
= [zn−k]f(z).

2.2 The symbolic method
Let A, B and C be combinatorial classes with respective ordinary generating functions A(z), B(z) and C(z). The
symbolic method is the observation that some symbolic operations can directly be translated to ordinary generating
functions.

2.2.1 Elementary constructions

The base elements are neutral objects, noted ε, which have no size and are thus translated as z|ε| = z0 = 1, and atomic
objects with size 1, noted Z, and translated to OGFs as the variable z. In addition, we can distinguish however many kinds
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of neutral objects, for instance ε1, ε2, etc., which will all translate to 1, and however many kinds of atomic objects, which
may translate either to the same variable z, or to some other variable z1, z2, etc. depending on whether it is important to
distinguish the type of atom it contributes to.

Disjoint union. We write A = B+C, if class A is defined as the disjoint union of B and C: that is A contains all objects
from B and C, and objects keep their original sizes. Because the union is disjoint, there is no overlap in the enumeration,
and this translates to the generating functions as

A(z) = B(z) + C(z).

Indeed, using the combinatorial definition of OGFs, since objects from A are either from B or C,

A(z) =
∑

α∈A
z|α| =

∑

α∈B
z|α| +

∑

α∈C
z|α| = B(z) + C(z).

Remark. Although we speak of “disjoint union”, in practice, we never concern ourselves on whether the combinatorial classes are
disjoint; instead we consider we are doing the union of unique copies of each class (for instance, imagine that A = B + B means that
A is composed of either elements of B that are colored pink or purple—thus twice as many elements).

Cartesian product. We write A = B × C, if class A is defined as all ordered pairs, α = (β, γ) ∈ A where the first
element β is from B and the second γ from C (i.e β ∈ B, γ ∈ C). The size function on A is then defined as |α| = |β|+|γ|,
thus

A(z) = B(z) · C(z)

since

A(z) =
∑

α∈A
z|α| =

∑

β∈B

∑

γ∈C
z|β|+|γ| =

(∑

α∈B
z|α|
)
·
(∑

α∈C
z|α|
)

= B(z) · C(z).

Remark. The size for Cartesian products is here the sum of the sizes of each object of a pair, and accordingly we say that we are
dealing with additive combinatorial structures. Other rules for the Cartesian product are possible, for instance that the size of a pair
be the product of each component; we would then be dealing with multiplicative combinatorial structures enumerated by Dirichlet
generating functions (DGF),

D(s) =
∑

n>1

dn
ns

.

These combinatorial structures are intimately tied to number theory, and in particular Riemann’s zeta function features prominently as
it is the DGF for the unit sequence (much like the quasi-inverse in additive combinatorics).

Sequence. We write A = SEQ (B), if A is defined as all ordered sequences (of any size, including zero) of objects from
B,

A := {ε}+ B + B ×B + B ×B ×B + . . .

in other words we have

A := {(β1, . . . , β`) | ` > 0, βj ∈ B} .

Observe in order for A to be a well-defined class, it is necessary that b0 = 0 (i.e. that there is no object in B with size
zero), as then A would contain an infinity of objects of any given size. The translation to OGFs is

A(z) =
∞∑

k=0

B(z)k =
1

1−B(z)
.

This operation is often referred to as the quasi-inverse.
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Structure OGF
{ε} 1
{Z} z

A + B A(z) +B(z)
A ×B A(z) ·B(z)

SEQ (A)
1

1−A(z)

Table 2. Small dictionary of unlabelled combinatorial classes

Recursive classes. Finally we mention that, under certain conditions, combinatorial classes may be defined recursively,
to allow for instance for the definition of branching structures. We will not go into the technical detail of these conditions
(see [2, §I.2.3]), except to say that the general idea is that:

1. for every class there should be at least one terminal symbol (an atom or a neutral element);

2. a system should not allow for a same symbol to be expanded twice without increasing the size.

Example 1. This second point can be illustrated using a common mistake when specifying unary-binary trees (sometimes called
Motzkin trees because they are in bijection with Motzkin paths, much like standard binary trees are in bijection with Dyck paths). If
we define the class of unary binary tree as

U = Z+ U + U
2

that is, we define a tree is either a leaf, or an unary internal node or a binary internal node and we count the leaves, then the recursion
is not well-founded, and there are two ways to see this.
Combinatorically, the problem is that since unary nodes (in particular) do not affect the size of a tree, it is possible to obtain an infinity
of trees of the same size, simply by taking any unary-binary tree and increasing ad infinitum the number of unary binary nodes—without
changing the size. We were able to get away with counting leaves in binary trees because binary nodes affect the number of leaves (in
other words there is a direct correspondance between the number of internal nodes and external nodes).
Analytically, the problem is simply that the functional equation

U(z) = z + U(z) + U(z)2

does not admit any positive real solution.

The problem is solved by counting simultaneously the leaves by t and the internal nodes by z; this gives the equation

U(z, t) = t+ zU(z, t) + zU2(z, t).

2.2.2 Some direct examples

Example 2. Binary words on the alphabet {0, 1}
A word is a finite sequence of 0 and 1.
W = SEQ({0}+ {1})

W (z) =
1

1− (z + z)
and [zn]W (z) = 2n

Example 3. Number Fn of different ways to cover the segment [0,n] with bricks of size 1 and 2
Let a be an atomic class of size 1 and b an atomic class of size 2. Then, F = SEQ(a+ b).

F (z) =
1

1− (z + z2)
= 1 + z + 2z2 + 3z3 + 5z4 + . . .
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We identify it as the Fibonacci sequence Fn. The recurrence Fn+2 = Fn+1 + Fn is directly linked to the equation z2 − z − 1 = 0.

Example 4. Integer composition [2, §I.3]
The composition of an integer n is the sequence x1, x2, . . . , xk such that n = x1 + x2 + . . .+ xk, with xi ≥ 1.
An integer x is an atomic class of size x, represented by the OGF zx. The class I of integers has the OGF I(z) = z+ z2 + z3 + . . . =
z

1−z
.

The class of compositions of integers C is described by C =SEQ(I). So,

C(z) =
1

1− I(z) =
1

1− z
1−z

=
1

1− 2z
− z

1− 2z

Cn = [zn]C(z) = [zn]
1

1− 2z
− [zn]

z

1− 2z
= 2n − 2n−1 = 2n−1

Remark. For each example (words, Fibonacci numbers, integer compositions), the exponential growth of the coefficients of the OGF is
directly linked to the singularity of the generating function (a singularity of a function is a point where the function is not well defined,
when it grows to infinity).

2.3 OGF as complex objects
Until now, an OGF is simply a formal sum of monomials. Let’s now consider2 the OGF as a univariate function of the
complex variable z.

f(z) =
∑

n≥0
fnz

n

When it is possible to write f as a Taylor expansion f(z) =
∑
n≥0 f̃n(z − z0)n, we say that f is analytic at the point z0.

In combinatorics, almost all generating functions are analytic at 0. The function f has a radius of convergence R defined
by

R = sup{r such that f(z) is analytic for |z| < r}
An other way to see the radius of convergence is

R−1 = lim sup
n
|fn|1/n

It means that when n grows to infinity, we have fn ∼ R−nθ(n) where θ(n) is a subexponential function of n. The
definition impose that it must exist a singularity on the circle |z| < r. Furthermore, a classical theorem in complex
analysis (due to Pringsheim) says: If the coefficients fn are non negative, then there exists a singularity at the point of the
real line z = R.

2.4 Asymptotic of the coefficients (simple case)
Lemma 1. (Schützenberger) All the combinatorial constructions upon (ε, Z, +, ×, SEQ) leads to generating functions
that are rational.

Indeed, ε and Z translates to 0 and z that are trivial rational expressions; moreover the operators +,× and SEQ transform
a pair of rational functions, or a rational function, to another rational function (where a polynomial is a rational function
of denominator 1).
Let f be an OGF. It is possible to write f as a quotient of two polynomialsA(z) andB(z). And so, finding the singularities
of f is equivalent to finding the zeros of the denominator B(z). The rational function f has a partial fraction expansion:

f(z) = polynomial +
∑

(ρ,r),B(ρ)=0

c

(1− z/ρ)r
(r ∈ N)

2This material is covered partially in [2, §IV.1 p.225] for the complex nature of the OGF, and then the exponential growth is explained in §IV.3 p.238
and in particular §IV.3.2 p.243.
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Finding the asymptotics of the coefficients fn is equivalent to the study of the asymptotics of (1− z/ρ)−r.

[zn]
1

(1− z/ρ)r
= ρ−n[zn](1− z)−r

= ρ−n
(
n+ r − 1

r − 1

)

= ρ−n
(n+ r − 1)(n+ r − 2) . . . (n+ 1)

(r − 1)!

∼ ρ−nnr−1

(r − 1)!

Finally, fn is a sum of terms of the form c ρ−nnr−1. (This is a version of Theorem VI.1 p.381 in [2], when ρ = 1.)

Conclusive remarks

• the singularity which is the closest to the origin give the exponential growth in the asymptotics. The singularity of
minimal modulus is called dominant singularity.

• the subexponential term of this asymptotic is given by the multiplicity of the dominant singularity.

Example 5. Find the asymptotics of the coefficients of

f(z) = (1− z2/2)−5(1− z3)−1(1− 2z)−5(1− z − z2)−1 .

Singularities:={
√
2,−
√
2, 1, 1/2, φ, φ} Dominant singularity: z = 1/2 Multiplicity: 5. So, fn = [zn]f(z) ∼ c 2nn4.

2.5 General asymptotic scheme
With more detailed complex analysis, it is possible to get the asymptotic of other generating functions (not necessarily
rational). This is Theorem VI.2 p.385 in [2], also seen in the special case where the singularity is ρ = 1 (using the property
of scaling, [zn]f(ρz) = ρn[zn]f(z), we can always get back to this case).

Theorem 1. (Subexponential asymptotic term). For α ∈ R\{0,−1,−2, . . .}, and k ∈ N,

[zn]
1

(1− z)α logk
(

1

1− z

)
∼ nα−1

Γ(α)
logk(n),

where Γ is the classical generalized factorial function: Γ(x) =
∫∞
0
e−t tx−1dt.

Theorem 2. (Transfer lemma, Th. VI.3 p.390 [2])
If f(z) ∼z→1 g(z), then fn ∼ gn.
If f(z) =z→1 O(g(z)), then fn = O(gn).
If f(z) =z→1 o(g(z)), then fn = o(gn).

This powerful theorem expresses that it is enough to know the comparative behaviour of two functions in the neighbour-
hood of their smallest singularity (here assumed to be 1).
The intuition is that a function’s behaviour around its singularity is extremal and dictated exactly by its singularity.

Remark. For a more detailled lemma (with all hypothesis), see [2]. Moreover, instead of getting only a first order equivalent, it is also
possible to have a more precise asymptotic expansion with several error terms.

2.6 Tree enumeration
The topic here is fully covered in [2, §I.5].
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2.6.1 Binary trees (number of internal nodes). B = ε+ Z×B×B

So, B(z) = 1 + zB(z)2. We solve the equation and find B(z) = 1−√1−4z
2z .

The singularity is at z = 1/4, and the order is −1/2.
Near z = 1/4, we can write B(z) ∼ −2 1

(1−4z)−1/2 . So,

Bn ∼ −2
4nn−3/2

Γ(−1/2)
∼ 4n n−3/2√

π

(
Γ(−1/2) = −2

√
π
)

2.6.2 Unary-Binary trees (internal and external nodes). U = Z+ Z×U + Z×U×U
U(z) = z + zU(z) + zU(z)2 = zφ(U(z)), where φ(t) = 1 + t+ t2.

Exercise 2. Find the generating function, an expression for the coefficients and an asymptotic value.

2.6.3 General trees A = Z×SEQ(A)

A(z) =
z

1−A(z)
so, A(z) = z +A(z)2

A(z) =
1−
√

1− 4z

2
An ∼

4n−1n−3/2√
π

Remark. We notice that zB(z) = A(z). Then, [zn−1]B(z) = [zn]A(z), and Bn−1 = An. The bijection between binary trees and
general trees is here proved thanks to the symbolic method!

2.6.4 Otter trees: the problem of symetries

An Otter tree T is a rooted binary non-planar unlabelled tree.

T (z) = z + z2 + z3 + 2z4 + 3z5 + 6z6 + 11z7 + . . .

An Otter tree is just a leaf, or it is a node with two Otter subtrees. But there is a symmetry at this node, so we put a factor
1/2 in the counting of those configurations. But with this correction, when the two subtrees are exactly the same, it it now
counted just a half time. So we add the other half for those subtrees. Then,

T (z) = z +
1

2
T (z)2 +

1

2
T (z2).

2.6.5 Balanced 2-3 trees (external nodes): an example of substitution

Balanced 2–3 trees are trees where each node is:

• a leaf,

• an internal node with two or three sons,

and all leaves are at the same distance from the root.
The combinatorial specification is:

E = Z + E ◦ [{Z× Z}+ {Z× Z× Z}]  E(z) = z + E(z2 + z3),

since trees with depth h are transformed to trees of depth h + 1 by substituting each leaf by an internal node and two or
three leaves.
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3 Labelled objects and exponential generating functions
We now discuss the topic of labelled objects, introduced in [2, §II.1 and 2].
As noted, for instance in Table 1, the class of permutations does not have an analytic OGF, because the coefficients n!
grow exponentially faster than zn and thus the radius of convergence the ordinary generating function is zero.
This combinatorial explosion is a common trait shared by all combinatorial classes that are labelled—that is, of which
the atoms are endowed with a permutation of n, the size. Permutations are such a class (a permutation is a sequence of
labelled atoms), as are arrangements (a subset of labelled atoms), and more complex objects such as graphs.

3.1 Definition and examples
The solution is to enumerate these objects using exponential generating functions, in which the coefficient is normalized
by n!.

Definition 3. Let A be a labelled combinatorial class, and let (an)n∈Z>0
be its counting sequence. We call A(z) the

exponential generating function (or EGF) associated with A,

A(z) :=

∞∑

n=0

an
zn

n!
.

And with EGFs there is also a combinatorial definition,

A(z) :=
∑

α∈A

z|α|

|α|! .

Notice that now, extracting the coefficient leads to a factorial factor:

an = n![zn]A(z)

Example 6. P = {Permutations}

P (z) =
∑

n≥0

n!
zn

n!
=

1

1− z
It looks like a sequence of atoms. Indeed, a permutation can be viewed as a linear graph of size n:

σ(1) —– σ(2) —– σ(3) —– . . . —– σ(n)

Example 7. U: non connected graphs (graphs with no edge). For all n, Un = 1.

U(z) =
∑

n≥0

zn

n!
= ez

Example 8. K: Complete graphs (all edges). It is the same EGF, K(z) = ez .

Example 9. C: Cyclic graphs (with a given orientation in the plan). Cn = (n− 1)!. So,

C(z) =
∑

n≥1

(n− 1)!
zn

n!
=
∑

n≥1

zn

n
= log

(
1

1− z

)
.

3.2 Construction of the sum
The disjoint union is the same construction as the unlabelled case. If A = B + C, then the EGF of A is A(z) =
B(z) + C(z).
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3.3 Construction of the product
Starting with two labelled structures β and γ, the classical Cartesian product does not provide a well labelled structure.
The set of labels of a well-labelled structure of size n is exactly the set of integers [1, n].
So, from a couple (β, γ), we define a re-labelled structure (β′, γ′) where the labels are exactly {1, . . . , |β|+ |γ|}, and the
relative order of labels of each element is preserved. We define

β ? γ = { all couples (β′, γ′) well relabelled}

The class β ? γ contains exactly
(|β|+|γ|
|β|

)
distinct elements. Then we can define the labelled product

A = B ? C =
⋃

β∈B,γ∈C
β ? γ

Lemma 2. A(z) = B(z) · C(z)

Proof.

A(z) =
∑

α∈A

z|α|

|α|!

=
∑

β∈B

∑

γ∈C

∑

α∈β?γ

z|β|+|γ|

(|β|+ |γ|)!

=
∑

β∈B

∑

γ∈C

(|β|+ |γ|
|β|

)
z|β|z|γ|

(|β|+ |γ|)!

=
∑

β∈B

∑

γ∈C

z|β|z|γ|

|β|! |γ|!
= B(z) · C(z)

Remark. B ? B := B2 does not contain elements (β, β): the re-labelling make the two βs different.

3.4 Construction of the sequence
Since we have the two constructions, sum and labelled product, it is possible to construct the sequence as before. For any
labelled class B where b0 = 0,

A = SEQ (B) = {α s.t. ∃k ≥ 0, α = (β1, . . . , βk) finite re-labelled sequence, βi ∈ B}

SEQ (B) = {ε}+ B + B ?B + B ?B ?B + . . .

The corresponding EGF is

A(z) =
∑

k≥0
B(z)k =

1

1−B(z)

Definition 4. k components sequence : SEQk(A) = Ak

J. LUMBROSO and B. MORCRETTE, Introducing Analytic Combinatorics, CIMPA Summer School 2014, Nablus 18



3.5 Construction of the set
A k components set is defined as:

SETk(B) := {sets with k elements of B}
This class can be viewed as an equivalence class:

SETk(B) =
SEQk(B)

R

where R is the following equivalence relation:
(β1, . . . , βk)R(β′1, . . . , β

′
k) iff there exists a permutation σ ∈ Sk such that βσ(i) = β′i.

We notice that the ratio of cardinalities is:
|SETk(B)|
|SEQk(B)| =

1

k!
.

Then, we define the SET constructor:
A := SET (B) =

⋃

k≥0
SETk(B) ,

and the corresponding EGF is

A(z) =
∑

k≥0

1

k!
A(z)k = exp(B(z)) .

3.6 Construction of the cycle
For any labelled class B with b0 = 0 and k ≥ 1, the class of k components cycle is

CYCk(B) := {cycles with k elements of B}
This class can be viewed as an equivalence class:

CYCk(B) =
SEQk(B)

T
,

where T is the following equivalence relation:
(β1, . . . , βk)T(β′1, . . . , β

′
k) iff there exists a cyclic permutation τ ∈ Sk such that βτ(i) = β′i.

We notice that the ratio of cardinalities is:
|CYCk(B)|
|SEQk(B)| =

1

k
.

Then, we define the CYC constructor:
A := CYC (B) =

⋃

k≥0
CYCk(B) ,

and the corresponding EGF is

A(z) =
∑

k≥1

1

k
A(z)k = log

(
1

1−B(z)

)
.

3.7 Examples of permutation classes
3.7.1 Permutations

P (z) =
1

1− z = exp

(
log

(
1

1− z

))

This corresponds to the symbolic equation:
P = SET (CYC (Z))

This express the classical decomposition of a permutation in a product of cycles with disjoint supports.
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Structure EGF
{ε} 1
{Z} z

A + B A(z) +B(z)
A ?B A(z) ·B(z)

SEQ (A)
1

1−A(z)
SET (A) exp(A(z))

CYC (A) log

(
1

1−A(z)

)

Table 3. Small dictionary of labelled combinatorial classes

3.7.2 Involutions

An involution σ is a permutation such that σ2 = Id. It can be viewed as a product of permutations of size 1 and 2 with
disjoint supports, that is a set of cycles of size 1 or 2. All permutations are defined by: P = SET (CYC (Z)). Involutions
are specified by I = SET(CYC≤2(Z)). Then, the EGF is

I(z) = exp

(
z +

z2

2

)

=
∑

n≥0

1

n!

(
z + z2/2

)n

=
∑

n≥0

1

n!

n∑

k=0

(
n

k

)
1

2k
z2kzn−k

=
∑

n≥0

zn

n!

n∑

k=0

(
n

k

)
1

2k
zk

Extracting the coefficient,

[zn]I(z) =
1

n!

(
n

0

)
1

20
+

1

(n− 1)!

(
n− 1

1

)
1

21
+ . . .+

1

(n− k)!

(
n− k
k

)
1

2k
+ . . .

=

bn/2c∑

i=0

1

(n− i)!

(
n− i
i

)
1

2i

Finally, the exact number of involutions of size n is In =

bn/2c∑

i=0

n!

i! (n− 2i)! 2i
.

Remark. Finding an asymptotic for those formula will be develop later (Saddle-point analysis).

3.7.3 Derangements

A derangement is a permutation without fix points

D = SET (CYC>1(Z))

D(z) = exp

(
z2

2
+
z3

3
+ . . .

)
= exp

(
log

(
1

1− z

)
+ z

)
=

e−z

1− z
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dn = n![zn]D(z) =
n∑

k=0

(
n

k

)
(−1)k(n− k)! = n!

n∑

k=0

(−1)k

k!

Remark. The probability for a random permutation of being a derangement is:

dn
n!

=

n∑

k=0

(−1)k
k!

−→n→∞ e−1

Remark. It can be directly done by singularity analysis. The singularity of D(z) is at z = 1. At this point, the asymptotic expansion
of D(z) is

D(z) ∼z=1
e−1

1− z , so, dn ∼ n!

e
.

4 Recursive classes. Asymptotic of trees
(Covered in I.5 and II.5 of the book.)
In the previous examples of class of trees (binary, unary-binary, general), we saw that the generating function is often (or
almost) of the form A(z) = zφ(A(z)). This formula express the classical recursive definition of tree structures.
For example,

• φ(t) = 1 + t+ t2, we have unary-binary trees;

• φ(t) = 1/(1− t) is for general trees;

Example 10. The Cayley tree is a rooted labelled non planar tree. Its recursive definition is a node and a set of subtrees. So,
T = Z ? SET (T).

T (z) = z exp(T (z)) .

For Cayley trees, φ(t) = et.

How to get easily exact and asymptotic formula?

4.1 Lagrange inversion
Theorem 3. If A(z) = zφ(A(z)), then the tree equation has a unique solution which satisfies:

[zn]A(z) =
1

n
[yn−1]φ(y)n ;

[zn]A(z)k =
k

n
[yn−k]φ(y)n .

Remark. This theorem needs some analytic hypothesis on the function φ, which are always verified for classical tree examples.

Proof.

Lemma 3. If f(z) =
∑
n≥0 fnz

n is analytic, then we have by the Cauchy formula

fn =
1

2iπ

∮
f(z)

dz

zn+1
.
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If z =
A(z)

φ(A(z))
=

y

φ(y)
, then by differentiation, dz =

dy

φ(y)
− yφ′(y)

φ(y)2
dy .

Then, the coefficient an can be written:

[zn]A(z) =
1

2iπ

∮
y
φ(y)n+1

yn+1

(
dy

φ(y)
− yφ′(y)

φ(y)2
dy

)

=
1

2iπ

∮
φ(y)n

yn
dy − 1

2iπ

∮
φn−1φ′

yn−1
dy

= [yn−1]φ(y)n − 1

n
[yn−2](φ(y)n)′

If we write φ(y)n =
∑
αpy

p, then (φ(y)n)′ =
∑
pαpy

p−1.

Therefore, [zn]A(z) = αn−1 − 1
n (n− 1)αn−1 = 1

nαn−1.

Finally, [zn]A(z) = 1
n [yn−1]φ(y)n.

4.1.1 Binary trees B = ε+ Z×B ×B

B(z) = 1 + zB(z)2 does not fit to the specification but if we set C(z) = B(z)− 1, then C(z) = z(1 + C(z))2. Thanks
to the Lagrange inversion,

[zn]C(z) =
1

n
[yn−1](1 + y)2n =

1

n

(
2n

n− 1

)
=

1

n+ 1

(
2n

n

)
.

4.1.2 Unary-Binary trees. U(z) = z(1 + U(z) + U(z)2)

un = [zn]T (z) =
1

n
[yn−1](1 + y + y2)n =

1

n

∑

n1+n2+n3=n,n2+2n3=n−1

(
n

n1, n2, n3

)

4.1.3 Cayley trees. T = Z ? SET (T)

The tree equation is T (z) = zez .

[zn]T (z) =
1

n
[yn−1]enz =

1

n

nn−1

(n− 1)!
=
nn−1

n!
.

Finally, Tn = n![zn]T (z) = nn−1 .

4.2 Asymptotic for trees: analytic inversion
The following is based on the implicit function theorem (see [2] Prop. IV.5 p.278 and Thm VI.6 p.404).

Theorem 4. If Y (z) = zφ(Y (z)), with φ an analytic function of radius of convergence R, and if there exists a unique τ ,
0 < τ < R such that φ(τ) = τφ′(τ), then, Y (z) is analytic at z = 0, its radius of convergence is ρ = 1/φ′(τ), and Y (z)
has an asymptotic expansion near its singularity ρ,

Y (z) ∼z=ρ τ − γ
√

1− z/ρ

where γ =
√

2φ(τ)/φ′′(τ).
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4.2.1 Unary-Binary tree U(z) = z(1 + U(z) + U(z)2)

We need 1 + τ + τ2 = τ(1 + 2τ), which implies τ2 = 1. So, ρ = 1/3 and γ =
√

3.
So, for z near 1/3, we have U(z) ∼ 1−

√
3
√

1− 3z
Finally, the singularity analysis leads to the asymptotic

Un ∼
√

3

2

3n n−3/2√
π

.

4.2.2 Cayley tree T (z) = zeT (z)

The equation eτ = τeτ implies τ = 1. So, the radius of convergence is ρ = e−1, and γ =
√

2. Finally,

T (z) ∼z=e−1 1−
√

2
√

1− ez

The singularity analysis implies

Tn = n![zn]T (z) ∼ n!
en n−3/2√

2π

Remark. Besides, we know that Tn = nn−1, so it is possible to re-discover the Stirling formula

nn−1 ∼ n!e
nn−3/2

√
2π

.

5 Other symbolic operators

5.1 Boxed product
Let us defined a modified labelled product, when B is a class with no element of size 0, (b0 = 0).
A = B� ?C is the subset of B ?C with labels such that the smallest label is in the B component. The generating function
of A is given by

A(z) =

∫ z

0

(
d

dt
B(t)

)
C(t)dt .

Example 11. records in permutation, increasing binary trees.

5.2 Pointing and substitution
Those two operations are the same in labelled and unlabelled world.

Pointing. This operator written Θ points a distinguished atom.
A = ΘB means An = [1, n]× Bn. Constructing an object of size n in A is choosing an object of size n in B and point
one of the n atoms of this object. Clearly, we have an = nbn, so

A(z) = z
d

dz
B(z) .

Substitution A = B◦C means substitute every atom of B by elements of C. It translates directly intoA(z) = B(C(z)).
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6 Multivariate Generating functions using markers
In this course we consider a very simple extension of our combinatorial objects to allow for the analysis of special
parameters in function of the size of an object. For simplicity, we will restrain ourselves to a simple type of parameter that
can be expressed in terms of markers (see [2] III.1 p.152), but the technique is powerful enough to consider much more
advanced parameters, for instance recursive (see [2] III.5 p.181) or extremal (see [2] III.8 p.214) ones.

6.1 Definitions
Definition 5. A parameter χ for a combinatorial class A is a function χ : A −→ N.

Example 12. Number of letters in a word, height of a tree, number of disconnected nodes in a graph.

Definition 6. Let A be a class and χ be a parameter on A. The bivariate generating function (BGF) associated to this
couple (A, χ) is

A(z, u) :=
∑

α∈A
z|α|uχ(α) (unlabelled) A(z, u) :=

∑

α∈A

z|α|

|α|!u
χ(α) (labelled)

Equivalently, we have

A(z, u) =
∑

n,k≥0
an,kz

nuk (unlabelled) A(z, u) =
∑

n,k≥0
an,k

zn

n!
uk (labelled)

where
an,k = |{α ∈ A such that |α| = n, χ(α) = k}| .

Notation [znuk]A(z, u) = an,k (unlabelled) and
an,k
n!

(labelled).

Remark. When u is set to 1, we obtain the univariate OGF or EGF.
A(z, 1) =

∑
n

∑
k an,kz

n1k =
∑

n anz
n = A(z) (in case of an OGF).

6.2 Symbolic method
All previous symbolic constructions are preserved when we use multivariate generating functions. Now, in the specifica-
tions, we are allowed to add markers, stickers (•) on the objects.
In the unlabelled world, we still have a direct correspondence for Union, Product, Sequence. In the labelled world, we
also have a direct correspondence for Union, Product, Sequence, Set, Cycle.

Example 13. (Binary words)
We want to count the number of ones in a binary word (with alphabet {0, 1}).
W = SEQ (Z0 + •Z1), and the bivariate generating function is W (z, u) =

1

1− (z + uz)
.

wn,k := [znuk]W (z, u) = [uk][zn](1− z(1 + u))−1 = [uk](1 + u)n =

(
n

k

)
,

where wn,k is the number of words of size n with k ones.
W (z, 1) = (1− 2z)−1, so [zn]W (z, 1) = 2n.
The distribution is now easy to compute:

Pn[drawing a word with k ones] =

(
n
k

)

2n
=

[znuk]W (z, u)

[zn]W (z, 1)
.
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6.3 Distribution, mean, variance, moments
What is said here applies to all multivariate generating functions, even those obtained with more powerful techniques than
markers (see III.2 p.156).

Definition 7. (Distribution.) Considering a class A and a parameter χ, let A(z, u) be its BGF. The distribution of the
parameter χ, uniformly with respect to the size, is given by

Pn[χ = k] =
[znuk]A(z, u)

[zn]A(z, 1)
.

Remark. We always consider that objects of the same size have the same probability to be chosen. For a class A, we consider therefore
a uniform distribution over An.

Definition 8. (Mean.) For a class A, a parameter χ and the associated BGF A(z, u), the expected value of the parameter
χ is given by

En[χ] =
[zn]

(
d
duA(z, u)

)
|u=1

[zn]A(z, 1)
.

Proof.

[zn]
(
d
duA(z, u)

)
|u=1

[zn]A(z, 1)
=

[zn]
(∑

n,k k an,kz
nuk−1

)
|u=1

[zn]
∑
n anz

n
=

[zn]
∑
n,k k an,kz

n

an

=

∑
k k an,k
an

=
∑

k

k
an,k
an

=
∑

k

k Pn[χ = k] = En(χ)

Definition 9. (Moments) For a class A, a parameter χ and the associated BGF A(z, u), the factorial moment of order r
of the parameter χ is given by

En[χ(χ− 1) . . . (χ− r + 1)] =
[zn]

(
dr

duA(z, u)
)
|u=1

[zn]A(z, 1)
.

In particular, the variance is given by

Vn(χ) = En[χ(χ− 1)] + En[χ]− En[χ]2 .

Example 14. (Binary words)
W (z, u) = (1− z(1 + u))−1.

[zn]

(
d

du
A(z, u)

)∣∣∣∣
u=1

= [zn]

(
z

(1− z(1 + u))2

)∣∣∣∣
u=1

= [zn]
z

(1− 2z)2

= [zn−1]
1

(1− 2z)2
= 2n−1[zn−1]

1

(1− z)2 = 2n−1n

Finally, En[number of ones] = 2n−1n
2n

= n
2

, which is hopefully the result we expected.

Example 15. (Giving back the change). We have only coins of size 1, 2, and 5. The problem is to know what is the expected number
of coins we receive, in general, when we are returned a total amount of n, and when the probability of drawing a coin is the same,
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whatever the size (1, 2, 5) of the coin. The specification is in the unlabelled world, and the back given money is just a sequence of coins
of size 1, then a sequence of coins of size 2, and finally a sequence of coins of size 5. On the specification, we choose to mark the
number of coins of size 2.

D = SEQ (Z)× SEQ
(
•Z2)× SEQ

(
Z
5)

So, the corresponding generating function is:

D(z, u) =
1

(1− z)
1

(1− uz2)
1

(1− z5) .

The cumulative function C(z) := d
du
D(z, u)|u=1 is given by

C(z) =
z2

(1− z2)2(1− z)(1− z5) .

All the poles of this function are on the circle of convergence |z| = 1. But, the singularity z = 1 is the only dominant singularity
because of its multiplicity (which is 4.). So, the subexponential term of asymptotic is n4 − 1 = n3. The constant factor is given by the
asymptotic equivalent near the singularity z = 1,

C(z) ∼z=1
1

(1− z)4(1 + z)2(1 + z + z2 + z3 + z4)
∼ 1

22 · 5
n3

3!
.

With the same technique of singularity analysis, we find [zn]D(z) ∼ 1
2·5

n2

2

So the expected number of coins of size 2 verifies En[coins of size 2] ∼ n
6

.
The same analysis can be done for the expected number of coins of size 1 and 5, and we find:

En[coins of size 1] ∼ n

3
, En[coins of size 5] ∼ n

15
.

So, the expected number of coins is En[number of coins] ∼ n
3
(1 + 1/2 + 1/5) ∼ 17n

30
.

7 Tree statistics

Example 16. (Root degree of a rooted tree or "Cayley tree", [2] Ex III.12 p.179).
The aim of this problem is to find the average number of children at the root of a Cayley tree.
Specification:

T
• = Z ? SET (•T)
T = Z ? SET (T)

So the generating functions satisfy

T (z, u) = z exp (uT (z))

T (z) = z exp (T (z))

The derivative is d
du
T (z, u) = zT (z) exp(uT (z)). So, for u = 1 , we have an expression for the cumulative function

d

du
T (z, u)|u=1 = T (z)z exp(T (z)) = T (z)2 .

Using the Lagrange inversion, we find the coefficient of zn:

[zn]
d

du
T (z, u)|u=1 = [zn]T (z)2 =

2

n
[yn−2]eny =

2

n

nn−2

(n− 2)!
.

Finally, since, T (z, 1) = T (z) =
∑

n n
n−1 zn

n!
, the expected number of children at the root is given by

En[children at the root] =
[zn] d

du
T (z, u)|u=1

[zn]T (z)
=

2nn−2

n(n− 2)!
· n!

nn−1
= 2(1− 1

n
)
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Conclusion: in general, a rooted tree has 2 children at the root!

Remark. Note that a nice direct proof (volunteered by Colin McDiarmid during the lecture in Oxford) exists, which uses the well-
known fact that in a graph G = (V,E), where V is the set of vertices and E the set of edges,

∑
v∈V deg(v) = 2|E|. Let r be the

root,

En[deg(r)] =
∑

v∈V
Pn[v is root] deg(v)

=
1

n

∑

v∈V
deg(v) [all vertices equiprobably the root]

=
2|E|
n

[total degree formula]

= 2

(
1− 1

n

)
[a tree has n− 1 edges].

Indeed, direct methods can generally be simpler (especially for the toy examples considered in this course to illustrate our methods),
but analytic combinatorics generally presents the advantage of providing a generic “one size fits all” method to tackle combinatorial
problems which can be specified.

8 Permutation statistics
We can use all the concepts previously presented (EGF, BGF, symbolic method and singularity analysis) for the study of
some statistics on permutations.

8.1 Prisoner’s dilemma
Puzzle A hundred prisoners, each uniquely identified by a number between 1 and 100, have been sentenced to death.
The director of the prison gives them a last chance. He has a cabinet with 100 drawers (numbered 1 to 100). In each,
he’ll place at random a card with a prisoner’s number (all numbers different). Prisoners will be allowed to enter the room
one after the other and open, then close again, 50 drawers of their own choosing, but will not in any way be allowed to
communicate with one another afterwards. The goal of each prisoner is to locate the drawer that contains his own number.
If all prisoners succeed, then they will all be spared; if at least one fails, they will all be executed.
There are two mathematicians among the prisoners. The first one, a pessimist, declares that their overall chances of
success are only of the order of 1/2100 ' 8 · 10−31. The second one, a combinatorialist, claims he has a strategy for the
prisoners, which has a greater than 30% chance of success. Who is right?

Remark. This problem, described in [2] Notes II.15 p.124 and III.10 p.176, takes its origin from a paper by Gál and Miltersen on data
structures [3, 5]. The optimality of the strategy was recently proven in 2006 by Curtin and Warshauer [1].

Solution The better strategy goes as follows. Each prisoner will first open the drawer which corresponds to his number.
If his number is not there, he’ll use the number he just found to access another drawer, then find a number there that points
him to a third drawer, and so on, hoping to return to his original drawer in at most 50 trials. (The last opened drawer will
then contain his number.) This strategy globally succeeds provided the initial permutation σ defined by σi (the number
contained in drawer i) has all its cycles of length at most 50. The probability of the event is

p = [z100] exp

(
z

1
+
z2

2
+ · · ·+ z50

50

)
= 1−

100∑

j=51

1

j
' 0.31182 78206.

Do the prisoners stand a chance against a malicious director who would not place the numbers in drawers at random? For
instance, the director might organize the numbers in a cyclic permutation. [Hint: randomize the problem by renumbering
the drawers according to a randomly chosen permutation.]
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8.2 Average number of cycle
Recall that the class of permutation can be seen as a set of cycles: P = SET(CYC (Z)). We want to count the number of
cycles, so the specification becomes P = SET (•CYC (Z)) . The corresponding BGF is

Pc(z, u) = exp

(
u log

(
1

1− z

))
= (1− z)−u while P (z) =

1

1− z =
∑ n!zn

n!
.

The average number of cycles is given by

En[number of cycles] =
n![zn] dduPc(z, u)|u=1

n![zn]P (z)
= [zn]

d

du
Pc(z, u)

∣∣∣∣
u=1

.

Ω(z) :=
d

du
Pc(z, u)|u=1 = log

(
1

1− z

)
exp

(
u log

(
1

1− z

))
|u=1 =

1

1− z log

(
1

1− z

)
.

So,

En[number of cycles] = [zn]Ω(z) = [zn]

(∑

i

zi

)(∑

k

zk

k

)

= [zn]
∑

p

zp
(

1 +
1

2
+

1

3
+ . . .+

1

p

)

=
n∑

i=1

1

i
= Hn ∼n→∞ log(n) .

8.3 Number of cycles of size r
Let dr be the number of cycles of size r in a permutation of size n. In the specification of a permutation, we now want to
mark only the cycles of size r.

Pdr = SET((CYC(Z)\{CYCr(Z)}) + {•CYCr(Z)}) .

The corresponding BGF is

Pdr (z, u) = exp

(
log

(
1

1− z

)
− zr

r
+ u

zr

r

)
=

1

1− z exp

(
(u− 1)

zr

r

)
.

[ukzn]Pdr (z, u) =
n![ukzn]Pdr (z,u)
n![zn](1−z)−1 is the probability that a permutation of size n has exactly k cycles of size r. This

function Pdr (z, u) has a singularity at z = 1, so using the transfer lemma (Theorem 2),

[ukzn]Pdr (z, u) ∼ [ukzn]
1

1− z e
−1/reu/r

∼ e−1/r
(

[uk]eu/r
) (

[zn]
1

1− z

)

∼ 1

k!

1

rk
e−1/r .

So, we conclude saying the number of cycles of size r in a permutation of size n follows a Poisson law of parameter 1
r .

Pn[dr = k] ∼ 1

k!

1

rk
e−1/r so, dr ∼ Poisson

(
1

r

)
.
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Remark. (Expected number of cycles of size r)
In order to find this quantity, we have several option. As we know dr follow a Poisson law of parameter r−1 when n → ∞, we can
directly say that En(dr) ∼ r−1.
Or, we can use the asymptotic of the cumulative function Cdr (z) =

d
du
Pdr (z, u)|u=1.

Cdr (z) =
1

1− z
zr

r
=

1

r

zr

1− z .

So,

En(dr) =
n![zn]Cdr (z)

n!
= [zn]Cdr (z) =

1

r
[zn−r]

1

1− z =
1

r
, for r ∈ {1, . . . n} .

This expression is exact, so it is possible to conclude on the average number of cycles in a permutation:

En[number of cycles] =
n∑

r=1

En(dr) =

n∑

r=1

1

r
∼n→∞ log(n) .

9 Statistic on mappings (or functional graphs)
This topic is broached in the book in several parts: decomposing the functional graph structure into a symbolic specifica-
tion is explained in II.5.2 p.129; an analysis of various parameters is explained in VII.3.3 p.462.
We define M the class of mappings (or functions) by

Mn = {f : {1, . . . , n} → {1, . . . , n}} .

We will represent a mapping of Mn by a graph with n vertices, and there is an edge between two vertices, from i to j, if
f(i) = j. The class of graphs we obtain is called functional graphs, and it can be viewed as graph where every vertex has
outdegree 1.
Starting from a vertex x, let us apply several times the function f : x, f(x), f2(x), . . . At some point, since the domain is
finite, this construction will loop back on itself. Repeating the process for all vertices, we thus construct the whole graph. It
is generally composed of several connected components; each component is an oriented cycle of points (possibly reduced
at only one point), and at each point of the cycle is hung some (possibly empty) tree structure, where the edges of a tree
are oriented in direction of the root. These tree structures are rooted non-planar trees (without order on its children), so
they are Cayley trees. The specification derives from this description:

M = SET (CYC (T))

T = Z ? SET (T)

The corresponding generating functions are

M(z) = exp

(
log

(
1

1− T (z)

))
=

1

1− T (z)

T (z) = z · exp(T (z))

We study the following statistics on this structure of functional graph:

1. γ1 is the number of cycles (connected components);

2. γ2 is the number of cyclic points (vertices of the cycles);

3. γ3 is the number of points without preimages (leaves of the Cayley trees).

So we will consider three bivariate generating functions, called Mi(z, u) for i = 1, 2, 3. The goal of this study is to find
the expected value of each parameter γi. We know the expression of the expectation:

En[γi] =
n![zn]Ci(z)

n![zn]M(z)
,
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where Ci(z) is the corresponding cumulative function Ci(z) := d
duMi(z, u)|u=1. The total number of mappings is

mn = nn, and therefore the expression of the expectation reduces to

En[γi] =
n!

nn
[zn]Ci(z) .

9.1 Expression of the BGFs
We have to find the symbolic specification for each parameter γi.

Number of cycles: γ1

M1 = SET (•CYC (T)) so M1(z, u) = exp

(
u log

(
1

1− T (z)

))
.

So,

C1(z) =
d

du
M1(z, u)

∣∣∣∣
u=1

=
1

1− T (z)
log

(
1

1− T (z)

)
.

Number of cyclic points: γ2

M2 = SET (CYC (•T)) so M2(z, u) = exp

(
log

(
1

1− uT (z)

))
.

So,

C2(z) =
d

du
M2(z, u)

∣∣∣∣
u=1

=
T (z)

(1− T (z))2
.

Number of points without preimages: γ3
As stated previously, a functional mapping may be viewed as a set of cycles of Cayley trees. These Cayley trees may be
reduced to a root-leaf. The leaves of these trees do not have a preimage, except if they are root-leaves, since the latter
belong to a cycle; we must therefore take care of removing the root-leaves when counting the points without preimages.
M3 = SET

(
CYC

(
T̂
))

where T̂ is the class of Cayley trees where the leaves but not the root are marked. Let T̃ be the
class of Cayley trees where all leaves and the root are marked. The specification is

M3 = SET
(

CYC
(
T̂
))

T̂ = T̃ \ {•Z}
T̃ =

(
Z ? SET(T̃) \ {Z}

)
+ {•Z}

The corresponding bivariate generating functions are

M3(z, u) = exp

(
log

(
1

1− T̂ (z, u)

))
=

1

1− T̂ (z, u)

T̂ (z, u) = T̃ (z, u)− uz
T̃ (z, u) = z exp

(
T̃ (z, u)

)
+ (u− 1)z .

So, the cumulative function can be expressed and we find

C3(z) =
d

du
M3(z, u)

∣∣∣∣
u=1

=
zT (z)

(1− T (z))3
.
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9.2 Expected values
All three cumulative are expressed in terms of the tree function T (z). The asymptotic behavior is dictated by this function.
But, we have already study this function and its singularities (section 3.2, analytic inversion theorem for trees). We know
that the dominant singularity of T (z) it at z = e−1, and near this singularity, T (z) admits an asymptotic development

T (z) ∼
z=e−1

1−
√

2
√

1− ez .

Number of cycles: γ1

En[γ1] =
n!

nn
[zn]C1(z) =

n!

nn
[zn]

1

1− T (z)
log

(
1

1− T (z)

)

∼ n!

nn
[zn]

1√
2
√

1− ez
log

(
1√

2
√

1− ez

)

∼ n!

nn
en

2
√

2
[zn]

1

(1− z)1/2 log

(
1

1− z

)

∼ n!

nn
en

2
√

2

n−1/2

Γ(1/2)
log(n) ∼ 1

2
log(n)

Number of cyclic points: γ2

En[γ2] =
n!

nn
[zn]C2(z) =

n!

nn
[zn]

T (z)

(1− T (z))2

∼ n!

nn
[zn]

1

2(1− ez)

∼ n!

nn
en

2
[zn]

1

(1− z) ∼
√
πn

2

Number of points without preimages: γ3

En[γ3] =
n!

nn
[zn]C3(z) =

n!

nn
[zn]

zT (z)

(1− T (z))3

∼ n!

nn
[zn]

e−1

2
√

2(1− ez)3/2

∼ n!

nn
ene−1

2
√

2
[zn]

1

(1− z)3/2 ∼ n!ene−1

nn · 2
√

2

n1/2

Γ(3/2)
∼ n

e

10 Probability of being a connected graph
This section is treated as Example II.5 p.138 in [2].
Generating function are used here only as formal objects. Indeed, the functions are implicit and their radius of convergence
is 0. However it is still possible to use them in computations.
Let G be the class of labelled graphs. Take G ∈ G a graph with n vertices. We have

(
n
2

)
possible edges, and for each

edge, we decide to choose it or not. So the total number of labelled graphs with n vertices is gn = 2(n
2). This gives for

the generating function:

G(z) =
∑

n≥0
2(n

2) z
n

n!
.
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Let K be the subclass of G of connected graphs. As a graph is the set of its connected components, the symbolic method
provides the following equation G = SET (K). With K(z) the EGF of K, this translates to G(z) = exp(K(z)). By
inversion, we can formally write

K(z) = log


1 +

∑

n≥1
2(n

2) z
n

n!


 .

And using the formal definition of the log, log(1 + u) = u − u2/2 + u3/3 + . . ., we can express the number kn of
connected graphs with n vertices as

kn = n![zn]K(z) = n![zn] log


1 +

∑

n≥1
2(n

2) z
n

n!




= n![zn]


∑

n≥1
2(n

2) z
n

n!


− 1

2
n![zn]


∑

n≥1
2(n

2) z
n

n!




2

+
1

3
n![zn]


∑

n≥1
2(n

2) z
n

n!




3

+ . . .

= 2(n
2) − 1

2

∑

n1+n2=n

(
n

n1, n2

)
2(n1

2 )2(n2
2 ) +

1

3

∑

n1+n2+n3=n

(
n

n1, n2, n3

)
2(n1

2 )2(n2
2 )2(n3

2 ) + . . .

In these sums, there are only a few dominant terms. Indeed, the sequence
(

2(n
2)
)
n

increases exponentially:

2(n+1
2 ) = 2n2(n

2) .

So, in the first sum, only the first and the last term are meaningful with regard to the asymptotic; (that is n1 = 1 and
n2 = n− 1, or n1 = n− 1 and n2 = 1). The others terms and the other sums are all included into a o

(
2(n

2)2−n
)

. So,

kn = 2(n
2)
(
1− 2n2−n + o(2−n)

)
.

Finally, almost all labelled graphs of size n are connected:

Pn[a graph is connected] =
kn
gn

∼
n→∞

1− 2n2−n −→
n→∞

1 .

11 Saddle-point method
What can we say about the asymptotic of coefficients of a generating function without singularities ?

Let f(z) =
∑
n≥0 fnz

n be a generating function with no singularities: it means that f(z) is analytic in C. The only
formula we can use is the Cauchy formula for coefficients:

fn =
1

2iπ

∮
f(z) dz

zn+1
.

where the integral is evaluated around some contour which encompasses 0. The theory says that any contour around 0
can be used. The saddle-point method relies on a good choice of contour in order to make an approximation, and an
asymptotic expansion.
The integrand is g(z) = f(z)

zn+1 . This function has a pole at z = 0. Furthermore, let us assume that f is a C-analytic (or
entire function) with positive coefficients, and that g(z) grows to infinity when |z| tends to infinity. Let us recapitulate
the geography of the problem. The real function f(z)

zn+1 has a peak at z = 0 and an other peak when z → ∞. Therefore,
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between these two peaks, there exists a point ρ where g′(ρ) = 0. This point has the smallest height among the points of
[x, g(x)], with x ∈]0,∞[. At z = ρ, the derivative of g(z) viewed as a function of z complex also vanishes. The graph of
the function |g(z)| in the neighborhood of z = ρ is looking like a saddle (or a pass in mountains). The point (ρ, g(ρ)) is
called a saddle-point 3

Definition 10. (Saddle-point.) A saddle-point z0 of a function f is a point such that f(z0) 6= 0 and f ′(z0) = 0.

Saddle-point approximation is used when, along a suitable contour going through the saddle-point, the integrand is negli-
gible except in a small neighborhood of the saddle-point. In this case, it is easy to evaluate contour integrals of the form∮
eh(z)dz. Indeed, for such integrals, we locate the saddle-point z0 where h′(z0) = 0, and then, around this saddle-point,

we use the Taylor expansion of h(z)

h(z) = h(z0) +
1

2
h′′(z0)(z − z0)2 +O((z − z0)3) .

So, for the evaluation of the contour integral, we cut the contour into two parts: a part C1 in a small neighborhood of the
saddle-point z0, and the other part C2 (the rest of the contour encompassing 0). For the part C1, we use the Taylor expan-
sion of h(z), then the constant term eh(z0) can be extracted of the integral, and the rest of the integral is easy to evaluate
(directly related to

∫
e−t

2

dt). At this point, it is often possible to show that the integral on the part C2 is exponentially
negligible.

Saddle-point technique Let f(z) =
∑
fnz

n. Let us note exp (h(z)) = f(z)
zn+1 .

Find ζn such that h′(ζn) = 0, that is

ζn
f ′(ζn)

f(ζn)
= n+ 1 .

This gives an asymptotic expression for the coefficients,

fn ∼
f(ζn)

ζn+1
n

√
2πh′′(ζn)

.

11.1 Exponential and 1/n!
If f(z) = ez , we already know that [zn]f(z) = 1

n! . The function f has no singularity so we can, as an exercise, use the
saddle-point method. Let h(z) = log f(z)

zn+1 = z − (n+ 1) log(z).
So, h′(z) = 1− n+1

z , and h′′(z) = n+1
z2 . h′(ζn) = 0 implies ζn = n+ 1.

So, we can deduce an asymptotic for the factorial

1

n!
∼ en+1

(n+ 1)n+1
√

2π/(n+ 1)
.

Then, we put one factor (n+ 1) inside the square root, put the factor nn outside, and use the equivalent (1 + 1/n)n ∼ e,
and we find

1

n!
∼ en

nn
√

2πn
.

3We assumed that the coefficients of f(z) are positive, which implies that there is only one saddle-point on the real positive axis; as a counter-
example, think of sin(z)/zn+1. Moreover, this saddle-point will be dominant; see an example Section 11.2 below. In general, the function f(z)/zn+1

has many saddle-points.
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11.2 Number of involutions: asymptotics

Remember that the generating function of the involutions is I(z) = exp
(
z + z2

2

)
. This gives directly

In
n!

= [zn] exp

(
z +

z2

2

)
=

bn/2c∑

i=0

1

i! (n− 2i)! 2i
.

We want to find an asymptotic equivalent of In.
The function I(z) has no singularity, so we use the saddle-point method. Let exp(h(z)) = I(z)/zn+1, which gives

h(z) = z +
z2

2
− (n+ 1) log(z) , h′(z) = 1 + z − n+ 1

z
, h′′(z) = 1 +

n+ 1

z2
.

The derivative cancels for the roots of z2 + z − (n+ 1). The positive saddle-point is −1/2 + 1/2
√

1 + 4(n+ 1). When
n tends to infinity, it is sufficient to know an asymptotic equivalent of the saddle-point, namely

ζn ∼
√
n− 1/2 .

We obtain an expression for [zn]I(z)/n!, the probability that a permutation is an involution,

In
n!
∼ eI(ζn)

ζn+1
n

√
2πh′′(ζn)

∼ en/2+
√
n−1/4 n−n/2

2
√
πn

.
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Introduction
Probability and theoretical Computer Science interact in many ways: from stochastic algorithms such as ethernet
to analysis of algorithms on average. This course aims at presenting two very classical objects in probability theory:
Markov chains and martingales through their applications in Computer Science. Our goal is not to give the complete
theory, but only to give definitions, basic results and numerous examples. Not all proofs will be developed.

Let us start with a story. John gets out of a bar in Manhattan and wants to go to his hotel. He his so drunk
though, that at each crossing, he does not remember where he comes from and choose one road out of the four at
random. The next crossing he visits thus only depends on where he is now and what will be his decision, but it
does not depend on the past. This is the heuristic of a Markov chain: the future only depends on the present and
not on the past. Random walks are the classical example of Markov chains, and we will prove in this course that,
John will almost surely reach his hotel in finite time – whereas a drunken fish in a 3D undersea Manhattan would
almost surely never find his hotel.

A martingale models a fair game: let us say you play heads-or-tails against you banker. Each time you toss a
coin, if its heads, you win one peso, if its tail, you loose one peso. If the coin is fair, your expected wealth after the
next toss is equal to your actual wealth. This is the heuristic definition of a martingale.

The course is divided into 4 sections: the two first ones concern discrete time Markov chains and martingales,
while the two last ones detail continuous time versions of both objects. The discrete time objects being less intricate,
we will study them in full detail. Instead of studying continuous time Markov chains in full generality, we will focus
on queuing processes, very useful in Computer Science and which study is more basic. In all sections, our aim will
be to state convergence results for the considered stochastic processes.

Prerequisites for this course are elementary probability: in particular conditional expectation, convergence of
sequences of random variables. It could also be useful to know about σ-algebras, even if a heuristic description
should be enough.

This course does not aim to be exhaustive. Many references are available to go further: one can for example
cite the following

[Norris] J. R. Norris: Markov Chains. Cambridge University Press, 1998.

[Williams] D. Williams: Probability with Martingales. Cambridge University Press, 1991.

[Steward] W. J. Steward: Probability, Markov Chains, Queues, and Simulation: The Mathemati-
cal Basis of Performance Modelling. Princeton University Press, 2009.
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Figure 1 – The simple random walk on Z.

1 Discrete time Markov chains
1.1 Definitions and first properties
Markov chains can be defined on any space: discrete or continuous. In this course, we will only treat with discrete
state spaces, but one has to keep in mind that Markov chains exists as well on R, for example. But in the following,
E will always be a discrete space.
Definition 1.1

A matrix P = (px,y)x,y∈E is a stochastic matrix if, for all x ∈ E,
∑

y∈E
px,y = 1.

Definition 1.2
Let P be a stochastic matrix on E. A sequence (Xn)n≥1 of random variables taking value in E is a Markov
chain of initial law µ0 and transition matrix P if

(i) X0 has law µ0, and,

(ii) for all n ≥ 0, for all x ∈ E,

P(Xn+1 = x |Xn, . . . , X0) = P(Xn+1 = x |Xn) = pXn,x.

Proposition 1.3
Let (Xn)n≥1 be a Markov chain of initial law µ0 and transition matrix P . Then, for all n ≥ 0, for all
x0, . . . , xn ∈ E,

P(Xn = xn, Xn−1 = xn−1, . . . , X0 = x0) = µ(x0)px0,x1 . . . pxn−1,xn .

Example 1.1: The simple random walk on Z (cf. Figure 1).
Wild Bill Hickok plays heads or tails against his banker. His honesty is so much renowned that his banker allows

him an infinite credit: he will eventually pay his dept after arresting some wanted outlaw. At time 0, Bill owns x0
dollars. Each time Bill tosses a coin, he earns one dollar if its heads and looses one if its tails.

If we denote by Xn the number of dollars Wild Bill owns after he has tossed his nth coin, the sequence (Xn)n≥0
is a Markov chain on E = Z. Its initial law is µ0 = δx0 and its transition probabilities are defined as follows: for all
i ∈ Z,

pi,i+1 = 1/2
pi,i−1 = 1/2
pi,j = 0 for all j /∈ {i− 1, i+ 1}.

Example 1.2: Umbrellas management in England.
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Figure 2 – A realisation of the random BST from time 1 (on the left) to time 5 (on
the right).

I own n umbrellas (n is reasonably large because I live in England). At the beginning of the year, all my
umbrellas are at home. Every morning, I go from home to work and every evening from work to home. If it rains
when I leave home, and only if it rains, I take one umbrella with me. If it rains when I leave work, and only if it
rains, I take one umbrella with me. And each time I leave a building, it rains with probability p (independently).

If we denote by Xn the number of umbrella I have at home at the nth night of the year, then Xn is a Markov
chain on E = {0, . . . , n}. Can you find its probability transitions? For all i ∈ {1, . . . , n− 1}

pi,i−1 =
pi,i+1 =
pi,i =
pi,j = 0 if j /∈ {i− 1, i, i+ 1}

.

And don’t forget the extremal cases i = 0 and i = n.

Example 1.3: Ehrenfest’s urn
Snowy and Snoopy have fleas: in total, there are N fleas. Each day, a flea chosen at random amongst the N

fleas jumps from one dog to the other.
Let us denote by Xn the number of fleas on Snowy on the nth day. The sequence Xn is a Markov chain of

transition probabilities
pi,i−1 = i/N
pi,i+1 = 1− i/N
pi,j = 0 if j /∈ {i− 1, i+ 1}

Example 1.4: The Binary Search Tree (cf. Figure 2)
The random BST is defined as follows: At time 1, it is a single node. At each step, a leaf of the tree is picked

up uniformly at random and becomes an internal node with two leaves as children.
If we denote by Tn the random binary search tree at time n, then (Tn)n≥0 is a Markov chain on E, the space of

binary trees. Can you understand its transition probabilities?
Theorem 1.4 (Markov property)

Let (Xn) be a Markov chain of transition matrix P and initial law µ0. Then, for allm ≥ 1, (Xm+n |X0, . . . , Xm)n≥0
is a Markov chain of transition matrix P and initial law δXm

.

1.2 Stationary probability and reversibility
Definition 1.5

A probability measure π on E is a stationary probability of a Markov chain of transition matrix P if and
only if

πP = π,
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i.e. for all x ∈ E,
∑

y∈E
πypy,x = πx.

The existence of such a stationary probability is not guaranteed; it is for example interesting to prove that the
simple random walk on Z does not admit a stationary probability.

Example 1.5: Umbrellas management in England.
The probability transitions of the umbrellas management problem (cf. Example 1.2) are given by: for all

i ∈ {1, . . . , N − 1}

pi,i+1 = p(1− p) p0,1 = p pN,N−1 = p(1− p)
pi,i−1 = p(1− p) p0,0 = 1− p pN,N = 1− p(1− p)
pi,i = 1− 2p(1− p)
pi,j = 0 if j /∈ {i− 1, i, i+ 1}

Thus, to be a stationary probability of this Markov chain, π has to verify

π0 = p(1− p)π1 + (1− p)π0

πN = p(1− p)πN−1 + (1− p(1− p))πN
and, for all i ∈ {1, . . . , N − 1},

πi = p(1− p)πi−1 + (1− 2p(1− p))πi + p(1− p)πi+1.

It implies that
π0 = (1− p)π1 and πN = πN−1,

and, for all i ∈ {1, . . . , N − 1}, 2πi = πi−1 + πi+1, which implies

πi = 1
N − p for all i ∈ {1, . . . , N} and π0 = 1− p

N − p .

The unique stationary probability of this Markov chain is this almost uniform law on {0, . . . , N}.
Example 1.6: Ehrenfest’s urn.

To be a probability distribution on the Ehrenfest’s urn defined in Example 1.3, π has to verify:

π0 = 1
N
π1, πN = 1

N
πN−1,

and, for all i ∈ {1, . . . , N − 1},
πi =

(
1− i− 1

N

)
πi−1 + i+ 1

N
πi+1.

One can check that if, for all i ∈ {0, . . . , N},
πi = 1

2N

(
N

i

)
,

then, π is a stationary probability of the Ehrenfest’s urn.
Definition 1.6

A Markov chain of transition matrix P is reversible according to a probability measure π if and only if, for all
x, y ∈ E,

πxpx,y = πypy,x.
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Lemma 1.7
If a Markov chain is reversible according to a probability measure π, then π is an stationary probability of this
Markov chain.

Proof. Recall that π is invariant for a Markov chain of transition matrix P if and only if πP = π. Consider a
Markov chain of transition matrix P and assume it is reversible according to π. Then,

∑

y∈E
πypy,x =

∑

y∈E
πxpx,y = πx,

which implies that π is invariant for the considered Markov chain.

If (Xn)n≥0 is a Markov chain reversible according to π and with initial distribution π, then, for all n ∈ N, the
random vectors (X0, . . . , Xn) and (Xn, . . . , X0) have the same law.

1.3 Recurrence and transience
Definition 1.8

An absorbing state of a Markov chain (Xn)n≥0 is a state x ∈ E such that px,x = 1.

Let (Xn)n≥0 be a Markov chain of initial law µ0 and of transition matrix P . For all n ≥ 1, let p(n)
x,y = P(Xn =

y|X0 = x) = Px(Xn = y). Then, the nth power of the transition matrix P is given by

Pn =
(
p(n)
x,y

)
x,y∈E

.

Definition 1.9
AMarkov chain of transition matrix P = (px,y)x,y∈E is irreducible if and only if, for all x, y ∈ E, the probability
that a Markov chain starting from x eventually reaches y is positive, i.e. if and only if, for all x, y ∈ E, there
exists n ≥ 0 such that p(n)

x,y > 0.

The examples of Markov chain introduced in Section 1 are all irreducible, except the Binary Search Tree Markov
chain.

The reaching time of a state x ∈ E is defined and denoted as follows:

τx = inf{n ≥ 1 |Xn = x}.

Definition 1.10
Let (Xn)n≥0 be a Markov chain, a state x ∈ E is

• recurrent for this Markov chain if P(τx < +∞) = 1;

• transient for this Markov chain if P(τx = +∞) = 1.

A Markov chain is recurrent (resp. transient) if all its states are recurrent (resp. transient).

For all x ∈ E, let us denote by Nx =
∑
n≥01Xn=x the number of visits of the Markov chain (Xn)n≥0 at state x.

Proposition 1.11
Let (Xn)n≥0 be a Markov chain of transition matrix P . Then:

(i) If x ∈ E is transient, then Px(Nx < +∞) = 1,
∑
n≥0 p

(n)
x,x < +∞, and, conditioned on {X0 = x}, Nx is a

geometric random variable of parameter Px(τx = +∞).
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(ii) If x is recurrent then Px(Nx = +∞) = 1 and
∑
n≥0 p

(n)
x,x = +∞.

(iii) If the Markov chain (Xn)n≥0 is irreducible, then it is either recurrent or transient. In the first case, for all
x ∈ E, P(Nx = +∞) = 1. In the second case, for all x ∈ E, P(Nx < +∞) = 1.

Proof. First of all, remark that
Px(τx = +∞) = Px(Nx = 1).

For all m ≥ 1, let us denote by τ (m)
x the time of the mth visit of the chain into x: τ (1)

x := τx, and

τ (m)
x := inf{i > τ (m−1)

x | Xi = x}.

Remark that, for all m ≥ 1,

Px(Nx > m) =
∑

s≥m
Px(Nx > m and τ (m)

x = s)

=
∑

s≥m
Px




s∑

i=1
1Xi=x = m and Xs = x and

∑

i≥s+1
1Xi=x > 1




=
∑

s≥m
Px

(
s∑

i=1
1Xi=x = m and Xs = x

)
Px


∑

i≥1
1Xi=x > 1




= Px(Nx ≥ m)Px(Nx > 1).

Thus, if we denote by p := Px(τx = +∞) = Px(Nx = 1), we get, for all m ≥ 0,

Px(Nx > m) = (1− p)m.

it immediately implies that
Px(Nx = m) = p(1− p)m−1.

Finally, note that
ENx =

∑

i≥1
Px(Xi = x) =

∑

i≥1
p(i)
x,x.

(i) If x ∈ E is transient, then p > 0, and conditioned on {X0 = x}, Nx is geometrically distributed with
parameter p, which implies that its expectation is finite.

(ii) If x is recurrent, then p = 0, Px(Nx = +∞) = 1 and the expectation of Nx is infinite.
(iii) Let x and y in E. Note that since the chain is irreducible, there exist n1, n2 > 0 such that p(n1)

x,y > 0 and
p

(n2)
y,x > 0. In addition, for all n ≥ 0,

p(n+n1+n2)
y,y ≥ p(n2)

y,x p
n
x,xp

(n1)
x,y ,

which implies that the two series
∑
n≥1 p

(n)
x,x and

∑
n≥1 p

(n)
y,y have the same behaviour. Therefore, an irreducible

chain is either recurrent or transient.
If the chain is transient, then, for all x ∈ E,

P(Nx = +∞) =
∑

s≥0
P(τx = s)Px(Nx = +∞) = 0.

The recurrent case is more complicated and left to the reader.
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Example 1.7: The simple random walk on Z is recurrent (cf. Example 1.1)
For all n ≥ 0,

p
(2n)
0,0 =

(
2n
n

)
1

22n = Catn4−n,

with Catn = 1
n+1

(2n
n

)
. Recall that Catn ∼ n−3/24n when n→ +∞, thus,

∑

n≥0
p

(n)
00 = +∞,

which implies, by Proposition 1.11 lemma that 0 is recurrent. Since the simple random walk is irreducible, we can
conclude that the whole chain is recurrent.

Remark: It can be proved that the simple random walk on Z2 is recurrent as well, but that the simple random
walk on Z3 is transient. In fact, for all d ≥ 3, the simple walk on Zd is transient.

Definition 1.12
Let (Xn)n≥0 be a Markov chain of transition matrix P . The period of a state x ∈ E is the gcd of {n >

0 | p(n)
x,x > 0}. A state is said to be aperiodic if its period is 1 and periodic otherwise. A Markov chain is

aperiodic if all its states are aperiodic.

Proposition 1.13
Let (Xn)n≥0 be a Markov chain of transition matrix P , then:

(i) If x ∈ E is aperiodic, then p(n)
x,x > 0 for all n large enough.

(ii) If (Xn)n≥0 is irreducible, it is aperiodic as soon as one of its states is aperiodic.

Proof. (i) Assume that x ∈ E is aperiodic. Let I = {n ≥ 1 | p(n)
x,x > 0}. Remark that I is stable by addition.

There exists K > 0, n1, . . . , nK > 0 and a1, . . . , aK ∈ Z such that ni ∈ I for all i ∈ {1, . . . ,K}, and

1 =
K∑

i=1
aini.

Let n1 =
∑
ai>0 aini and n2 = −∑ai<0 aini. We know that n1, n2 ∈ I and n1 − n2 = 1.

Let n ≥ n2
2, then, there exists q ≥ n2 and 0 ≤ r < n2 such that

n = qn2 + r = qn2 + r(n1 − n2) = (q − r)n2 + rn1,

which implies that any n ≥ n2 belongs to I.
(ii) Assume that x ∈ E is aperiodic, then, for all n large enough, p(n)

x,x > 0. For all y ∈ E, there exists n1, n2 ≥ 1
such that p(n1)

x,y > 0 and p(n2)
y,x > 0. Thus, for all n ≥ 1,

p(n+n1+n2)
y,y ≥ p(n2)

y,x p
(n)
x,xp

(n1)
x,y ,

which implies that, for all n large enough, p(n)
y,y > 0 and thus that y is also aperiodic.

Recall that τx = inf{n ≥ 1 |Xn = x}. For all x ∈ E, we define ν(x) = 1
Exτx

∈ [0, 1]. Remark that if (Xn)n≥0 is
an irreducible, transient Markov chain, then, for all x ∈ E, ν(x) = 0.
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Definition 1.14
A recurrent state x of the Markov chain is positive recurrent if ν(x) > 0 and null recurrent if ν(x) = 0. A
Markov chain is called positive (resp. null) recurrent if all its states are positive (resp. null) recurrent.

Example 1.8: Consider a Markov chain on N starting at 0 and verifying

p0,1 = 1, and ∀i ≥ 1 pi,i+1 = i

i+ 1 , pi,0 = 1
i+ 1;

We have
P(τ0 = 1) = 0, P(τ0 = n) = 1

n(n− 1) = 1
n− 1 −

1
n

(n ≥ 2),

which implies
∑

n≥0
P(τ0 = n) = 1 the state 0 is recurrent,

Eτ0 =
∞∑

n=2
n× 1

n(n− 1) =∞ the state 0 is null recurrent.

1.4 Ergodic theorems
An event A is almost sure for a Markov chain if, for all state x ∈ E, Px(A) = 1, i.e. if P(A) = 1 for any initial
distribution µ0.
Theorem 1.15

Let (Xn)n≥0 be an irreducible Markov chain on E.

(i) (Xn)n≥0 is either transient, either positive recurrent, or null recurrent.

(ii) If (Xn)n≥0 is transient or null recurrent, then, she has no invariant probability, and ν = 0.

(iii) For all x ∈ E, we have, almost surely when n tends to infinity,

1
n

n∑

m=0
1Xm=x → ν(x).

This result tells you the following: if you are able to exhibit an invariant probability for a Markov chain, then
this Markov chain is recurrent. It thus apply for example for the Ehrenfest urn (cf. Example 1.3) or for the
umbrellas Markov chain (cf. Example 1.2) which are thus both recurrent. Remark that knowing that a Markov
chain admits no invariant probability is not enough to conclude that it is not recurrent: the simple random walk
on Z, for example is recurrent but has no stationary distribution.
Theorem 1.16 (Ergodic Theorem)

Let (Xn)n≥0 be an irreducible, positive recurrent Markov chain on E, then:

1. ν is a probability distribution on E and is the unique invariant probability of (Xn)n≥0. We moreover have
that ν(x) > 0 for all x ∈ E.

2. For all function f : E → R such that f ≥ 0 or
∫
E
f(x)dν(x) < +∞, we have,

1
n

n∑

m=0
f(Xk)→

∫

E

f(x)dν(x).
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3. If, in addition, (Xn)n≥0 is aperiodic, then Xn → ν in law when n tends to infinity, and thus, P(Xn = x)→
ν(x) for all x ∈ E when n tends to +∞.

Example 1.9: Ehrenfest’s urn.
The Ehrenfest urn is an irreducible positive recurrent chain on {1, . . . , N}? Therefore, Theorem 1.16 applies as

it can be seen on the following simulations: The figure below is the histogram of the number of fleas on Snoopy
from time 0 to time 100 (resp. 2000, resp. 5000), when N = 50, starting from Snoopy having 50 fleas on it at time
0. The blue curve is the stationary distribution of this Markov chain.

Example 1.10: Umbrellas.
The umbrellas Markov chain described in Example 1.2 is an irreducible positive recurrent chain on {1, . . . , N}?

Therefore, Theorem 1.16 applies as it can be seen on the following simulations: The figure below is the histogram
of the number of umbrellas at home between days 1 and 200 (resp. 5000, resp. 10000), when N = 16. The red
curve is the uniform law on {0, . . . , N}.

Remark: One can prove that both for a transient and for a null recurrent irreducible Markov chain, limn→+∞ P(Xn =
x) = 0.

Corollary 1.17
An irreducible Markov chain on a finite space E is positive recurrent and thus, ν is its unique invariant
probability and Theorem 1.16 applies.

2 Discrete time martingales
2.1 Definitions and first properties
Let (Ω,F ,P) a probability space.
Definition 2.1

Let (Fn)n≥0 a filtration of Ω, i.e. an increasing family of sub σ-algebras of F . A sequence (Mn)n≥0 of random
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Z0 = 1

Z1 = 3

Z2 = 5

Z3 = 6

Figure 3 – A realisation of a Galton-Watson tree.

variables is an Fn-martingale if, and only if, for all n ≥ 0,

(i) Mn is Fn measurable,

(ii) Mn is integrable, i.e. EMn < +∞, and

(iii) E[Mn+1|Fn] = Mn almost surely.

In most applications, the considered filtration is Fn = σ(M1, . . . ,Mn), i.e. contains all the information of the
martingale before time n. More generally, given a sequence (Xn)n≥0 of random variables, we call the filtration
(Fn = σ(X1, . . . , Xn))n≥0 its natural filtration.
Definition 2.2

If (iii) in Definition 2.1 is replaced by

• E[Mn+1|Fn] ≤Mn a.s., we get the definition of a super-martingale.

• E[Mn+1|Fn] ≥Mn a.s., we get the definition of a sub-martingale.

Proposition 2.3
Let (Mn)n≥0 be a Fn-martingale, then, for all n ≥ 0, EMn = EM0.

What can we say of the sequence (EMn)n≥0 for a super-martingale (resp. sub-martingale)?

Example 2.1: Simple random walk again
Let (Xn)n≥0 be a sequence of integrable i.i.d. random variables, such that EX1 = 0. Can you check that

Sn =
∑n
i=1 Xi is a martingale?

Example 2.2: Galton-Watson tree (cf. Figure 3)
A Galton-Watson tree is described as follows: The first generation is composed of a unique root. Each individual

of generation n gives birth to a random number ξ of individuals of generation n+ 1, independently from the rest of
the process. We denote by Zn the number of individuals in generation n: Z0 = 1 and, for all n ≥ 0,

Zn+1 =
Zn∑

i=1
ξ

(n)
i ,

where the (ξ(n)
i )i,n are i.i.d. copies of ξ.

Denote by m = Eξ, then,
Mn = m−nZn

C. Mailler, Markov Chains, Martingales, Discrete Structures, CIMPA Summer School 2014, Nablus 47



is a martingale.

Example 2.3: The profile of the random Binary Search Tree (cf. Example 1.4)
This exercise is inspired by an article by Chauvin, Klein, Marckert and Rouault (2005): Martingales and Profile

of Binary Search Trees, in which martingales are used to get precise information about the shape of the random
BST.

Let Tn be the random BST at time n. For all n, k ∈ N, let us denote by Nk(n) the number of leaves of Tn that
are at distance k from the root (i.e. at height k in the tree). We denote by Pn(z) the profile polynomial of the BST
at time n, given by

Pn(z) :=
∑

k≥0
Nk(n)zn.

Remark that, if we denote by |`| the height of a leaf ` of a tree, then

Pn(z) =
∑

`∈Tn

z|`|.

Can you determine a sequence of rational functions Zn(z) such that (Mn := ZnPn)n≥0 is a martingale?

Example 2.4: Pólya urn
A Pólya urn is a random process defined by two parameters: an initial composition vector t(α, β), and a

replacement matrix
R =

(
a b
c d

)
,

where α, β, a, b, c and d are integers.
We define the sequence of random vectors (U(n) = (Xn, Yn))n≥0 representing the composition of a two-colour

urn at time t, meaning that the urn contains Xn red balls and Yn black balls at time n: The urn contains initially
α red balls and β black balls. At each step, we pick up uniformly at random a ball in the urn. If the ball is red, we
replace it in the urn together with a additional red balls and b black balls. If it is black, we replace it in the urn
together with c red balls and d additional black balls.

Let us assume that the urn is balanced, meaning that a+ b = c+ d = S. It implies that the total number of the
urn at time n is Xn + Yn = α+ β + nS. Let

Zn =
(

1 + A

α+ β

)−1
. . .

(
1 + A

α+ β + (n− 1)S

)−1
,

where A =t R (we assume that all the matrices involved in Zn are indeed invertible). One can then prove that
(Mn := ZnU(n))n≥0 is a martingale on R2 for its natural filtration.

2.2 Stopping theorems
Definition 2.4

A stopping time with respect to a filtration (Fn)n≥0 is a random variable T such that, for all n ≥ 0, the event
{T ≤ n} is Fn-measurable.

Example 2.5: Back to Markov chains
Let (Xn)n≥0 be a Markov chain on a discrete space E. Let x ∈ E, then τx := inf{n ≥ 1 |Xn = x} is a stopping

time with respect to the natural filtration of (Xn)n≥0.
Lemma 2.5

For all martingale (Mn)n≥0, and for all stopping time T , the stopped process (MT
n := Mn∧T )n≥0 is a

martingale, (where ∧ denotes the minimum between its two terms).

This lemma is also true for sub-martingales and super-martingales.
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Proof. For all n ≥ 1,
E[MT

n+1|Fn] = E[Mn+11T>n|Fn] + E[MT1T≤n|Fn].

Since {T > n} and {T ≤ n} are both Fn-measurable, we get

E[MT
n+1|Fn] = E[Mn+1|Fn]1T>n +MT1T≤n = Mn1T>n +MT1T≤n = MT

n .

Corollary 2.6
For all martingale (Mn)n≥0 and for all bounded stopping time T , EMT = EM0.

Definition 2.7
Given a stopping time T , we define its σ-algebra

FT := {A ∈ F | ∀n ≥ 0, A ∩ {T ≤ n} ∈ Fn}.

Of course, one has to check that FT is a σ-algebra. We omit this proof.
Proposition 2.8

Let (Mn)n≥1 be a Fn martingale and T a finite stopping time. Then MT is FT -measurable.

Proposition 2.9
Let T and S two (Fn)-stopping times such that S ≤ T almost surely. Then FS ⊆ FT .

Theorem 2.10 (Doob’s stopping theorem)
Let (Mn)n≥0 be a martingale, let S and T two bounded stopping times such that, S ≤ T almost surely. Then,
almost surely,

E[MT |FS ] = MS .

Proof. It is enough to prove that, for all A ∈ FS , E[MT1A] = E[MS1A]. Let A ∈ FS . Define

R = S1A + T1cA.

Remark that for all n ≥ 1,
{R ≤ n} = (A ∩ {S ≤ n}) ∪ (cA ∩ {T ≤ n}) ∈ Fn.,

which implies that R is a bounded stopping time. We thus have EMR = EM0 = EMT . Since

EMT = E[MT1A +MT1cA]

EMR = E[MS1A +MT1cA],

we get
E[MT1A] = E[MS1A].
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2.3 Doob’s inequalities
Proposition 2.11

Let (Mn)n≥0 a non-negative sub-martingale such that EM0 < +∞. Then, for all α > 0,

P(max
i≤n

Mi ≥ α) ≤ EMn

α

Proof. We illustrate the proof by considering the random walk W = (Mn)n Let us denote A = {maxi≤nMi ≥ α},
(so that A is the event “the random walk W went over level α before time n”), and define, for all k ≥ 0,

Ak := {max
i<k

Mi < α ≤Mk},

this last event being “the random walk W went over level α at time k for the first time”.
The events Ak are disjoints and we have A =

⋃n
k=0 Ak. Therefore

E[Mn1A] =
n∑

k=0
E[1Ak

Mn] =
n∑

k=0
E [1Ak

E[Mn|Fk]] =
n∑

k=0
E [1Ak

Mk] ≥ α
n∑

k=0
1Ak

= αP(A).

Thus,
P(A) ≤ 1

α
E[Mn1A] ≤ EMn,

since Mn is non-negative.

The following corollary is a consequence of the following fact: let (Mn)n≥0 be a martingale and φ be a convex
function. Then, (φ(Mn))n≥0 is a sub-martingale. Apply this property to the convex function (x 7→ x2) to get the
corollary:
Corollary 2.12

Let (Mn)n≥0 be a square integrable martingale. Then, for all α > 0,

P(max
i≤n

Mi ≥ α) ≤ EM2
n

α2 .

2.4 Convergence of martingales
Definition 2.13

A sequence of random variables (Xn)n≥0 is bounded in Lp if and only if

supE|Xn|p < +∞.

The sequence is uniformly integrable if and only if

lim
x→+∞

E[Xn1Xn>x]→ 0,

when x→ +∞.

Theorem 2.14
A martingale bounded in L2 converges in L2, meaning that there exists a random variable M∞ such that

lim
n→+∞

E[|Mn −M∞|2] = 0.
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Example 2.6: Super-critical Galton-Watson process (cf. Example 2.2).
Let us recall that is Zn is the number of individuals composing the nth generation in a Galton-Watson process,

then Mn = m−nZn is a martingale. Let us prove1 that this martingale is bounded in L2:

E[Z2
n+1|Fn] = E



(
Zn∑

i=1
ξ(i)
n

)2∣∣∣∣∣∣
Fn


 = E

[
Zn∑

i=1

(
ξ(i)
n

)2
∣∣∣∣∣Fn

]
+ E



Zn∑

i 6=j
ξ(i)
n ξ(j)

n

∣∣∣∣∣∣
Fn




= Zn × E
[
(ξ(i))2]+ Zn(Zn − 1)×

(
Eξ(i))2 = Z2

n(Eξ)2 + ZnVarξ.

This gives
EZ2

n+1 = m2EZ2
n +mnVarξ, and thus, EM2

n+1 = EM2
n +m−n−2Varξ,

which implies that the martingale is bounded in L2 as soon as m > 1, i.e, as soon as the process is super-critical,
and assuming that ξ is square-integrable.
Theorem 2.15 (Doob’s Theorem)

Let (Mn)n≥0 be a sub-martingale such that

sup
n≥0

EXn1Xn≥0 < +∞.

Then, Mn converges almost surely to an integrable random variable M∞.

Corollary 2.16
Any martingale bounded in L1 converges almost surely to an integrable random variable.

It is very important to note that, in the corollary above, even if the martingale is bounded in L1 and its almost
sure limit is integrable, there is, a priori, no convergence in L1!

The following corollary is maybe the most useful in practise:
Corollary 2.17

Any non negative super-martingale converges almost surely to an integrable random variable M∞ and

EM∞ ≤ lim inf
n→+∞

EMn.

1We give here an alternate proof using generating functions. We recall that ξ is the law of reproduction of the individuals. Let
ψ(s) =

∑
i≥0 P(ξ = i)si be the corresponding probability generating function, and

φn(s) =
∑

k≥0

P(Zn = k)sk = E(sZn )

be the probability generating function of the number of individuals at generation n.
If there are k individuals at generation n, the generating function of individuals at generation n + 1 is ψk(s), by convolution; this

corresponds to the substitution sk  ψk(s).
Therefore,

φn+1(s) =
∑

k≥0

P(Zn = k)ψk(s).

By differentiation and evaluation at s = 1, we get

φ′n+1(1) = E(Zn)E(ξ),
φ′′n+1(1) = E(Z2

n)E2(ξ) − E(Zn)E2(ξ) + E(Zn)(E(ξ2) − E(ξ))

But we also have φn+1(s) = E(sZn+1 ), by construction. Therefore

φ′n+1 = E(Zn+1) and φ′′n+1(1) = E(Z2
n+1) − E(Zn+1);

moreover E(Zn) = E(Zn−1)E(ξ) = mE(Zn−1) = mn, which concludes the proof.
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Proof. If (Mn)n≥0 is a super-martingale, then (−Mn)n≥0 is a sub-martingale. Moreover, it is a non-positive
sub-martingale, which implies that

sup
n≥0

EXn1Xn≥0 = 0 < +∞.

The Doob’s Theorem thus applies and (−Mn)n≥0 converges almost surely to an integrable random variable −M∞,
which concludes the proof. The last inequality is an application of Fatou’s lemma.

Example 2.7: Galton-Watson process (cf. Example 2.2).
Let us recall that is Zn is the number of individuals composing the nth generation in a Galton-Watson process,

then Mn = m−nZn is a martingale. It is non-negative and therefore converges almost surely to a random variable
M∞ by Corollary 2.17.

Exercise: calculate the probability of extinction of a Galton-Watson process.
Theorem 2.18

Let (Mn)n≥0 be a martingale. The three following propositions are equivalent:

(i) Mn converges in L1 to an integrable random variable M∞;

(ii) (Mn)n≥0 is bounded in L1 and there exists a random variable M∞ such that

E[M∞|Fn] = Mn (for all n ≥ 0);

(iii) (Mn)n≥0 is uniformly integrable.

Such a martingale is called regular. It implies in particular that, for all n ≥ 0, EMn = EM∞.

Corollary 2.19
Any martingale bounded in Lp (p > 1) converges almost surely and in Lp.

Proof. Let (Mn)n≥0 be a martingale bounded in Lp: then, for all x ≥ 0

E[|Mn|p] ≥ E[|Mn|p1Mn≥x] + E[|Mn|p1Mn<x] ≥ E[Mp
n1Mn≥x] ≥ xp−1E[Mn1Mn≥x].

Since (Mn)n≥0 is bounded in Lp, there exists a constant C > 0 such that

E[Mn1Mn≥x] ≤ C

xp−1 → 0

when x → +∞, because p > 1. Thus (Mn)n≥0 is uniformly-integrable and Theorem 2.18 applies: (Mn)n≥0 is
bounded in L1 and there exists a random variable M∞ such that

E[M∞|Fn] = Mn (for all n ≥ 0).

By Fatou’s lemma,
E[|M∞|p] = E[lim inf

n→+∞
|Mn|p] ≤ lim inf

n→+∞
E|Mn|p ≤ Kp,

where Kp < +∞ is a constant. Therefore, if we denote by ‖ · ‖p the Lp-norm (‖X‖p = (E|X|p)1/p),

E|Mn −M∞|p ≤ (‖Mn‖p + ‖M∞‖p)p ≤ (2K1/p

p )p < +∞.

Therefore, by dominated convergence,

lim
n→+∞

E|Mn −M∞|p = E lim
n→+∞

|Mn −M∞|p = 0,

implying that Mn converges to M∞ in Lp.
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3 Continuous time Markov processes
The aim of this section is not to introduce Markov processes in full generality: we will only focus on jump Markov
processes and their main application to queuing theory.

3.1 Definitions
Let E be a discrete state space. Let (Zn)n≥0 and (Tn)n≥0 be two sequences of random variables such that 0 = T0 ≤
T2 ≤ . . ., Tn → +∞ when n→ +∞ and Zn ∈ E for all n ≥ 0.
Definition 3.1

The random function
Xt :=

∑

n≥0
Zn1[Tn,Tn+1[(t)

is called the random jump function associated to the sequences (Zn)n≥0 and (Tn)n≥0.

Definition 3.2
A random jump function (Xt)t≥0 is a jump Markov process if, for all 0 < s < t, for all n ≥ 0, for all
t0 < t1, . . . , tn < s, for all x0, x1, . . . , xn, x, y ∈ E,

P(Xt = y | Xt0 = x0, . . . , Xtn = xn and Xs = x) = P(Xt = y | Xs = x).

If, in addition, P (Xt = y | Xs = x) only depends on x, y and (t − s), then the jump Markov process is called
homogeneous.

In the following, we will only consider homogeneous jump Markov processes, and we will denote

Px,y(t− s) := P(Xt = y | Xs = x).

For all t ≥ 0, the matrix P (t) = (Px,y(t))x,y∈E is the transition matrix of the process (Xt)t≥0 at time t. We
denote by (µ(t)) the law of the random variable Xt, for all t ≥ 0.
Proposition 3.3

Let (Xt)t≥0 be a (homogeneous) Markov jump process on E, with initial law µ(0) = µ and transition matrix
(P (t))t≥0. Then, for all 0 < s < t,

(i) µ(t) = µ(t)P (t)

(ii) P (s+ t) = P (s)P (t) (semi-group condition)

Example 3.1: Poisson process.
A Poisson process (Nt)t≥0 is a Markov jump process on N, with transition matrix

Px,y(t) =





(λt)y−x
(y − x)!e

−λt if y ≥ x,
0 otherwise.

Example 3.2: Let (Tn)n≥0 be a Poisson point process on [0,+∞[ with intensity λ and let (Zn)n≥0 be a discrete
time Markov chain on E, of transition matrix P , independent of (Tn)n≥0. Then, the continuous time process

Xt :=
∑

n≥0
Zn1[Tn,Tn+1[

is a Markov jump process. Can you determine its transition matrix?
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The semi-group property tells us that the transition matrix (P (t))t≥0 is determined by its values for small t ≥ 0.
Said differently, it is determined by its derivative at 0:
Definition 3.4

Let (P (t))t≥0 be the transition matrix of a Markov jump process (Xt)t≥0. Then, there exists Q = (Qx,y)x,y∈E
called the generator of (Xt)t≥0, such that

(i) Qx,y ≥ 0 if x 6= y,

(ii) Qx,x = −∑y 6=xQx,y ≤ 0,

(iii) Px,y(h) = hQx,y + o(h) when h→ 0, if x 6= y,

(iv) Px,x(h) = 1 + hQx,x + o(h) when h→ 0.

One can see Qx,y as the rate with which the Markov jump process will jump from site x to site y.
Theorem 3.5

Markov property Let (Xt)t≥0 be a jump Markov process of generator Q. For all real t0, the process (Xt0+t)t≥0
is a Markov process of initial law δXt0

.

If we forget time and just focus on the successive positions of the process, we exhibit the underlying Markov
chain of the process. Let us denote by τn the time of the nth jump of the process: then, the discrete time process
Mn := Xτn

is a Markov chain and its transition matrix P = (pi,j)i,j∈E is given by

px,y =
{

Qx,y

qx
if i 6= j

0 if i = j
,

where qx := −Qx,x for all x ∈ E.

3.2 Ergodicity
A jump Markov process is irreducible as soon as its underlying Markov chain is irreducible. It implies that, for
all t > 0, for all x, y ∈ E, Px,y(t) > 0. A state x ∈ E is recurrent (resp. transient) for the Markov jump process
(Xt)t≥0 if it is recurrent (resp. transient) for its underlying Markov chain.
Theorem 3.6

Let (Xt)t≥0 be a Markov jump process, irreducible and recurrent, with generator Q = (Qx,y)x,y∈E and transition
matrix (P (t))t≥0. Then, there exists a unique measure (up to a constant factor) π such that πQ = 0 and
πP (t) = π for all t ≥ 0. And this measure π is called an invariant measure of the jump process.

Definition 3.7
For all x ∈ E, we denote by τx := inf{t > 0 | Xt = x}. A state x ∈ E is positive recurrent (resp. null
recurrent) for (Xt)t≥0 if x is recurrent and if Exτx < +∞ (resp. Exτx = +∞)

Theorem 3.8
Let (Xt)t≥0 be a Markov jump process, irreducible and recurrent. Then, the following assumptions are equiva-
lent:

(i) x ∈ E is positive recurrent,

(ii) all states are positive recurrent,

(iii) there exists a unique invariant probability distribution π.
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λ µ

post office

queue

till

Figure 4 – The M/M/1 queue.

If these assumptions are verified, then, for all x ∈ E,

Exτx = 1
πxqx

.

Theorem 3.9
Let (Xt)t≥0 be a Markov jump process, irreducible and positive recurrent. Denote by π its invariant probability.
Then, for all bounded function f : E → R, almost surely, when t→ +∞,

1
t

∫ t

0
f(Xs)ds→

∑

x∈E
f(x)πx.

Proposition 3.10
Let (Xt)t≥0 be a Markov jump process, irreducible and positive recurrent. Denote by π its invariant probability.
Then, for all probability distribution µ on E, for all x ∈ E, asymptotically when t→ +∞,

(µP (t))x → πx.

3.3 Queues
The example we will study in the whole section is the queuing theory. It is very important in computer science,
since it permits to model routers activity.

The idea is the following: in my post office, there are N tills. People enter the post office according to a
Poisson process of rate λ, meaning that the interval between a client and the next one is exponentially distributed
with parameter λ, independently from the rest of the process. The time needed to serve a client is exponentially
distributed with parameter µ, independently from the rest of the process.

When a client enters the post office: either all tills are occupied and he joins the queue, or one till is free, and
he begins to be served as soon as he enters.

This model is usually called M/M/N meaning that the arrivals and service times are exponentially distributed,
with respective parameters λ and µ, and that there are N tills.

The question is the following: do you need to add more tills so that the length of the queue does not explode?
Quite an important question for router, post office or server management.

Example 3.3: The M/M/1 queue (cf. Figure 4)
Let us first focus on the case where there is a unique till in the post office. Let Xt be the number of clients

inside the post office (queue + till) at time t. Then (Xt)t≥0 is indeed a Markov process and its generator is the

C. Mailler, Markov Chains, Martingales, Discrete Structures, CIMPA Summer School 2014, Nablus 55



following infinite matrix:

Q =




−λ λ 0 · · ·

µ −(µ+ λ) λ 0 · · ·

0 µ −(µ+ λ) λ 0 · · ·

. . .




.

This information can be represented as follows:

0 1 2 3 4

λ λ λ λ λ

µ µ µ µ µ

It is possible to prove that πx := ρx(1 − ρ), where ρ := λ/µ, is an invariant probability of the queue, as soon as
ρ < 1. If ρ ≥ 1, then, the queue admits no invariant probability and is thus transient. It means that our queue will
explode. Can you calculate the probability that a newly arrived client will have to queue before being served?

Exercise 3.1: Can you give the generator of the queue M/M/∞?

Example 3.4: In the queues described above, the M/M/N , the capacity of the queue is infinite, meaning that the
queue can become arbitrarily large. One can also describe queues with finite capacity K: the queues M/M/N/K.
It behaves as the M/M/N , except that when the queue is full (i.e. contains K clients), any client arriving to the
shop cannot enter the shop and evaporates.

Can you give the generator of such a queue? What is its invariant probability?

4 Continuous time martingales
4.1 Definitions and first properties
Let (Ω,F ,P) a probability space.
Definition 4.1

A continuous time process (Mt)t≥0 is a martingale for the filtration (Ft)t≥0 if and only if, for all t ≥ 0,

(i) Mt is Ft-measurable;

(ii) Mt is integrable; and

(iii) for all s < t, E[Mt|Fs] = Ms.

Definition 4.2
Replacing (iii) in the above definition by

• for all s < t, E[Mt|Fs] ≤Ms gives the definition of a super-martingale.

• for all s < t, E[Mt|Fs] ≥Ms gives the definition of a sub-martingale.

Example 4.1: The Yule tree (cf. Figure 5)
Let us consider the stochastic process (Yt)t≥0 defined as follows. At time zero, there is one particle in the system:

Y0 = 1. Each particle dies and gives birth to two new particles after an exponentially distributed random time,
independently from the other particles. Let us denote by Yt the number of particles alive at time t.
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time

Figure 5 – A realisation of the Yule tree

time

Figure 6 – A realisation of the multi-type branching process defined by the initial

composition t(0, 1) and the replacement matrix R =
(
a b
c d

)
.

Can you find (mt)t≥0 a function such that Mt := m−1
t Yt is a martingale?

Example 4.2: Multi-type branching process (cf. Figure 6)
A multi-type branching process is the embedding in continuous time of a Pólya urn. It is defined by an initial

composition U(0) =t (α, β) and a replacement matrix

R =
(
a b
c d

)
.

The vector composition of the urn at time t is given by U(t) =t (Xt, Yt), where Xt is the number of red balls and
Yt the number of black balls at time t in the urn. Each ball in the urn will split after an exponentially distributed
random time into

• a+ 1 red balls and b black balls if it is a red ball;

• or c red balls and d+ 1 black balls if it is a black ball,

independently for the other balls.
Assume that the replacement matrix is balanced: a+ b = c+ d = S. What can you say about the total number

of balls in the urn at time t? Can you prove that Mt := e−tAU(t) is a vector valued martingale, where A =tR?

4.2 Stopping times
Definition 4.3

A random variable T is a stopping time for the filtration (Ft)t≥0 if and only if, for all t ≥ 0, the event {T ≤ t}
is Ft-measurable.
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Lemma 4.4
For all martingale (Mt)t≥0, and for all stopping time T , the stopped process (MT

t := Mt∧T )t≥0 is a martingale,
(where ∧ denotes the minimum between its two terms).

Theorem 4.5
Stopping theorem Let (Mt)t≥0 be a martingale, let S and T two bounded stopping times such that, S ≤ T
almost surely. Then, almost surely,

E[MT |FS ] = MS .

4.3 Doob’s inequalities
Proposition 4.6

Let (Mt)t≥0 a non-negative sub-martingale such that EM0 < +∞. Then, for all α > 0,

P(max
s≤t

Ms ≥ α) ≤ EMt

α

Corollary 4.7
Let (Mt)t≥0 be a square integrable martingale. Then, for all α > 0,

P(max
s≤t

Ms ≥ α) ≤ EM2
t

α2 .

4.4 Convergence of continuous time martingales
Definition 4.8

A sequence of random variables (Xt)n≥0 is bounded in Lp if and only if

sup
t≥0

E|Xt|p < +∞.

The sequence is uniformly integrable if and only if

lim
x→+∞

sup
t≥0

E[Xt1Xt>x]→ 0,

when x→ +∞.

Theorem 4.9
A martingale bounded in L2 converges in L2, meaning that there exists a random variable M∞ such that

lim
t→+∞

E[|Mt −M∞|2] = 0.

Theorem 4.10 (Doob’s Theorem)
Let (Mt)t≥0 be a sub-martingale such that

sup
t≥0

EXt1Xt≥0 < +∞.
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E1 E2 E3 En

S0

S1

S2

Sn−1

Figure 7 – The random variables E1, . . . , En are i.i.d. exponentially distributed of
parameter 1 and represented by the length of the vertical sticks. Sorting them by
increasing order, we get a sequence of random variables E(n)

n , . . . , E(1)
n . The Si

verify Si = E(i+1)
n − E(i)

n ; they are independent random variables exponentially
distributed, of respective parameters n− i.

Then, Mt converges almost surely to an integrable random variable M∞.

Corollary 4.11
All non negative super-martingale (Mt)t≥0 converges almost surely to an integrable random variable M∞ and

EM∞ ≤ lim inf
t→+∞

EMt.

Example 4.3: The Yule tree martingale (cf. Example 4.1)
The process (Mt) := (e−tYt) is a non negative martingale and thus converges almost surely to a limit random

variable W . Let us prove that this random variable is exponentially distributed.
For all t ≥ 0, P(Yt ≥ n) = P(τn ≤ t) where τn is the time of the nth split in the Yule process. Remark that, by

definition, τn =
∑n
i=1 Ti where Ti is exponentially distributed of parameter i and the (Ti)i=1..n are independent of

each other.
Let us consider E1, . . . , En being n i.i.d. random variables exponentially distributed of parameter 1 (see Figure 7).

We can look backwards to the split times and consider that En, the largest Ei, corresponds to the time of the last
split; similarly then, Ei−1 may be seen at the precedent split, and this until the first split. Considering the variables
E(1)
n , . . . , E(n)

n defined in Figure 7, we have Si = E(i+1)
n −E(i)

n (with E(0)
n = 0); therefore Si is distributed as the time

separating the ith split from the (i− 1)th split and is Exp(n− i), this for i from 0 to n− 1. Moreover the (Si)i=1..n
are independent of each other . Let us denote by mn the maximum of the Ei. Remark that mn =

∑n−1
i=0 Si.

Thus,
P(τn ≤ t) = P(mn ≤ t) = P(Ei ≤ t;∀1 ≤ i ≤ n) = (1− e−t)n,

since mn ≤ t implies that Ei ≤ t for all i from 1 to n. We then get, for all t ≥ 0, for all x ≥ 0,

P(Mt ≥ x) = P(Yt ≥ xet) = (1− e−t)xet → e−x,

when t→ +∞. Thus, for all x ≥ 0,
P(W ≥ x) = e−x,

and W is exponentially distributed of parameter 1.
Theorem 4.12

Let (Mt)t≥0 be a martingale. The three following propositions are equivalent:
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(i) Mt converges in L1 to an integrable random variable M∞;

(ii) (Mt)t≥0 is bounded in L1 and there exists a random variable M∞ such that

E[M∞|Ft] = Mt (for all t ≥ 0);

(iii) (Mt)t≥0 is uniformly integrable.

Such a martingale is called regular. It implies in particular that, for all t ≥ 0, EMt = EM∞.

Corollary 4.13
Any martingale bounded in Lp (p > 1) converges in Lp.

5 Exercises
Exercise 5.1: Simple random walk

Let us consider the biased random walk on Z defined as follows: choose p ∈ (0, 1) and denote q = 1 − p; when
the walker is in state x, it jumps to x+ 1 with probability p and to x− 1 with probability q.

(1) Prove that the unbiased random walk on Z is recurrent but has no invariant probability: it is thus null recurrent.

(2) A gambler enters a casino with a GBP (British Pound) and begins to play heads or tails with the casino. The
casino has b GBP when the gambler begins to play. The coin is biased and gives heads with probability p
and tails with probability q. The gambler gives one pound to the casino when it’s heads and the casino gives
him one pound when it’s tails. The game ends when either the gambler or the casino is ruined. What is the
probability that the gambler gets ruined?
Hint: Denote by Xn the wealth of the gambler at time n, τ0 := inf{s ≥ 0 | Xs = 0} and τa+b := inf{s ≥
0 | Xs = a+ b}. It is a good idea to define ux := P(τ0 < τa+b | X0 = x}, for all x ∈ Z.

Solution. (1) Let us first stay in the general case p ∈ (0, 1) before reducing ourselves to the unbiased case p = 1/2. Let us
calculate the probability, starting from 0, to be in state 0 at time n. This probability is zero for all odd n. We therefore
focus on even values of n. Let m be an integer: the only possibility for a walker, starting from state 0, to be in state 0 after
2m steps is having done exactly m steps to the right and m steps to the left. Therefore,

P(X2m=0 | X0 = 0) =
(

2m
m

)
pmqm.

If we denote p(n)
0,0 the probability, starting from 0, to be in 0 at time n, we have:

∑

n≥1

p
(n)
0,0 =

∑

m≥1

p
(2m)
0,0 =

∑

m≥1

(
2m
m

)
pmqm.

In the case of the unbiased random walk, we have p = q = 1/2, which implies

∑

n≥1

p
(n)
0,0 =

∑

m≥1

(
2m
m

)
1

22m ,

and since, in view of Stirling’s formula, (
2m
m

)
1

22m ∼
1√
m
,

we get ∑

n≥1

p
(n)
0,0 = +∞,
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implying that the symmetric random walk is recurrent (see Proposition 1.11).
Now assume that π = (πx)x∈Z is an invariant probability measure of the symmetric random walk. Then, for all x ∈ Z,

(see Definition 1.5)
1
2πx−1 + 1

2πx+1 = πx,

implying that πx = π0 for all integer x, which is impossible since
∑

x∈Z πx = 1. Therefore, the symmetric random walk is
null recurrent.

(2) Let us use the notations proposed in the “hint”. Our aim is thus to calculate P(τ0 < τa+b). Note also that




u0 = 1
ux = pux+1 + qux−1 for all 1 ≤ x ≤ a+ b− 1
ua+b = 0

Note that ux = pux+1 + qux−1 is equivalent to p(ux+1 − ux) = q(ux − ux−1), implying that

ux+1 =

[
x∑

i=0

(
1− p
p

)i]
(u1 − u0) + u0.

Taking x = a+ b− 1, we get (after some simplification):

ua+b = 1− p
(

1−
(

1− p
p

)a+b
)

(u1 − 1).

but we also know that ua+b = 0, which gives

1− u1 = 1

p
(( 1−p

p

)a+b − 1
) .

Therefore,

ux = 1−
1−

( 1−p
p

)x

1−
( 1−p

p

)a+b ,

and

P(τ0 < τa+b | X0 = a) = 1−
1−

( 1−p
p

)a

1−
( 1−p

p

)a+b

is the probability that the gambler gets ruined.

Exercise 5.2: The original Pólya urns
Consider the Pólya urn with initial composition vector t(1, 1) and replacement matrix I2. Let us denote by

t(Xn, Yn) the composition vector of the urn process at time n.

(1) Prove that Xn is a Markov chain and give its transition probabilities.

(2) Let Xn = Xn

Xn+Yn
= Xn

n+2 be the proportion of balls of type 1 in the urn at time n. Prove that (Xn)n≥0 is a
martingale.

(3) Prove that (Xn)n≥0 converges almost surely and in L1 to a limit X∞.

(4) Let

Z(k)
n := Xn(Xn + 1) · · · (Xn + k − 1)

(n+ 2)(n+ 3) · · · (n+ k + 1) .

Prove that (Z(k)
n )n≥0 is a martingale for all k ≥ 1.

(5) Prove that, for all k ≥ 1, EXk
∞ = EZ(k)

0 = 1
k+1 and deduce from it that X∞ has uniform law on [0, 1].
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Solution. (1) First note that at time n, there are n+2 balls in the urn (white and blacks). Thus, for all n ≥ 0, for all x ≥ 0,

P(Xn+1 = x+ 1 | Xn = x) = x

n+ 2

P(Xn+1 = x | Xn = x) = n+ 2− x
n+ 2

(2) For all n ≥ 1
E[Xn+1|Fn] = Xn

n+ 2
Xn + 1
n+ 3 + n+ 2−Xn

n+ 2
Xn
n+ 3 = Xn

n+ 2 = Xn.

Therefore, (Xn)n≥1 is a martingale.
(3) Note that for all n ≥ 1, Xn ∈ [0, 1], therefore, (Xn)n≥1 is a non-negative, bounded martingale. It is therefore almost

surely convergent (see Corollary 2.17), and uniformly integrable implying convergent in L1 (see Theorem 2.18).
(4) For all n ≥ 0, for all k ≥ 1,

E[Z(k)
n+1|Fn] = Xn

(Xn + 1)(Xn + 2) · · · (Xn + k)
(n+ 3)(n+ 4) · · · (n+ k + 2) + (1−Xn) Xn(Xn + 1) · · · (Xn + k − 1)

(n+ 3)(n+ 4) · · · (n+ k + 2) = Z(k)
n ,

after simplifications, implying that (Z(k)
n )n≥1 is a martingale for all k ≥ 1.

(5) For all k ≥ 1, (Z(k)
n )n≥1 is a non-negative, bounded martingale. It is thus almost surely convergent and convergent

in L1 to a random variable Z(k)
∞ . Moreover (see Theorem 2.18),

EZ(k)
∞ = EZ(k)

0 = 1
k + 1 .

In addition, we know that Xn converges almost surely to X∞, implying that Z(k)
n converges almost surely to Xk

∞. Therefore,
Z

(k)
∞ = X

k
∞, which concludes the proof, because the uniform law on (0, 1) has the same sequence of moments and is determined

by them.

Exercise 5.3: Queue with finite capacity
Let us study the queue M/M/1/K, corresponding to a queue with arrivals of rate λ, service times of rate µ,

with 1 tills and K maximum places in the queue. The number of customers in the post office is a Markov jump
process on {0, . . . ,K}:

(1) write its generator Q and its transition matrix (P (t))t≥0;

(2) convince yourself that the process is irreducible, and calculate its invariant probability;

(3) what is the average number of customers in the system?

Solution. (1) The generator is given by the following (K + 1)× (K + 1) matrix:

Q =




−λ λ 0 · · ·

µ −(µ+ λ) λ 0 · · ·

0 µ −(µ+ λ) λ 0 · · ·

. . . . . . . . .
µ −(µ+ λ) λ

µ −µ




,

C. Mailler, Markov Chains, Martingales, Discrete Structures, CIMPA Summer School 2014, Nablus 62



and the transition matrix is given by

P (t) =




0 λ 0 · · ·

µ 0 λ 0 · · ·

0 µ 0 λ 0 · · ·

. . . . . . . . .
µ 0 λ

µ 0




t.

(2) If π = (πx)0≤x≤K is an invariant probability, then
∑K

x=0 πx = 1 and πQ = 0 (see Theorem 3.6), i.e.




−λπ0 + µπ1 = 0
λπx−1 − (λ+ µ)πx + µπx+1 = 0 for all 1 ≤ x ≤ K − 1
λπK−1 − µπK = 0

Therefore, for all 1 ≤ x ≤ K − 1,
πx+1 − πx = λ

µ
(πx − πx−1),

which implies

πx+1 = 1− (λ/µ)x+1

1− λ/µ
(π1 − π0) + π0.

Recall that π1 = λ/µπ0, which finally gives
πx = (λ/µ)xπ0.

Using
∑K

x=0 πx = 1 gives

π0 = 1− λ/µ

1− (λ/µ)K+1 ,

which concludes the proof.
(3) Therefore, the average number of customers in the post office in the stationary regime is given by

K∑

x=0

xπx =
K∑

x=0

x(λ/µ)x 1− λ/µ

1− (λ/µ)K+1 .

We let the simplification exercise to the reader.
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1 Pólya urn: first steps

Let R be a 2-dimensional square matrix having integral entries and U0 a nonzero 2-dimensional
(column) vector with nonnegative integral entries:

R =

(
a b
c d

)
, U0 =

(
α
β

)
.

The Pólya urn process (Un)n∈N with replacement matrix R and initial composition vector U0 is in an
imaging way defined as follows. An urn contains red and black balls. At time 0, it contains α red
balls and β black ones. A ball is drawn uniformly at random from the urn and its colour is checked.
If the drawn ball is red, it is replaced into the urn together with a red balls and b black ones; if the
drawn ball is black, it is replaced into the urn as well, together with c red balls and d black ones. One
get in this way a new composition vector U1. The random process (Un)n∈N is recursively defined by
iterating this mechanism.

In this lecture, the following assumptions on R and U0 are made:
(i) R est balanced, i.e. a+ b = c+ d ≥ 1 ;
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(ii) R is “tenable”, i.e.
(
b, c ≥ 0

)
and

(
a ≤ −1 =⇒ a|c and a|α

)
and

(
d ≤ −1 =⇒ d|b and d|β

)
.

The balance hypothesis guarantees that the same number of balls S = a+ b = c+ d ≥ 1 is added at
any step of time. Thanks to the tenability assumption, the process can never extinguish, which means
that if a or d is negative, one can always respectively subtract −a or −d balls from the urn.

• In more rigorous terms,

(Un)n∈N =

(
U

(1)
n

U
(2)
n

)

n∈N

is the N2 \ {0}-valued discrete time Markov chain defined by the transition conditional probabilities





P

(
Un+1 = Un +

(
a
b

) ∣∣∣Un
)

=
U

(1)
n

U
(1)
n + U

(2)
n

;

P

(
Un+1 = Un +

(
c
d

) ∣∣∣Un
)

=
U

(2)
n

U
(1)
n + U

(2)
n

.

(1)

The balance assumption implies that U
(1)
n +U

(2)
n = α+β+nS for any n: at any time n, the composition

of the urn is random but the total number of balls is deterministic.

• A complete definition of the Pólya urn process as a Markov chain is given by the family


µ

x
y






x
y


∈N2\{0}

of probability measures on N2 \ {0} defined by:

∀
(
x
y

)
∈ N2 \ {0}, µ

x
y




=
x

x+ y
δ
x
y


+


a
b




+
y

x+ y
δ
x
y


+


c
d



,

where δP denotes the Dirac measure at P . Notice that the tenability assumption guarantees that(
x
y

)
+

(
a
b

)
and

(
x
y

)
+

(
c
d

)
belong to N2 \ {0} as soon as

(
x
y

)
does.

[Generalisation to any finite number of colour, to random replacement matrices. In the present lecture,
we will restrict ourselves to non random replacement matrices.]

Notations (spectral decomposition of R)
Thanks to the balance assumption, S is an eigenvalue of tR. By elementary considerations à la
Perron-Frobenius, the second eigenvalue m := a−c = d−b of tR is less than or equal to S. We denote

σ = m/S ≤ 1
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(note that σ may be negative).
When (b, c) 6= (0, 0), let

v1 =
S

b+ c

(
c
b

)
and v2 =

S

b+ c

(
1
−1

)
.

The vectors v1 and v2 are eigenvectors of tR, respectively associated with the eigenvalues S and m.
The dual basis (u1, u2) of linear eigenforms is given by the formulae

u1(x, y) =
1

S
(x+ y) and u2(x, y) =

1

S
(bx− cy).

These vectors and linear forms will be useful later on in the lecture.

Note that in dimension larger than 3, the matrix R is not necessarily diagonalizable, even on C. This
fact leads to some intricacy in the statement of the results but in a first approach, one can assume
that R is diagonalizable.

2 The approach in analytic combinatorics

The approach by analytic combinatorics is due to Philippe Flajolet and his co-authors Philippe Dumas,
Joaquim Gabarró, Helmut Pekari and Vincent Puyhaubert in the 2000’s. There are two founding
articles, namely [4] et [3].

The very first idea consists in coding the urn composition by a sequence (Wn)n∈N of finite words
written in the 2-letter alphabet {r, b} (r for red, b for black). The initial composition is coded by

W0 = rr . . . rbb . . . b = rαbβ.

Drawing a ball in the urn amounts to choosing a letter in the word uniformly at random. When the
chosen letter is an r, it is replaced in the world by the subword ra+1bb; when the chosen letter is a b,
it is replaced by rcbd+1. Thus, the successive drawings give rise to a sequence of random words

W0,W1,W2 . . .

Of course, at any time n, the composition vector Un can be recovered by counting the number of r’s
and the number of b’s in the word Wn.

Definition 1 (Histories of the process)

When n is a natural number, when

(
u0

v0

)
,

(
u
v

)
∈ N2 \ {0}, a history of length n leading from

(
u0

v0

)

to

(
u
v

)
is a sequence of words W0 = ru0bv0 ,W1,W2, . . . ,Wn produced in that way, for which Wn

contains exactly u letters r et v letters b.

Of course, with this coding, because of the balance hypothesis, the wordWn always contains u0+v0+nS
letters, whatever its history is. The key object of Flajolet’s method is the number of these histories:
denote by
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Hn

(
u0 u
v0 v

)

the number of histories of length n leading from

(
u0

v0

)
to

(
u
v

)
.

Exercise 1. When R =

(
0 3
2 1

)
, code and count all histories of length 2 leading from

(
2
0

)
to

(
4
4

)
.

[ One possible solution: start from W0 = r2. One can draw a tree of all possibilities: W1 ∈ {rb3r, r2b3},
then W2 ∈ {rb6r, r3b4r, rbr2b3r, rb2r2b2r, rb3rb3} or W2 ∈ {rb3rb3, r2b6, r4b4, r2br2b3, r2b2r2b2}. Amongst

the ten histories of length 2, six of them lead to

(
4
4

)
and four lead to

(
2
6

)
: starting from two red balls, the

probability that the urn contains four red balls and four black ones after two drawings is 3/5.

Beware: in the example, the configuration rb3rb3 is reached by two different histories. We count histories, not

the different word that are potentially obtained. ]

Exercise 2 (this urn is Pólya’s original one in his article published in 1930). Whenever R = SI2,
compute all numbers Hn, n ≥ 0.
[ This is elementary enumerative combinatorics. Make the picture of a path in N2 and count the histories that
follow each of these paths. For any (p, q) ∈ N2 such that p+ q = n, one gets

Hn

(
α α+ pS
β β + qS

)
=

(
n
p

)
α
(
α+ S

)
. . .
(
α+ (p− 1)S

)
β
(
β + S

)
. . .
(
β + (q − 1)S

)

= n!Sn
(
α
S + p− 1

p

)(
β
S + q − 1

q

)
;

all others Hn vanish. ]

Exercise 3. For any urn, if N = α+ β, show that the total number of histories of length n starting

from

(
α
β

)
equals N

(
N + S

)(
N + 2S

)
. . .
(
N + (n− 1)S

)
= n!Sn

(
N
S + n− 1

n

)
.

Generating series (or functions) are central tools in analytic combinatorics. In the case of 2-colour
urns, the relevant one is the trivariate generating series of histories: the variable x counts the final
number of red balls, the variable y counts the final number of black ones while the variable z counts
the length of the history. Thus, the replacement matrix R being given, denote

H

(
x, y, z

∣∣∣∣
u0

v0

)
=

∑

u,v,n∈N
Hn

(
u0 u
v0 v

)
xuyv

zn

n!
.

Exercise 4. For any urn (i.e. for any R), H

(
1, 1, z

∣∣∣∣
u0

v0

)
=

(
1

1− Sz

)u0+v0
S

.

Exercise 5. For the original urn (R = SI2),

H

(
x, y, z

∣∣∣∣
u0

v0

)
=

xu0yv0

(1− SzxS)
u0
S (1− SzyS)

v0
S

.
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[ Computations on multivariate power series, based on the formula 1
(1−X)N

=
∑
n≥0

(
N + n− 1

n

)
Xn. ]

[ Commentary on papers by P. Flajolet et al.: pointing an object amounts to make a partial derivative
on the generating series; proceeding to a replacement amounts to multiply the series by some appro-
priate monomial. Such considerations lead to the following “Basic isomorphism”, stated and proven
in [3]. ]

Theorem 1 (Flajolet, Dumas, Puyhaubert, 2006)
Let x and y be complex numberes such that xy 6= 0. Let X(t) and Y (t) be the solutions of the Cauchy
Problem (formal version or analytic version)





dX

dt
= Xa+1Y b

dY

dt
= XcY d+1

X(0) = x, Y (0) = y.

(2)

Then, for any initial composition (u0, v0), for any z in some small enough neighbour of the origin
(analytic version),

H

(
x, y, z

∣∣∣∣
u0

v0

)
= X(z)u0Y (z)v0 .

Example 1. Back to the original Pólya urn for which R = SI2: the differential system writes X ′ =
XS+1, Y ′ = Y S+1and can be solved. The solution of the Cauchy Problem is X(t) = x(1− StxS)−1/S ,
Y (t) = y(1− StyS)−1/S . Theorem 1 provides a second proof of exercice 5.

Proof of Theorem 1. Consider the following differential operator on 2-variable functions:

D = xa+1yb
∂

∂x
+ xcyd+1 ∂

∂y
.

The action of D on monomials is related to urn histories via the formula

D (xu0yv0) = u0x
a+u0yb+v0 + v0x

c+u0yd+v0

= H1

(
u0 u0 + a
v0 v0 + b

)
xa+u0yb+v0 +H1

(
u0 u0 + c
v0 v0 + d

)
xc+u0yd+v0

which can also be written

D (xu0yv0) =
∑

u,v≥0

H1

(
u0 u
v0 v

)
xuyv

where only two terms of the infinite sum are nonzero. This implies by induction that for any n ∈ N,

Dn (xu0yv0) =
∑

u,v≥0

Hn

(
u0 u
v0 v

)
xuyv. (3)
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[Notice that the Markov property of the urn process is expressed in this induction.] Besides, if (X,Y )
is a solution of the differential system X ′ = Xa+1Y b, Y ′ = XcY d+1, then

d

dt
(X(t)u0Y (t)v0) = u0X(t)a+u0Y (t)b+v0 + v0X(t)c+u0Y (t)d+v0

= D (xu0yv0)∣∣∣∣
x = X(t)
y = Y (t)

which extends to an analogous formula for the n-th derivative. Gathering these results leads succes-
sively to

H

(
X(t), Y (t), z

∣∣∣∣
u0

v0

)
=
∑

n≥0

Dn (xu0yv0)∣∣∣∣
x = X(t)
y = Y (t)

zn

n!

=
∑

n≥0

dn

dtn
(X(t)u0Y (t)v0)

zn

n!
.

Thanks to Taylor Formula at the origin (analytic or formal version), one concludes by

H

(
X(t), Y (t), z

∣∣∣∣
u0

v0

)
= X(t+ z)u0Y (t+ z)v0 .

The final result follows taking the value at the origin (t = 0).

When the differential system can be solved, applying Theorem 1 leads to a close form of the H
function. When this is possible, one gets very accurate probabilistic consequences on the distribution
of the composition of the urn at finite time, or on the asymptotics of the process as well. We give
hereunder a couple of examples, essentially drawn from [4] and [3].

Remark. 1- One gets immediately from Theorem 1 that

H

(
x, y, z

∣∣∣∣
u0

v0

)
= H

(
x, y, z

∣∣∣∣
1
0

)u0
H

(
x, y, z

∣∣∣∣
0
1

)v0
.

This formula evokes some (combinatoric) convolution property. It has to be related to the branching
property of the continuous time corresponding urn process, that leads to a similar equation on the
Fourier transforms of large urns limit laws. See [2]. A direct link between both properties remains
an open question.

Example 2. Take the urn having

(
0 1
1 0

)
as replacement matrix.. [ Friedmann’s urn. Talk about

the propaganda campaign used by P. Flajolet. ] The Cauchy Problem writes




X ′ = XY
Y ′ = XY
X(0) = x, Y (0) = y

and can be easily solved. One finds

H

(
x, y, z

∣∣∣∣
u0

v0

)
=

(
x(x− y)

x− yez(x−y)

)u0 ( y(y − x)

y − xez(y−x)

)v0
.

N. Pouyanne, Pólya urns, CIMPA Summer School 2014, Nablus 70



For example, when one starts with a sole red ball, the probability generating function of the number
of red balls is

E
(
xU

(1)
n

)
=

[
zn

n!

]∑

n,k

P(U (1)
n = k)xk

zn

n!
= [zn]H

(
x, 1, z

∣∣∣∣
1
0

)
,

since the total number of histories of length n starting from one red ball is n! (see Exercise 3). Using
the explicit expression of H, one gets

E
(
xU

(1)
n

)
= [zn]

x(x− 1)

x− ez(x−1)
.

This function of the z-variable has a simple pôle at z = log x
x−1 as unique singularity. Since this function

of the x-variable is analytic at 1, singularity analysis shows that one can apply Hwang’s Quasi-power

Theorem: the mean and the variance of U
(1)
n are both asymptotically proportional to n, and the

number of red balls at time n (i.e. the random variable U
(1)
n ) satisfies a Law of Large Numbers and a

Central Limit Theorem as well (Gaussian distribution).

Exemple 3. This example is the central one in [4]. It deals with the urn process that models the leaves

of a 2-3–tree, which is an important search tree algorithm. Its replacement matrix is

(
−2 3
4 −3

)
.

Here, the Cauchy Problem writes 



X ′ = X−1Y 3

Y ′ = X4Y −2

X(0) = x, Y (0) = y.
(4)

Pose Z = X2; one gets successively Z ′ = 2Y 3 and Z ′′ = 6Z2. Multiply first the latter equation by Z ′

then integrate. This leads to show that Z is necessarily a solution of the Cauchy Problem





Z ′2 = 4Z3 − g3

Z(0) = x2

Z ′(0) = 2y3
(5)

where g3 = 4(x6 − y6). This equation is solved using the famous and beautiful theory of elliptic
functions. Quickly said, let ℘(z) = ℘(z; 0,−4) be the elliptic Weiestrass function, associated to the
(so-called) invariants g2 = 0 et g3 = −4: if one denotes

ω =
1

2
B

(
1

6
,
1

3

)

(Euler Beta function) and if Λ denotes the hexagonal lattice

Λ = ω
(
eiπ/6Z + e−iπ/6Z

)
,

then ℘ is the meromorphic function of the complex plane defined on the complementary of the lattice
Λ by

℘(z) =
1

z2
+

∑

λ∈Λ\(0)

[
1

(z + λ)2 −
1

λ2

]
.
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The function ℘ has a double pôle at any point of Λ and is Λ-periodic (such complex functions are called
doubly periodic). Modulo Λ, the zeroes of ℘ are exactly ω/3 and 2ω/3. The theory of holomorphic
functions shows that ℘ is a solution of (5). There is another way to describe this famous ℘: it is the
inverse of the elliptic integral that underpins Equation (5). More precisely, if z and w are complex
numbers one gets the equivalence

℘(z) = w ⇐⇒ z =

∫

[w,∞]

dζ

2
√
ζ3 + 1

,

where the symbol [w,∞] denotes any half-line having w as origin, and that do not contain any root
of the polynomial ζ3 + 1 (the square root denotes here the determination defined by the split plane
associated to this half-line). Note for example that the Weierstraß functions, even if they have been
defined in the 1860’s, are objects of recent interest because they give parametrizations of smooth plane
cubics that are central in modern cryptography; here, the pair (℘, ℘′) is a parametrization of the curve
Y 2 = 4X3 + 4.

Thus, the solutions of the differential system (4) can be expressed by means of elliptic functions on
the hexagonal lattice. Take for instance an urn containing initially 2 red balls and no black ones. Let
pn be the probability that all balls are black at time n. In terms of H functions, this number writes

pn =
1

n+ 1
[zn]H

(
0, 1, z

∣∣∣∣
2
0

)
.

By solving the Cauchy Problem, one shows that

H

(
0, 1, z

∣∣∣∣
2
0

)
= ℘

(
z − ω

3

)
.

One concludes by means of singularity analysis: check the pôles of ℘ and give an asymptotics of pn as
powers of 3/w ∼ 0, 7132.

Remarks. 1- The monomial differential system (2) has a simple first integral: if X and Y are
solutions, then 1/Xm− 1/Y m is a (locally) constant function. Writing by this means Y as a function
of X and reporting in the system, one gets the inverse abelian integrals described above. All “elliptic
urns”, i.e. all urns for which these abelian integrals are related to curves of genus 1 (elliptic curves)
are classified in [4].

2- In the case of more than 3 colours, Theorem 1 remains valid. Nevertheless, the efficiency and the
preciseness of the beautiful analytic method for urns is darkened by a theoretical obstruction: the
monomial differential system is, in general, not integrable in dimension more than 3 (this is a difficult
result of differential algebra and algebraic geometry, see final comments and note 11 in [3]).

3 The probabilistic approach

We first adopt two experimental approaches, where the effect of the famous phase transition on urns
appears. Then, the results on urns asymptotics are stated. Finally, the methods of proving these
asymptotics are evoked.
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3.1 Introduction: an experimental computational approach

3.1.1 Distributions

As a first approach, for any urn, consider the probability generating function of the number of (say)

red balls at time n, starting from the initial composition

(
u0

v0

)
:

pn

(
x

∣∣∣∣
u0

v0

)
:=
∑

u≥0

P(u0,v0)

(
U (1)
n = u

)
xu = E(u0,v0)

(
xU

(1)
n

)
.

Since the total number af balls at time n is deterministic, this probability generating function describes
the whole distribution of the urn composition at time n. This probability generating function can be
expressed by means of H functions: denote by

Hn

(
x, y

∣∣∣∣
u0

v0

)
:=

∑

u,v≥0

Hn

(
u0 u
v0 v

)
xuyv = n! [zn]H

(
x, y, z

∣∣∣∣
u0

v0

)

the generating series (it is a 2-variable polynomial) of histories of length n starting from

(
u0

v0

)
. Then,

Hn

(
1, 1

∣∣∣∣
u0

v0

)
is the total number of histories of length n starting from

(
u0

v0

)
(see Exercise 3) and

pn

(
x

∣∣∣∣
u0

v0

)
=

Hn

(
x, 1

∣∣∣∣
u0

v0

)

Hn

(
1, 1

∣∣∣∣
u0

v0

) .

Thus, it suffices to compute Hn

(
x, y

∣∣∣∣
u0

v0

)
, or even Hn

(
x, 1

∣∣∣∣
u0

v0

)
to get pn. But, as shown in the

proof of Theorem 1, the bivariate function Hn

(
x, y

∣∣∣∣
u0

v0

)
satisfies Equation (3), namely

Hn

(
x, y

∣∣∣∣
u0

v0

)
= Dn (xu0yv0) .

As a matter of consequence, by means of computer algebra, starting from the monomial xu0yv0 , it
suffices to make an iteration of the operator D to get a symbolic expression of the entire function

Hn

(
x, y

∣∣∣∣
u0

v0

)
. The probability generating function pn is then extracted by substitutions (y = 1

and x = 1). By this means, the distribution of red balls at given times can be graphically represented.
This is done below for three particular urns and initial compositions.

3.1.2 Simulations of trajectories

Another approach consists in simulating the random successive compositions of an urn. One can by this
means have a representation of trajectories of the composition vector, namely {(n,Un) , n = 0, 1, 2 . . . }
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for different random drawings. Taking only the first coordinate of Un leads to trajectories of the number
of red balls, namely {(

n,U (1)
n

)
, n = 0, 1, 2 . . .

}
.

This is done below for three particular urns and initial compositions.

3.1.3 Three urns

Consider the urn processes having respectively

I2 =

(
1 0
0 1

)
, R1 =

(
1 12
11 2

)
and R2 =

(
12 1
2 11

)

as matrix transitions. The drawings presented hereunder are made taking respectively

(
2
5

)
,

(
1
0

)

and

(
1
0

)
as initial composition. All graphics are different representations of the number of red balls

contained in the urn.

1- Very first histograms

Any picture is made for a given number n of drawings in the urn. On the x-axis, the number of red
balls in the urn after n drawings. On the y-axis, the number of histories of length n starting from the
initial composition. Points at integer abscissae are related by line segments.

n = 1 n = 2 n = 3 n = 10

Original Pólya urn I2 after n drawings with initial composition (2, 5):
number of histories with respect to the number of red balls.
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n = 1 n = 2 n = 3 n = 10

Urn R1 after n drawings with initial composition (1, 0):
number of histories with respect to the number of red balls.

n = 1 n = 2 n = 3 n = 10

Urn R2 after n drawings with initial composition (1, 0):
number of histories with respect to the number of red balls.

2- Very first trajectories

For a given urn, we draw three different trajectories, corresponding to three random sequences of
drawings in the urn. On the x-axis, the number of drawings (discrete time); the maximal number of
drawings is successively N = 100, 1000, 50000. On the y-axis, the number of red balls in the urn.
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N = 100 N = 1000 N = 50000

Red balls in three sequences of N drawings in an original Pólya urn I2, initial composition (2, 5)

N = 100 N = 1000 N = 50000

Red balls in three sequences of N drawings in an urn R1, initial composition (1, 0)

N = 100 N = 1000 N = 50000

Red balls in three sequences of N drawings in an urn R2, initial composition (1, 0)
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3.2 Asymptotics of the composition vector, phase transition, figures

The composition vector Un of a Pólya urn process has different asymptotics régimes when n tends
to infinity, depending on the spectral decomposition of the replacement matrix R. In this section,
we state, comment and illustrate these asymptotic results. All of them can be extended in higher
dimension (any finite number of colours). Methods of proofs are introduced in Section 3.3.

Take a two-colour Pólya urn with replacement matrix R =

(
a b
c d

)
and initial composition vector

U0 =

(
α
β

)
. We adopt the notations of Section 1, especially the balance S = a+ b = c+ d, the second

eigenvalue m = a− c = d− b, the tR-eigenvectors v1, v2 and, above all, the ratio

σ = m/S.

The original Pólya urn holds a particular place; its asymptotics is described in Theorem 2. The famous
phase transition occurs at σ = 1/2. When σ ≤ 1/2, the urn is said small and its composition vector
satisfies a central limit theorem as stated in Theorem 3. When σ ∈]1

2 , 1[, the urn is said large and the
centered composition vector admits, after a suitable normalisation, an almost sure random limit; this
result is made precise in Theorem 4.

Theorem 2 (Pólya original urn)
Suppose that the urn is Pólya’s original one, i.e. that R = I2. Then, as n tends to infinity,

Un
Sn
−→
n→∞

D

almost surely and in any Lp, p ≥ 1, where D is a Dirichlet distributed 2-dimensional random vector

with parameter

(
α

S
,
β

S

)
.

If u and v are two positive real numbers, a 2-dimensional Dirichlet distribution with parameter (u, v)
is the measure on the simplex Σ =

{
(x, y) ∈ [0, 1]2, x+ y = 1

}
that admits the function

(x, y) 7→ Γ(u+ v)

Γ(u)Γ(v)
xu−1yv−1

as density with regard to Lebesgue measure on Σ. In other words, if D is a Dirichlet distributed
2-dimensional random vector with parameter (u, v), then for any continuous function f on Σ,

E (f(D)) =
Γ(u+ v)

Γ(u)Γ(v)

∫ 1

0
f(x, 1− x)xu−1 (1− x)v−1 dx.

In particular, if D = (X,Y ), then the marginals X and Y are (mutually dependent) Beta distributed
random variables, X having parameter (u, v) and Y having parameter (v, u).

Firstly, the convergence is almost sure, which means that, with probability 1, a sequence of random
drawings leads to the convergence of the vector Un/Sn to some vector in the simplex Σ. Secondly,
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the limit D is random, which means that two different sequences of random drawings converge with
probability 1 to two different vectors of Σ.
This almost sure random limit can be visualised on the above simulations: any trajectory gives rise
to a (trembled) line, but the three slopes are different. We give hereunder new figures, where three
normalised trajectories are represented, showing three different limits: on the x-axis, the number n of

drawings up to N = 100, 1000 or 50000. On the y-axis, the normalised number of red balls 1
nU

(1)
n .

N = 100 N = 1000 N = 50000
1
nU

(1)
n in three sequences of N drawings in an original Pólya urn I2, initial composition (2, 5)

One can also visualise the Beta distributed limit of the normalised number of red balls. Hereunder,
the figure on the left represent the (exact) distribution of the normalised number of red balls in the

urn after n = 200 drawings. On the x-axis, 1
n

(
U

(1)
n −EU

(1)
n

)
. On the y-axis, the probability; it has

been computed from the probability generating function pn introduced above. The figure on the right
represents the graph of the density of the centered Beta distribution with parameter (2, 5), namely
the function x 7→ 1

B(2,5) (x− µ)1 (1− x+ µ)4 where µ = B(3, 5)/B(2, 5) = 2/7 is the expectation.

n = 200

Normalised distribution of the number of red balls

in an original Pólya urn I2, initial composition (2, 5)

Density of a centered

Beta (2, 5) distribution
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Theorem 3 (Small urns)
Suppose that the urn is small, which means that σ < 1/2. Then as n tends to infinity,

(i)
Un
n

converges to v1, almost surely and in any Lp, p ≥ 1;

(ii) assume further that R is not triangular, i.e. that bc 6= 0. Then,
Un − nv1√

n
converges in distribution

to a centered gaussian vector with covariance matrix

1

1− 2σ

bcm2

(b+ c)2

(
1 −1
−1 1

)
.

[ When σ = 1/2, one says also that the urn is small. In this case, assertion (i) holds as well whereas, when R

is not triangular, assertion (ii) must be replaced by: Un−nv1√
n logn

converges in distribution to a centered Gaussian

vector with covariance matrix 1
4bc

(
1 −1
−1 1

)
. ]

Here, the convergence of Un/n is almost sure again, but the limit is deterministic: with probability 1,
a sequence of random drawings leads to the convergence of the vector Un/n, but the limit is now
always the same one (namely, v1). This phenomenon can be visualised on the trajectories for the
urn R1: the three asymptotic slopes are identical. When the normalised trajectories are drawn, one
gets the following pictures. Here again, on the x-axis, the number n of drawings up to N = 100, 1000

or 50000; on the y-axis, the normalised number of red balls 1
nU

(1)
n .

N = 100 N = 1000 N = 50000

1
nU

(1)
n in three sequences of N drawings in a small urn R1, initial composition (1, 0)

The convergence in distribution stated in (ii) is of a radically different nature. It means that the
distribution at finite time n converges to some given distribution when n tends to infinity. The limit
distribution is here normal. As before, for the R1-urn, with the help of the probability generating

function, the (exact) distribution of the number 1√
n

(
U

(1)
n −EU

(1)
n

)
is drawn on the leftside figure for

n = 600. On the right, the graph of the density of the centered normal distribution with variance
1

1−2σ
bcm2

(b+c)2
= 5200

529 .
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n = 600

Normalised distribution of the number of red balls

in an small urn R1, initial composition (1, 0)

Density of a centered normal

distribution with variance 5200
529

The difference with almost sure convergence can be visualised on the following trajectory graphs.
Even if the distribution at time n converges to a normal distribution, for a given sequence of random

drawings, the number 1√
n

(
U

(1)
n −EU

(1)
n

)
does not converge to a real number. The trajectory is

erratic and looks like a brownian motion. On the figure hereunder, two different trajectories of the
(completely) normalised number of red balls in a R1-urn. On the x-axis, the number n of drawings;

on the y-axis, 1√
n

(
U

(1)
n − nv(1)

1

)
, where v

(1)
1 is v1 first coordinate.

N = 100 N = 1000 N = 50000

1√
n

(
U

(1)
n − nv(1)

1

)
in two sequences of N drawings in a small urn R1, initial composition (1, 0)

Theorem 4 (Large urns)
Suppose that the urn is large, which means that 1/2 < σ < 1. Then as n tends to infinity,

(i)
Un
n

converges to v1, almost surely and in any Lp, p ≥ 1;
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(ii)
Un − nv1

nσ
converges almost surely and in any Lp, p ≥ 1 to Wv2 where v2 is the (deterministic)

eigenvector of tR defined in Section 1 and W is a real-valued random variable which admits a density
and is supported by the whole real line. Besides, with the notations of Section 1,

EW =
Γ
(
α+β
S

)

Γ
(
α+β
S + σ

) bα− cβ
S

.

Assertion (i) is the same one as in the case of small urns. We make the same simulations as before for
the urn R2. The convergence to the (same) limit is visibly much slower, due to the second order term
which grows like nσ with σ ' 0.77 (instead of

√
n for small urns). This second order term was already

seeable on the trajectories of the number of red balls: the three slopes do not look not as similar as in
the case of the small urn R1 (but they really tend to a same one as N tends to infinity). Hereunder,
again, on the x-axis, the number n of drawings up to N = 100, 1000 or 50000; on the y-axis, the

normalised number of red balls 1
nU

(1)
n .

N = 100 N = 1000 N = 50000

1
nU

(1)
n in three sequences of N drawings in a large urn R2, initial composition (1, 0)

Almost sure convergence implies convergence in distribution. In particular, by formal computation
of the probability generating function of red balls, the shape of W ’s density can be approached as
already done (Beta function for the original Pólya urn, Gauss function for a small urn). The Fourier
transform of W can be expressed in terms of the inverse of some suitable abelian integral (see [2]).
Despite of this, very few is known about its density. The figure hereunder shows the graph of the

density of W −EW , approached by the (exact) distribution of 1
nσ

(
U

(1)
n −EU

(1)
n

)
for n = 40, 120 and

800.
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n = 40 n = 120 n = 800

Normalised distribution of the number of red balls

in a large urn R2 after n drawings, initial composition (1, 0)

A remarkable fact: the distribution W depends on the initial composition of the urn, which does not
happen for small urns. The graphs hereunder illustrate this property, representing W −EW ’s density
for the large urn R2 starting with respectively (1, 0), (1, 1) and (2, 1) as initial composition vector.

(α, β) = (1, 0) (α, β) = (1, 1) (α, β) = (2, 1)

Normalised distribution of the number of red balls in a large urn R2

after 500 drawings, initial composition (α, β)

The last illustration concerns the second term order which has a random asymptotics. Two normalised
trajectories of the number of red balls in an R2-urn up to time N = 100, 1000 and 50000 are plot-

ted. The convergence of 1
nσ

(
U

(1)
n − nv(1)

1

)
is here almost sure: for (almost) any sequence of random

drawings in the large urn, this random variable converges to a (random) limit. The situation is very
different from the small urn case, where a given trajectory do not give rise to the convergence of the
second order normalised number of red balls. Here again, on the x-axis, the number n of drawings up

to N ; on the y-axis, the second order normalised number of red balls 1
nσ

(
U

(1)
n − nv(1)

1

)
. Here again,

v
(1)
1 denotes v1 first coordinate
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N = 100 N = 1000 N = 50000

1
nσ

(
U

(1)
n − nv(1)

1

)
in three sequences of N drawings in a large urn R2, initial composition (1, 0)

3.3 Hint of proof

All the proofs of these asymptotic results rely on martingale theory.
Historically, the first approach was made in the 70’s by Athreya and Karlin who considered the
composition vector process of an urn as a multitype branching process. They first embed the urn
process into continuous time and make its study as a continuous-time branching process [1]. In
his seminal article [5], Janson adapts the method in a complete study of an urn process under an
irreducibility assumption. A direct discrete time approach based on moments is made in [6]. The
arguments presented hereunder rely essentially on this latter approach.

The vector-valued Markov process (Un)n∈N is defined by the probability transitions (1) and the initial

composition vector U0 =

(
α
β

)
. In particular, if f : R2 → V is any function that takes its value in any

real vector space V , the conditional expectation of Un+1 writes

E
(
f (Un+1)

∣∣∣Un
)

=
U

(1)
n

nS + α+ β
f

(
Un +

(
a
b

))
+

U
(2)
n

nS + α+ β
f

(
Un +

(
c
d

))
.

Thanks to the deterministic relation U
(1)
n +U

(2)
n = nS+α+β, this formula can be written the following

way:

E
(
f (Un+1)

∣∣∣Un
)

=

(
Id +

Φ

nS + α+ β

)
(f) (Un) (6)

where Φ denotes the operator defined, for any function f as above and any vector v =

(
v(1)

v(2)

)
∈ R2,

by

Φ (f) (v) = v(1)

[
f

(
v +

(
a
b

))
− f (v)

]
+ v(2)

[
f

(
v +

(
c
d

))
− f (v)

]
. (7)

A first consequence is the expectation of f (Un), obtained by recursion from Formula (6): if f : R2 → V
is any function,

Ef (Un) = γn,α+β (Φ) (f) (U0) (8)
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where γn,τ is the real polynomial defined by

γn,τ (X) =
n−1∏

k=0

(
1 +

X

kS + τ

)

(τ is a non zero real number; if n = 0, this empty product equals 1). Notice that, thanks to Stirling
Formula, when z is any complex number, one gets the asymptotics

γn,τ (z) =
Γ
(
τ
S

)

Γ
(
τ+z
S

)n z
S

(
1 +O

(
1

n

))
(9)

where Γ denotes Euler Gamma function. Formulae (6) and (8) are basic tools for the present proof.
When f 6= 0 is an eigenvector of Φ related to the eigenvalue λ, i.e. when Φ (f) = λf , then
γn,τ (Φ) (f)(v) = γn,τ (λ) × f(v) so that Formula (9) gives immediately the asymptotics of Ef (Un)
when n tends to infinity. With this elementary remark, one can evaluate the asymptotic joint moments
of Un’s coordinates, leading to the proof of Theorem 4. Theorem 2 can also be proven with such tools.
Classically, the proof of the small irreducible case (Theorem 3) is made by embedding the process into
continuous time, and coming back to discrete time using some suitable random stopping-time. See [5]
for a complete proof.

Exercise 6.
6.1- (Linear functions)
Show that if V is a real vector space and if f : R2 → V is linear, then

Φ(f) = f ◦A

where A : R2 → R2 is defined by A(v) = A

(
v(1)

v(2)

)
:= tR

(
v(1)

v(2)

)
=

(
a c
b d

)(
v(1)

v(2)

)
.

6.2- (Vector-valued martingale)

Denote τ := α + β. Show that the process
(
γn,τ

(
tR
)−1

(Un)
)
n

is a martingale (with regard to the

natural filtration) as soon as it is defined, i.e. as soon as all matrices I2 + 1
kS+τR, k ∈ N are invertible.

Show that this martingale is not defined if, and only if m ≤ −1 and S divides m+ α+ β.

[Apply 6.1- to f = Id. This leads to E
(
Un+1

∣∣Un
)

=
(
I2 + 1

nS+τA
)

(Un). This implies all the answers, because

A is diagonalizable, with eigenvalues S and m. For the martingale assertion, one can also refer to Brigitte

Chauvin’s course Random trees and probability, Proposition 3.7, where a similar argument is given.]

6.3- (Expectation)
Let u1 and u2 be the eigenforms defined in Section 1. Verify (or remember!) that u1 ◦ A = Su1 and
u2 ◦A = mu2. Show that for any n ∈ N,

Eu1 (Un) = n+
τ

S

and, when n tends to infinity,

Eu2 (Un) =
Γ
(
τ
S

)

Γ
(
τ
S + σ

) bα− cβ
S

nσ
(

1 +O

(
1

n

))
.
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When R 6= SI2, using that v = u1(v)v1 + u2(v)v2 for any vector v ∈ R2, show that, when n tends to
infinity,

EUn ∼ nv1

[An induction using 6.1- leads to Eu1 (Un) = γn,τ (S) × u1 (U0) = nS+τ
τ × τ

S . For u2, apply Formula (9) to

Eu2 (Un) = γn,τ (m) × u2 (U0) with a O-remainder. The third assertion is obtained by addition of asymptotic

developments.]

6.4- (Real-valued projected martingales)
Show that (

u1 (Un)

nS + τ

)

n

is an almost surely bounded (thus convergent) martingale and compute its expectation. Show that

(
u2 (Un)

γn,τ (m)

)

n

is a martingale as well, as soon as m ≥ 0 or m+ τ is not a multiple of S.

[Using 6.1- again, one gets E
(
u1 (Un+1)

∣∣Un
)

=
(

1 + S
nS+τ

)
× u1 (Un), so that E

(
u1(Un+1)
(n+1)S+τ

∣∣Un
)

= u1(Un)
nS+τ ,

proving the martingale property. Same argument from E
(
u2 (Un+1)

∣∣Un
)

=
(

1 + m
nS+τ

)
× u2 (Un). ]

6.5- (Second moments)
Denote by P and Q the 2-variable polynomials defined by

P (x, y) = u1(x, y)

(
u1(x, y) + 1

)
and Q(x, y) =

(
u1(x, y) + σ

)
u2(x, y).

Show that Φ(P ) = 2SP and Φ(Q) = (S +m)Q and prove the asymptotics when n tends to infinity

EP (Un) = n2

(
1 +O

(
1

n

))

and

EQ (Un) =
Γ
(
τ
S

)

Γ
(
τ
S + σ

) bα− cβ
S

n1+σ

(
1 +O

(
1

n

))

(if one feels depressed, one can just show that Q (Un) ∈ O
(
n1+σ

)
, :-)).

Suppose that σ 6= 1/2 and denote

R = u2
2 −

bcσ2

1− 2σ
u1 + (b− c)σu2.

Using (7), show that, in this case, Φ (R) = 2mR and that, when n tends to infinity,

ER (Un) =
Γ
(
τ
S

)

Γ
(
τ
S + 2σ

)R (α, β)n2σ

(
1 +O

(
1

n

))
.
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Show that (1, u1, u2, P,Q,R) is a basis of the vector space R2[x, y] of polynomials of degree less than
or equal to 2. Write x2, xy and y2 in this basis and compute the asymptotics of the co-moment matrix
E
[
Un

tUn
]

and of the covariance matrix E
[
(Un −EUn) t (Un −EUn)

]
(one has to discuss whether

σ < 1/2 or σ > 1/2).

Check what happens when σ = 1/2 and do the same job using T = u2
2 + 2b−m

2 u2 instead of R.

[One gets Φ(P ), Φ(Q) and Φ(R) by simple computation. Since Φ(P ) = 2SP , EP (Un) = γn,τ (2S)×P (U0) and

the required asymptotics for EP (Un) is obtained thanks to Formula (9). Idem for EQ (Un) and ER (Un). The

remainder of the exercise is completely left to the reader.]

6.6- (For large urns, the second projected martingale is square-bounded)
Suppose that σ > 1/2. Expressing u2

2 as a function of R, u1 and u2, show that the martingale(
u2(Un)
γn,τ (m)

)
n

is bounded in L2, thus convergent.

[u22 = R+ bcσ2

1−2σu1 − (b− c)σu2, so that Eu22 (Un) = c1n
2σ (1 +O(1/n)) + c2n+ c3n

σ (1 +O(1/n)) where c1, c2
and c3 are constants. Since σ > 1/2, the principal term is the one in n2σ, proving that the martingale is square

bounded (use Formula (9) again to get the asymptotics of γn,τ (m)2). ]

Exercise 7 (triangular urn).

Assume that b = 0, so that R =

(
S 0

S −m m

)
. Assume also that the initial number of black balls is

non zero, i.e. that β 6= 0 (and check that β = 0 leads to a degenerate process). Let as above u1 be

the linear form u1(x, y) =
x+ y

S
but let here u2 be the linear form

u2(x, y) =
y

S
.

For any p ∈ N∗, let also Ap and Bp be the bivariate polynomials

Ap = u1 (u1 + 1) . . . (u1 + p− 1) =
Γ (u1 + p)

Γ (u1)

and

Bp = u2

(
u2 + σ

)
. . .

(
u2 + (p− 1)σ

)
=

Γ (u2 + pσ)

Γ (u2)
.

Show that Φ (Ap) = pSAp (as always, even if R is not triangular) and that Φ (Bp) = pmBp for any
p ≥ 1. Deduce from this that, when n tends to infinity,

EBp (Un) =
Γ
(
τ
S

)

Γ
(
τ
S + pσ

)
Γ
(
β
S + pσ

)

Γ
(
β
S

) npσ
(

1 +O

(
1

n

))
.

• Assume that m ≥ 1.
Using the inversion formula

up2 =

p∑

k=1

(−σ)p−k
{
p
k

}
Bk,
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show that, for any p ≥ 1,

lim
n→∞

E

(
u2 (Un)

nσ

)p
=

Γ
(
τ
S

)

Γ
(
τ
S + pσ

)
Γ
(
β
S + pσ

)

Γ
(
β
S

) . (10)

so that the number of black balls U
(2)
n = Su2 (Un) converges in law to a random variable having the

right side of Equality (10) as p-th moment (to make a complete proof of that fact, one has to check
that a distribution having such a p-th moment is determined by its moments, which can be done by
computing the asymptotics of (10) as p tends to infinity with the help of Stirling Formula). This law
can be related to stable laws or to Mittag-Leffler ones.

• Assume that m = 0. Show that the process is deterministic (degenerate case).

• Assume that m ≤ −1. Show that the number of black balls tends almost surely to zero (degenerate
case again).
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[4] Philippe Flajolet, Joaquim Gabarró, and Helmut Pekari. Analytic urns. Annals of Probability,
33:1200–1233, 2005.

[5] S. Janson. Functional limit theorem for multitype branching processes and generalized Pólya urns.
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1 Abstract/Introduction

In this school, three examples are developed, involving random trees: binary
search trees, Pólya urns and m-ary search trees. For all of them, a same plan
runs along the following outline:
(a) A discrete Markovian stochastic process is related to a tree structure. In the
three cases, the tree structure is a model coming from computer science and from
analysis of algorithms, typically sorting algorithms. The recursive nature of the
problem gives rise to discrete time martingales.
(b) The process is embedded in continuous time, giving rise to a one type or
to a multitype branching process. The associated continuous time martingales
are connected to the previous discrete time martingales. Thanks to the branch-
ing property, the asymptotics of this continuous time branching process is more
accessible than in discrete time, where the branching property does not hold.

In all the cases, the limit of the (rescaled) martingale has a non classic distribu-
tion. We present some expected properties of these limit distribution (density,
support, ...) together with more exciting properties (divergent moment series,
fixed point equation, moments, ...).

Sections 2 on binary search trees and Section 3 on m-ary search trees are devel-
opped in this course, Pólya urns are developped in Pouyanne’s course.

2 Binary search trees

(in short: BST)

2.1 Definition of a binary search tree

A binary search tree is associated with the sorting algorithm “Quicksort” and
several definitions can be given with this algorithm in mind (see Mahmoud [15]).
Hereunder we give a more probabilistic definition. Let

U = {ε} ∪
⋃

n≥1
{0, 1}n

be the set of finite words on the alphabet {0, 1}, where ε denotes the empty
word. Words are written by concatenation, the left children of u is u0 and the
right children of u is u1. A binary complete tree T is a finite subset of U such
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that 



ε ∈ T
if uv ∈ T then u ∈ T ,
u1 ∈ T ⇔ u0 ∈ T .

The root of the tree is ε. The length of a node u is denoted by |u|, it is the depth
of u in the tree (|ε| = 0). The set of binary complete trees is denoted by B. In
a binary complete tree T ∈ B, a leaf is a node without any children, the set of
leaves of T is denoted by ∂T . The other nodes are internal nodes.

ε

0

00 01

010 011

1

Figure 1: An example of complete binary tree. At each node is written the word
labelling it.

In the following, we call a random binary search tree the discrete time process
(Tn)n≥0, with values in B, recursively defined by: T0 is reduced to a single leaf;
for n ≥ 0, Tn+1 is obtained from Tn by a uniform insertion on one of the (n+ 1)
leaves of Tn. See Figure 2.

2.2 Profile of a binary search tree

2.2.1 Level polynomial. BST martingale

A huge literature exists on binary search trees: see Flajolet and Sedgewick [11] for
analytic methods, Devroye [9] for more probabilistic ones and Mahmoud [15] for
a book on this topics. In this section, let us focus on the profile which expresses
the shape of the tree. The profile is given par the sequence

Uk(n) := the number of leaves at level k in tree Tn.
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Figure 2: An example of transition from T5, a binary search tree of size 5 to T6,
a binary search tree of size 6. The insertion depth equals 3.

What is the asymptotic behavior of these quantities when n→ +∞? To answer,
let’s introduce the level polynomial, defined for any z ∈ C by

Wn(z) :=
+∞∑

k=0

Uk(n) zk =
∑

u∈∂Tn
z|u|. (1)

It is indeed a polynomial, since for any level k greater than the height of the tree,
Uk(n) = 0. It is a random variable, not far from a martingale.

Theorem 2.1 For any complex number z ∈ C such that z 6= −k, k ∈ N, let

Γn(z) :=
n−1∏

j=0

(
1 +

z

j + 1

)
and MBST

n (z) :=
Wn(z)

IE(Wn(z))
=

Wn(z)

Γn(2z − 1)
.

Then, (MBST
n (z))n is a Fn-martingale with expectation 1, which can also be writ-

ten

MBST
n (z) :=

1

Γn(2z − 1)

∑

u∈∂Tn
z|u|. (2)

This martingale is a.s. convergent for any z positive real.
It converges in L1 to a limit denoted by MBST

∞ (z) for any z ∈]z−, z+[ and it
converges a.s. to 0 for any z /∈]z−, z+[, where z− and z+ are the two solutions of
the equation z log z − z + 1/2 = 0. Numerically, z− = 0.186 . . . ; z+ = 2.155 . . .

Proof. Let dn be the insertion depth of a new node in the tree Tn of size n.
Remember this insertion is uniform on the n+ 1 leaves of Tn. In other words

P(dn = k
∣∣Fn) =

Uk(n)

n+ 1
.

B. Chauvin, Random Trees and Probability, CIMPA Summer School 2014, Nablus 92



Figure 3: A non binary tree τ , with height h(τ) = 3, with profile (0, 2, 4, 2). The
second generation is in red.

The number of leaves at level k in the tree Tn+1 can be expressed via dn, see
Figure 2:

Uk(Tn+1) = Uk(Tn)− 1{dn=k} + 2 1{dn=k−1}.

Consequently,

IE(Wn+1(z)
∣∣ Fn) = IE

(
+∞∑

k=0

Uk(Tn+1)z
k
∣∣ Fn

)

=
+∞∑

k=0

zkIE
(
Uk(Tn)− 1{dn=k} + 2 1{dn=k−1}

∣∣ Fn
)

=
+∞∑

k=0

zkIE
(
Uk(Tn)− P(dn = k

∣∣ Fn) + 2P(dn = k − 1
∣∣ Fn)

)

= Wn(z)−
+∞∑

k=0

Uk(Tn)

n+ 1
zk + 2

+∞∑

k=1

Uk−1(Tn)

n+ 1
zk

= Wn(z)− 1

n+ 1
Wn(z) + 2zWn(z),

=
n+ 2z

n+ 1
Wn(z), (3)

which gives the martingale property, after scaling: indeed, take the expectation
in (3) to obtain par recurrence on n

E(Wn(z)) =
n−1∏

j=0

j + 2z

j + 1
= Γn(2z − 1).
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and divide by this expectation in (3) to get

IE(MBST
n+1 (z)

∣∣ Fn) = E
(

Wn+1(z)

Γn+1(2z − 1)

∣∣Fn
)

=

(
1 +

2z − 1

n+ 1

)
Wn(z)

Γn+1(2z − 1)
= MBST

n (z).

ut

2.2.2 Embedding in continuous time. Yule tree

The idea is due to Pittel [16]. Let’s consider a continuous time branching process,
with an ancestor at time t = 0, who lives an exponential time with parameter 1.
When he dies, it gives birth to two children who live an exponential time with
parameter 1, independently from each other, etc... The tree process thus obtained
is called the Yule tree process, it is denoted by (Yt)t.

•
0

ε R
τ1

τ2

τ3

t

1 2 3

•
0

•
1
•

00

•

01

•
010 011

•

Figure 4: A representation of a Yule tree. Here Nt = 4. The displacements are
the generation numbers.

Let’s call Nt the number of leaves in Yt (at time t) and denote by

0 < τ1 < · · · < τn < . . .

the successive jumping times. For any time t there exists a unique integer n such
that τn−1 ≤ t < τn and

{Nt = n} = {τn−1 ≤ t < τn}.
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Due to the lack of memory of the exponential distribution, τn − τn−1 is the first
time when one of the n living particles splits. Consequently, τn − τn−1 is the
minimum of n independent random variables Exp(1)-distributed2, so it is Exp(n)-
distributed. Moreover, the splitting particle is uniformly chosen among the n
living particles. Finally, the continuous-time process stopped at time τn and the
binary search tree have the same growing dynamics, so that (it is the embedding
principle)

(Yτn)n
L
= (Tn)n . (4)

From now, we consider that both processes (the binary search tree and the Yule
tree) are built on the same probability space, so that equality in distribution
becomes almost sure equality.

2.2.3 Connection Yule tree - binary search tree

On the Yule tree, let us define the “position” of an individual u living at time y
by

Xu(t) := −|u| log 2

so that the displacements are (up to the constant log 2) like the generation num-
bers in the tree. See Figure 4. It can be proved (coming from the theory of
branching random walks, see Biggins [4] and Bertoin and Rouault [3]) that

Theorem 2.2 For any z ∈ C,

MY ULE
t (z) :=

∑

u∈∂Yt
z|u|e−t(2z−1)

is a Ft-martingale, with expectation 1. This martingale converges a.s. for all z
positive real. It converges in L1 to a limit denoted by MY ULE

∞ (z) for all z ∈]z−, z+[
and it converges a.s. to 0 for all z /∈]z−, z+[, where z− and z+ are the solutions
of equation z log z − z + 1/2 = 0. Numerically, z− = 0.186 . . . ; z+ = 2.155 . . .

Moreover, this martingale is connected to the BST martingale MBST
n (z). Indeed,

writing MBST
n (z) like in (2), and taking the Yule martingale at time t = τn gives,

thanks to the embedding principle (4)

MY ULE
τn (z) =

∑

u∈∂Yτn

z|u|e−τn(2z−1)

= e−τn(2z−1)
∑

u∈Tn
z|u|

= e−τn(2z−1)Γn(2z − 1)MBST
n (z).

2For any positive real λ, Exp(λ) denotes an exponential probability law with parameter λ.
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It is not difficult to pass to the limit in the preceding equality, when n tends
to infinity, when the parameter z belongs to the L1-convergence domain of the
martingales. In a Yule process, it is known (see for instance Athreya and Ney [1])
that e−tNt tends to a random limit ξ which is Exp(1)-distributed, when t tends
to infinity. Since the stopping times τn go to infinity when n goes to infinity, we
deduce that ne−τn converges to ξ when n goes to infinity. Finally let us use the
Stirling formula to get the estimate

Γn(2z − 1) ∼ n2z−1

Γ(2z)
,

so that we have proved the following proposition.

Proposition 2.3 For any z ∈]z−, z+[, the following connection holds

MY ULE
∞ (z) =

ξ2z−1

Γ(2z)
MBST
∞ (z)

where ξ and MBST
∞ (z) are independent and ξ is Exp(1)-distributed.

2.2.4 Asymptotics of the profile

The above connection is one of the main tools leading to the following theorem
on the profile of binary search trees. This theorem expresses that, after scaling,
the profile tends to the random limit MBST

∞ . The asymptotics of the profile is
concentrated on the levels k proportional to log n.

Theorem 2.4 For any compact K ⊂]z−, z+[,

Uk(n)

IE(Uk(n))
−MBST

∞ (
k

2 log n
)−→
n→∞

0 a.s.

uniformly on k
2 logn

∈ K.

2.3 Path length of a binary search tree

Definition 2.5 (path length of a BST) The (external) path length Ln of a
binary search tree Tn is the sum of the levels of the leaves of the tree.

Ln :=
∑

u∈∂Tn
|u|.
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This parameter of the tree is interesting in analysis of algorithms, since it repre-
sents a cost: Ln

n+1
is the mean cost of an insertion in the tree of size n.

Obviously, the path length is related to the level polynomial Wn(z), since

Ln =
∑

k≥1
kUk(n) = W ′

n(1).

Consequently, elementary computations (taking into account IEMBST
n (z) = 1 and

IEM ′
n(z) = 0) lead to

E(Ln) = 2(n+ 1)(Hn+1 − 1) ; M ′
n(1) =

1

n+ 1
(Ln − E(Ln)) ,

where Hn is the n-th harmonic number, and M ′
n is the derivative of MBST

n . Now,
the derivative of a martingale is still a martingale, and z = 1 is in the L1-
convergence domain of the BST martingale Mn(z), so that it is straightforward
to obtain the following theorem.

Theorem 2.6 After scaling, the path length of a binary search tree, defined by

Yn :=
1

n+ 1
(Ln − E(Ln))

is a Fn-martingale with mean 0. It converges almost surely and in L1 to a random
limit denoted by Y .

The law of Y is sometimes called the “law of Quicksort”. It can be viewed as a
solution of a distributional equation, in the spirit of Section 4.

3 m-ary search trees

3.1 Definition

For m ≥ 3, m-ary search trees are a generalization of binary search trees (see for
instance Mahmoud [15]). A sequence (Tn, n ≥ 0) of m-ary search trees grow by
successive insertions of keys in their leaves. Each node of these trees contains at
most (m − 1) keys. Keys are i.i.d. random variables xi, i ≥ 1 with any diffusive
distribution on the interval [0, 1]. The tree Tn, n ≥ 0, is recursively defined as
follows:
T0 is reduced to an empty node-root; T1 is reduced to a node-root which contains
x1, T2 is reduced to a node-root which contains x1 and x2, ... , Tm−1 has a
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node-root containing x1, . . . xm−1. As soon as the m − 1-st key is inserted in
the root, m empty subtrees of the root are created, corresponding from left to
right to the m ordered intervals I1 =]0, x(1)[, . . . , Im =]x(m−1), 1[ where 0 < x(1) <
· · · < x(m−1) < 1 are the ordered (m − 1) first keys. Each following key xm, . . .
is recursively inserted in the subtree corresponding to the unique interval Ij to
which it belongs. As soon as a node is saturated, m empty subtrees of this node
are created. The process (Tn)n≥0 is recursively built, where Tn is the m-ary tree
of size n, i.e. containing n keys. See Figure 5.

0.5 ; 0.8

0.4 ; 0.42 0.83 ; 0.9

0.94

Figure 5: A m-ary search tree (m = 3) of size 7, with 8 gaps, 4 nodes; among
them, fringe nodes are in green. The tree has been built with the successive keys:
0.8; 0.5; 0.9; 0.4; 0.42; 0.83; 0.94.

To describe such a tree, let us introduce the so-called composition vector of the
tree, Xn, which counts the nodes of differents types in the tree. This composition
vector of the m-ary search tree provides a model for the space requirement of the
sorting algorithm. More precisely, for each i = {1, . . . ,m} and n ≥ 1, let

X(i)
n := number of nodes in Tn which contain (i− 1) keys (and i gaps).

Such nodes are named nodes of type i. Counting the number of keys in Tn with
the X

(i)
n , we get the relation:

n =
m∑

i=1

(i− 1)X(i)
n ,

which allows to only study m − 1 variables X
(i)
n instead of m. We choose to

forget the saturated nodes, which are internal nodes and to only count the non
saturated nodes, which are at the fringe of the tree.
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When the data are i.i.d. random variables, one gets a random m-ary search tree.
With this dynamics, the insertion of a new key is uniform on the gaps. We want
to describe the asymptotic behavior of the vector Xn as n tends to infinity.
Remark here the urn model, when considering the gaps. Call the gap process
(Gn)n. Write the replacement matrix. Notice that G

(i)
n = iX

(i)
n .

3.2 Vectorial discrete martingale

The dynamics of the nodes is illustrated by Figure 6 and it gives the expression

Figure 6: Dynamics of insertion of data, in the case m = 4.

of Xn+1 as a function of Xn. The (n+ 1)-st data is inserted in a node of type i,

i = 1, . . . ,m−1 with probability
iX

(i)
n

n+ 1
and in this case, the node becomes a node

of type i+ 1 for i = 1, 2, . . . ,m− 2, and gives m nodes of type 1, if i = m− 1.
In other words, for i = 1, . . . ,m− 1, let





∆1 = (−1, 1, 0, 0, . . . )
∆2 = (0,−1, 1, 0, . . . )

...
∆m−2 = (0, . . . , 0,−1, 1)
∆m−1 = (m, 0, . . . , 0,−1).

,

Then

P(Xn+1 = Xn + ∆i|Xn) =
iX

(i)
n

n+ 1
.

The remarkable fact is that the transition from Xn to Xn+1 is linear in Xn. Notice
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also that
∑m−1

i=1
iX

(i)
n

n+1
= 1. When we note

A =




−1 m(m− 1)
1 −2

2 −3
. . . . . .

. . . −(m− 2)
m− 2 −(m− 1)




then

E
(
Xn+1|Xn

)
=

m−1∑

i=1

(Xn + ∆i)
iX

(i)
n

n+ 1
=

(
I +

A

n+ 1

)
Xn.

We call Γn the polynomial

Γn(z) :=
n−1∏

j=0

(
1 +

z

j + 1

)
,

and we deduce first, by taking the expectation, and then by induction that:
E(Xn) = Γn(A)X0. Dividing by Γn(A), we get:

Proposition 3.7 Let (Xn)n be the composition vector of a m-ary search tree.
Then, (Γn(A)−1Xn)n is a Fn vectorial martingale.

The spectrum of matrix A gives the asymptotic behavior of Xn. The eigenvalues
are the roots of the characteristic polynomial

χA(λ) =
m−1∏

k=1

(λ+ k)−m! =
Γ(λ+m)

Γ(λ+ 1)
−m! (5)

where Γ denotes Euler’s Gamma function. In other words, each eigenvalue λ is a
solution of the so-called characteristic equation

m−1∏

k=1

(λ+ k) = m! (6)

All eigenvalues are simple, 1 being the one having the largest real part. Let λ2 be
the eigenvalue with a positive imaginary part τ2 and with the greatest real part
σ2 among all the eigenvalues different from 1. The asymptotic behaviour of Xn

is different depending on σ2 ≤ 1
2

or σ2 >
1
2
. The proofs of the following theorem

can be found in [15, 12, 7, 17].
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Theorem 3.8

• When σ2 <
1
2
, m ≤ 26 then

Xn − nv1√
n

D−→
n→∞

N (0,Σ2)

where v1 is an eigenvector for the eigenvalue 1, and where Σ2 can be calculated.
• When 1 > σ2 >

1
2
, m ≥ 27 then

Xn = nv1 + <
(
nλ2WDTv2

)
+ o(nσ2)

where v1, v2 are deterministic, nonreal eigenvectors; WDT is a C-valued random
variable with a martingale limit; the notation DT stands for discrete time; o( )
means a convergence a.s. and in all the Lp, p ≥ 1; the moments of WDT can be
recursively computed.

<(v2)

=(v2)

v1

Geometrically speaking: let us denote by ϕ any
argument of the complex number WDT . The tra-
jectory of the random vector Xn, projected in the
3-dimensional real vector space spanned by the
vectors (<(v2),=(v2), v1) is almost surely asymp-
totic to the (random) spiral





xn = |W |nσ2 cos(τ2 log n+ ϕ),
yn = −|W |nσ2 sin(τ2 log n+ ϕ),
zn = n,

drawn on the (random) revolution surface

|W |2z2σ2 = x2 + y2,

when n tends to infinity.

3.3 Embedding in continuous time. Multitype branching
process

For m ≥ 3, define a continuous time multitype branching process, with m − 1
types

XCT (t) =




XCT (t)(1)

...
XCT (t)(m−1)




B. Chauvin, Random Trees and Probability, CIMPA Summer School 2014, Nablus 101



with XCT (t)(j) = # particles of type j alive at time t.
Each particle of type j is equipped with a clock Exp(j)-distributed. When this
clock rings, the particle of type j dies and gives birth to

→ a particle of type j + 1 when j ≤ m− 2
→ m particles of type 1 when j = m− 1.

Call 0 = τ0 < τ1 < · · · < τn < · · · the successive jumping times. The argu-
ments on the exponential distribution are the same ones as for binary search
trees embedding. Considering the process of gaps instead of nodes, it is easy to
see that τn − τn−1 is Exp(u+ n− 1)-distributed, where u =

∑m−1
k=1 kX

CT (0)(k) is
the numbers of gaps at time 0.

The embedding principle can be expressed
(
XCT (τn)

)
n

L
= (Xn)n ,

and as for BST, we consider that both processes are built on the same probability
space, so that this equality holds almost surely. For this multitype branching
process, it is classical to see that

Proposition 3.9 (
e−tAXCT (t)

)
t≥0

is a Ft vectorial martingale.

By projection on the eigenlines (v1, v2 are eigenvectors and u1, u2 are eigen linear
forms), we get

Theorem 3.10 ([5], Janson [12])

XCT (t) = etξv1
(
1 + o(1)

)
+ <

(
eλ2tWCTv2

) (
1 + o(1)

)
+ o(eσ2t)

where ξ is a real-valued random variable Gamma(u)-distributed;

WCT := lim
t→∞

e−λ2tu2(X
CT (t))

is a complex valued random variable, which admits moments of any order p ≥ 1;
o( ) means a convergence a.s. and in all the Lp, p ≥ 1. Moreover, the following
martingale connection holds

WCT = ξλ2 WDT a.s.

with ξ and WDT independent.

The geometric interpretation with a random curve on a spiral can be done like
in discrete time. Nonetheless, notice the random first term in the expansion of
XCT (t).
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3.4 Asymptotics

3.4.1 Notations

In the following, we denote

T = τ(1) + · · ·+ τ(m−1). (7)

where the τ(j) are independent of each other and each τ(j) is Exp(j) distributed.
Let us make precise some elementary properties of T . By induction on m, let us
prove that T has

fT (u) = (m− 1)e−u(1− e−u)m−21R+(u), u ∈ R, (8)

as a density. Indeed, this is true for m = 2; when X and Y have fX and fY as
densities respectively, then the convolution formula gives that Z = X +Y has fZ
as a density, where

fZ(z) =

∫ z

0

fX(z − y)fY (y)dy.

Consequently, taking X = T , with fT given by (8), and Y = τ(m) having fY (y) =
me−my as a density, we get

fZ(z) =

∫ z

0

(m− 1)e−(z−y)
(
1− e−(z−y)

)m−2
me−mydy (9)

= m(m− 1)e−z
∫ z

0

e−y
(
e−y − e−z

)m−2
dy (10)

= m(m− 1)e−z
[
−(e−y − e−z)m−1

m− 1

]z

0

(11)

= me−z(1− e−z)m−1. (12)

We deduce from (8) that e−T has a Beta distribution with parameters 1 and
m− 1. A straightforward change of variable (x = e−u) under the integral shows
that for any complex number λ such that <(λ) > −1,

Ee−λT =

∫ +∞

0

e−λufT (u)du = (m− 1)B(1 + λ,m− 1) (13)

=
(m− 1)!∏m−1
k=1 (λ+ k)

, (14)

where B denotes Euler’s Beta function:

B(x, y) =

∫ 1

0

ux−1(1− u)y−1du =
Γ(x)Γ(y)

Γ(x+ y)
, <x > 0,<y > 0. (15)
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In particular,

mE|e−λT | = mEe−<(λ)T =
(1 +m− 1) . . . (1 + 1)

(<(λ) +m− 1) . . . (<(λ) + 1)





< 1 if <(λ) > 1,
= 1 if <(λ) = 1,
> 1 if <(λ) < 1.

(16)

3.4.2 Dislocation equations

We would like a complete description of the C-valued random variable WCT . It
is a limit of a branching process after projection and scaling, remember that

WCT := lim
t→∞

e−λ2tu2(X
CT (t)).

Let us see now how the branching property applied at the first splitting time
provides fixed point equations on the limit distributions.
Let us write dislocation equations for the continuous time branching process at
finite time t. We write Xj(t) for XCT (t) when the process starts from XCT (0) =
ej, where ej denotes the j-th vector of the canonical basis of Rm−1 (whose j-th
component is 1 and all the others are 0). This means that the process starts from
an ancestor of type j.
Notice that the distribution of the first splitting time τ1 depends on the ancestor’s
type; denote by τ(j), j = 1, . . . ,m − 1, the first splitting time when the process
starts from X(0) = ej. Thus τ(j) is Exp(j) distributed.
The branching property applied at the first splitting time gives:

∀t > τ1,





X1(t)
L
= X2(t− τ(1)),

X2(t)
L
= X3(t− τ(2)),

. . .

Xm−2(t)
L
= Xm−1(t− τ(m−2)),

Xm−1(t)
L
= [m]X1(t− τ(m−1)),

(17)

where the notation [m]X denotes the sum of m independent copies of the random
variable X.
After projections of the variables Xj(t) with the form u2, scaling with e−λ2t and
taking the limit when t goes to infinity, we get the variables

Wj := lim
t→+∞

e−λ2tu2(Xj(t)),
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so that the system (17) on Xj(t) leads to the following system of distributional
equations on Wj: 




W1
L
= e−λ2τ(1)W2,

W2
L
= e−λ2τ(2)W3,

. . .

Wm−2
L
= e−λ2τ(m−2)Wm−1,

Wm−1
L
= e−λ2τ(m−1) [m]W1.

(18)

Since W1 is the distribution of WCT starting from a particle of type 1 (which is
indeed the case for the m-ary search tree), this shows that W1 is a solution of the
following fixed point equation:

Z
L
= e−λ2T (Z(1) + · · ·+ Z(m)), (19)

where T is defined in (7) and where Z(i) are independent copies of Z, which are
also independent of T . Several results can be deduced from this equation, namely
the existence and the unicity of solutions, properties of the support. Some are
described in the following section.
In terms of the Fourier transform

ϕ(t) := E exp{i〈t, Z〉} = E exp{i<(tZ)}, t ∈ C,

where 〈x, y〉 = <(xy) = <(x)<(y) + =(x)=(y), Equation (19) reads

ϕ(t) =

∫ +∞

0

ϕm(te−λ2u)fT (u)du, t ∈ C, (20)

where fT is defined by (8). Notice that this functional equation can also be

written in a convolution form: if Φ(t) := ϕ(eλ2t) for any t ∈ C, then Φ satisfies
the following functional equation:

Φ(t) =

∫ +∞

0

Φm(t− u)fT (u)du, t ∈ C. (21)
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4 Smoothing transformation

In this section, inspired from the case of m-ary search trees (see [5]), the following
fixed point equation coming from the previous multitype branching process is
studied, thanks to several methods. These methods are general ones, they are
used for other distributional equations. Let us just mention analogous results for:
• binary search trees, where the quicksort distribution is studied in Rösler [18];
• Pólya urns where the limit distribution occurring for large urns is studied in
[8, 6].
The following smoothing equation comes from m-ary search trees, studied in
Section 3.

W
L
= e−λT (W (1) + · · ·+W (m)), (22)

where λ ∈ C, T is defined in (7), W (i) are C-valued independent copies of W ,
which are also independent of T . We successively see:
• the contraction method, in order to prove existence and unicity of a solution,
in a suitable space of probability measure, in Section 4.1;
• some analysis on the Fourier transforms in order to prove that W has a density,
in Section 4.2;
• a cascade type martingale which is a key tool to obtain the existence of expo-
nential moments for W , in Section 4.3.

4.1 Contraction method

This method has been developed in Rösler [18] and Rösler and Rüschendorf [19]
for many examples in analysis of algorithms. The idea is to get existence and
unicity of a solution of Equation (22) thanks to the Banach fixed point Theorem.
Notice that we already have the existence, thanks to Section 3. The key point is
to chose a suitable metric space of probability measures on C where the hereunder
transformation K : µ 7→ Kµ is a contraction.

Kµ := L
(
e−λT (X(1) + · · ·+X(m))

)
, (L : law) (23)

where T is given by (7), X(i) are independent random variables of law µ, which
are also independent of T .

First step: the metric space.

For any complex number C, let M2(C) be the space of probability distributions
on C admitting a second absolute moment and having C as expectation. The first
point is to be sure that K maps M2(C) into itself, this is given by the following
lemma.
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Lemma 4.11 If λ is a root of the characteristic equation (6) such that <(λ) >
−1

2
and if C is any complex number, then K maps M2(C) into itself.

Proof. Since <(λ) > −1, the random variable e−λT has an expectation. See (13).
Furthermore, by (13) again, mEe−λT = 1 as λ is a root of (5). This ensures the
conservation of the expectation by K. Since <(λ) > −1

2
, then E|e−λT |2 <∞ and

Kµ admits a second absolute moment whenever µ does. Therefore Kµ ∈M2(C)
whenever µ ∈M2(C). �

Now, define d2 as the Wasserstein distance on M2(C) (see for instance Dudley
[10]): for µ, ν ∈M2(C),

d2(µ, ν) =

(
min
(X,Y )

E
(
|X − Y |2

)) 1
2

, (24)

where the minimum is taken over couples of random variables (X, Y ) having re-
spective marginal distributions µ and ν; the minimum is attained by the Kantorovich-
Rubinstein Theorem – see for instance Dudley [10], p. 421. With this distance
d2, M2(C) is a complete metric space.

Second step: K is a contraction on (M2(C), d2).

It is a small calculation, taking some care when choosing the random variables:
let (X, Y ) be a couple of complex-valued random variables such that L(X) =
µ, L(Y ) = ν and d2(µ, ν) =

√
E|X − Y |2. Let (Xi, Yi), i = 1, . . . ,m be m

independent copies of the d2-optimal couple (X, Y ), and T be a real random
variable with density fT defined by (8), independent from any (Xi, Yi). Then,

L(e−λT
m∑

i=1

Xi) = Kµ and L(e−λT
m∑

i=1

Yi) = Kν,
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so that (remember that for all i, IE(Xi) = IE(Yi) = C)

d2(Kµ,Kν)2 ≤ E

∣∣∣∣∣

(
e−λT

m∑

i=1

Xi

)
−
(
e−λT

m∑

i=1

Yi

)∣∣∣∣∣

2

= E

∣∣∣∣∣e
−λT

m∑

i=1

(Xi − Yi)
∣∣∣∣∣

2

= E
∣∣e−λT

∣∣2 E
∣∣∣∣∣
m∑

i=1

(Xi − Yi)
∣∣∣∣∣

2

= E
∣∣e−λT

∣∣2
(

m∑

i=1

E |Xi − Yi|2 +
∑

i 6=j
E (Xi − Yi)

(
Xj − Yj

)
)

= mE
∣∣e−2λT

∣∣ d2 (µ, ν)2 .

With Equation (16), we know that mE
∣∣e−2λT

∣∣ < 1⇐⇒ <(λ) >
1

2
, which happens

for a large urn. Therefore K is a contraction on M2(C). We have proved the
following theorem.

Theorem 4.12 Let λ ∈ C be a root of the characteristic equation (6) such that
<(λ) > 1

2
, and let C ∈ C. Then K is a contraction on the complete metric

space (M2(C), d2), and the fixed point equation (22) has a unique solution W in
M2(C).

4.2 Analysis on Fourier transforms

The aim is to prove that W solution of Equation (22) has the whole complex
plane C as its support and that W has a density with respect to the Lebesgue
measure on C. The method relies on Liu [13, 14] adapted in [5] for C-valued
variables. It runs along the following lines.
Let ϕ be the Fourier transform of any solution W of (22). It is a solution of the
functional equation

ϕ(t) =

∫ +∞

0

ϕm(te−λu)fT (u)du, t ∈ C, (25)

where fT is defined by (8).
We first prove that ϕ is dominated by |t|−a for some a > 1 so that the inverse
Fourier transform provides a density for W . It will prove that ϕ is in L2(C) (for
a distributional equation in R, it is proved that ϕ is in L1(R)).
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To prove that ϕ(t) = O(|t|−a) when |t| → ∞, for some a > 1, we use a Gronwall-
type technical Lemma which holds as soon as A := e−λT has good moments and
once we prove that lim

|t|→+∞
ϕ(t) = 0. It is the same to prove that lim

r→+∞
ψ(r) = 0

where
ψ(r) := max

|t|=r
|ϕ(t)|.

This comes from iterating the distributional equation (25) so that

ψ(r) ≤ E(ψm(r|A|)).

By Fatou lemma, we deduce that lim supr ψ(r) equals 0 or 1. And it cannot be 1
because of technical considerations and because the only point where ψ(r) = 1 is
r = 0. This key fact comes from a property of the support of W strongly related
to the distributional equation with a non lattice type assumption: as soon as a
point z is in the support of W , then the whole disc D(0, |z|) is contained in the
support of W . Finally, the result is

Theorem 4.13 Let W be a complex-valued random variable solution of the dis-
tributional equation

W
L
= e−λT (W (1) + · · ·+W (m)),

where λ is a complex number, W (i) are independent copies of W , which are also
independent of T . Assume that λ 6= 1, <(λ) > 0, EW <∞ and EW 6= 0. Then

(i) The support of W is the whole complex plane C;

(ii) the distribution of W has a density with respect to the Lebesgue measure
on C.

4.3 Cascade type martingales

The distributional equation (22) suggests to use Mandelbrot’s cascades in the
complex setting (see Barral [2] for independent interest about complex Mandel-
brot’s cascades).
As in Section 3, take λ ∈ C be a root of the characteristic equation (6) with
<(λ) > 1/2. Still denote A = e−λT . Then mEA = 1 because λ is a root of the
characteristic equation (6) and mE|A|2 < 1 because <(λ) > 1/2 (see (16)). Let
Au, u ∈ U be independent copies of A, indexed by all finite sequences of integers

u = u1...un ∈ U :=
⋃

k≥1
{1, 2, . . . ,m}k
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and set Y0 = 1, Y1 = mA and for n ≥ 2,

Yn =
∑

u1...un−1∈{1,...,m}n−1

mAAu1Au1u2 . . . Au1...un−1 . (26)

As mEA = 1, (Yn)n is a martingale, with expectation 1.
This martingale has been studied by many authors in the real random variable
case, especially in the context of Mandelbrot’s cascades, see for example [14] and
the references therein. It can be easily seen that

Yn+1 = A

m∑

i=1

Yn,i (27)

where the Yn,i for 1 ≤ i ≤ m are independent of each other and independent of
A and each of them has the same distribution as Yn.
Therefore for n ≥ 1, Yn is square-integrable and

VarYn+1 = (E|A|2m2 − 1) +mE|A|2 VarYn,

where VarX = E (|X − EX|2) denotes the variance of X. Since mE|A|2 < 1, the
martingale (Yn)n is bounded in L2, so that (see Theorem 2.14 in Mailler’s course)
the following result holds.

Yn → Y∞ a.s. and in L2

where Y∞ is a (complex-valued) random variable with

Var(Y∞) =
E|A|2m2 − 1

1−mE|A|2 .

Notice that, passing to the limit in (27) gives a new proof of the existence of
a solution W of Equation (22) such that EW = 1 and W has a finite second
moment whenever <(λ) > 1/2.
The previous convergence allows to consider Y∞ instead of W and a technical
lemma then leads to the following theorem, showing that the exponential mo-
ments of W exist in a neighborhood of 0, so that the characteristic function of
W is analytic at 0.

Theorem 4.14 Let λ ∈ C be a root of the characteristic equation (6) with <(λ) >
1/2 and let W be a solution of Equation (22). There exist some constants C > 0
and ε > 0 such that for all t ∈ C with |t| ≤ ε,

Ee〈t,W 〉 ≤ e<(t)+C|t|
2

and Ee|tW | ≤ 4e|t|+2C|t|2 .
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Automata and Motif Statistics

Pierre Nicodème

1 Motivation
Automata are used

– in hardware technology (circuits)
– in compilers and lexical analyzers
– for pattern matching
– to build groups with specific cogrowth
– to compute statistics of motifs when a Motif is an infinite language or a very large

language described by a regular expression (linguistics, bioinformatics, Web analysis)

2 Overview of the course
– Basics of Automata theory
– Pattern Matching
– Counting with automata in random texts
– Applications

3 Finite automata

3.1 What is an automaton?

0

1

2

a

b

b

a

a

An Automaton is

− A directed graph,
− where vertices are called states,
− edges are called transitions,
− and labelled by letters of a finite alphabet;
− there is a specific state called start,
− and there are accepting states.
− The function mapping the states to their successors

is called “transition function”

AUTO = (A, Q, start, δ, F )
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The automaton above

1. Alphabet - A = {a, b}
2. Set of States - Q = {1, 2, 3}
3. start = {0}

4. Transition function δ:





δ(0, a) = {1} δ(0, b) = {1, 2}
δ(1, a) = {} δ(1, b) = {}
δ(2, a) = {2, 1} δ(2, b) = {}

5. Accepting states: F = {1}

– A run of length n is a sequence (q0, q1, . . . , qn) such that

1. q0 = start

2. there exists a1a2 . . . an ∈ An and qi+1 ∈ δ(qi, ai+1)

– A word w = a1a2 . . . an is accepted if there is at least a run of length n spelling its
letters and ending in an accepting state.

– The set of words accepted by the automaton is the language recognized by the
automaton.
(A language is a possibly infinite set of words)

Examples

– Some not accepted words:
c, am, ab, bn (m ≥ 2, n ≥ 2)

– Some accepted words:
a, b, can (n ≥ 1)

– The recognized language (an infinite set of words in the present case)
a+ b+ ca+ (a+ =

∑
n≥1 a

n)

P. Nicodème, Automata and Motif Statistics, CIMPA Summer School 2014, Nablus 114



3.2 Different classes of Automata
3.2.1 Deterministic and Non-Deterministic automata

0

1

2

a

b

c

a

a

A NFA
(Non-deterministic Finite Automaton)

|δ(2, a)| =
∣∣{2, 1}

∣∣ > 1

Several successors
with the same letter

0

1

2

a

b

c

c

a

A DFA
(Deterministic Finite Automaton)

∀q ∈ Q,∀` ∈ A, |δ(q, `)| = 1

Only one successor
with one letter at each state

3.2.2 Finite Automata with ε−transitions

0

1

3

4

2

ε-auto

ε

ε

a

b

ε

ε

ε-cl(4) = {4, 1, 2}
F ′ = {0, 1, 4, 2}

ε-cl(0) = {0, 1, 2, 3}

∆(0, a) = ε-cl
(⋃

p∈{0,1,2,3} δ(p, a)
)

= ε-cl
(
{4}) = {4, 1, 2}

0

1

3

4

2

auto-without-ε

a
a

a

a

a

a

bb
b

– ε-auto =
(
A = {a, b, ε}, Q = {0, 1, 2, 3, 4}, s = 0, δ, F = {2}

)

– An ε-transition consumes no input (no letter of the alphabet different of ε)
– ε-closure: ∀q ∈ Q, ε-cl(q) := {p | p is accessible from q without consuming input}

Build an automaton without ε-transition that recognizes the same language

– auto-without-ε =
(
A = {a, b}, Q, s,∆, F ′

)

– F ′ = F
⋃{q | ε-cl(q)⋂F 6= ∅} = {0, 4, 1, 2}

– ∆(q, `) = ε-cl(
⋃
p∈ε-cl(q) δ(p, `))
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ε-cl(0) = {0, 1, 2, 3} ∆(0, a) = {4, 1, 2} ∆(3, a) = {4, 1, 2}
ε-cl(1) = {1, 2} ∆(0, b) = {} ∆(3, b) = {}
ε-cl(2) = {2} ∆(1, a) = ∆(1, b) = {} ∆(4, a) = {}
ε-cl(3) = {3} ∆(2, a) = ∆(2, b) = {} ∆(4, b) = {0, 1, 2}
ε-cl(4) = {4, 1, 2}

Remark. Usually, the resulting automaton is a NFA.

3.2.3 Determinization of an automaton

0

1

2

a

b

b

b

a

MNFA = (A, Q, 0, δ, F )

∆(0, a) = {1}

∆(0, b) = {1, 2}

∆({1, 2}, a) = {1}

0

{1}

{1, 2}

{2}

a

b

a

b

b
a

M ′DFA = (A, Q′, 0,∆, F ′)

∆({1, 2}, b) = {2}

∆({2}, b) = {2}

∆({2}, a) = {1}

– Q′ ⊂ 2Q (the subsets of Q)

– s′ = s

– F ′ = {f ∈ Q′; f ∩ F 6= ∅}
{

the subsets that contain
at least one accepting state of M

– ∀S ∈ Q′,∀` ∈ A, ∆(S, `) =
⋃
q∈S δ(q, `)

Definition 3.1. Two automata M = (Q,A, s, δ, F ) and M ′ = (Q′,A′, s′, δ′, F ′) are equiv-
alent if they recognize the same language (L(M) = L(M ′))

The automata MNFA and M ′DFA are equivalent

– each accepted run of MNFA translates to an accepted run of MNFA

– each non accepted run of M ′DFA is the translation of a non accepted run of MDFA

Theorem 3.1 (Rabin-Scott 1959). Let M = (Q,A, s,∆, F ) be a NFA. Then there exists a
DFA M ′ = (Q′,A′, s′, δ′, F ′) that is equivalent to M .
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Proof by induction

Remark 3.1. Each DFA is a NFA.

Corollary 3.1. (i) The NFA’s are no more powerful than the DFAs in terms of the languages
they accept.
(ii) The NFA’s and DFA’s recognize the same set of languages.

4 Regular Expressions and Regular Languages
Surprisingly, there is another fully different characterization of languages recognized by Finite
Automata, the Regular Languages.

4.1 What is a Regular Language?
Definition 4.1. Let A be a finite alphabet.
The collection of regular languages over A is defined recursively by

1. ∅ is a regular language

2. {ε} is a regular language

3. {`} is a regular language for each ` ∈ A

4. if A and B are regular languages, so are

I A
⋃
B (Ex: {ab}⋃{c} = {ab, c})

I A •B (Ex: {ab, c} • {d, e} = {abd, cd, abe, ce})

I A? (Ex: {ab}? = {ε, ab, abab, . . . , (ab)n, . . . })

5. No other languages over A are regular

Regular expressions are shorthands for regular languages

a+ b denotes {a, b} = {a}⋃{b}
ab denotes {ab} = {a • b}
a? denotes {a}?

a+ denotes a.a? = a • a?

4.2 Formal definition of Regular Expressions
Regular expressions are defined recursively by

1. ∅ and ε are regular expressions
2. ` is a regular expressions for each ` ∈ A
3. if r and s are regular expressions, so are
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– r + s
– r.s
– r?

4. No other sequence of symbols is a regular expression.

Lemma 4.1. Every regular language can be accepted by a finite automaton

Lemma 4.2. Every language accepted by a finite automaton is regular

Theorem 4.1 (Kleene 1956). A language is regular if and only if it is accepted by a Finite
Automaton

Proof of Lemma 4.1.

1. Atomic Languages

∅ is accepted by (A, {0}, 0, δ = ∅, ∅)
ε is accepted by (A, {0}, 0, δ = ∅, {0})

` ∈ A is accepted by (A, {0, 1}, 0, δ(0, `) = {1}, {1})

2. let L1 and L2 regular languages respectively accepted by automata A1 and A2.

L1.L2 is accepted by A1.A2

L1+L2 is accepted by A1∪A2

L1
? is accepted by A1

?

Starting from the atomic languages, one builds recursively a ε-NFA recognizing a
given regular expression

Proof of Lemma 4.2 - From Finite Automata to Regular Expressions.

A = (A+ ε, {q1, q2, . . . , qm}, S ⊆ Q, δ, F ⊆ Q) a finite automaton

1. let L(i, j, k) =
{
w

∣∣∣∣
w is the label of a path from qi to qj
where intermediate nodes have labels ≤ k

}

2. L(i, j, 0) has no intermediate labels =⇒ L(i, j, 0) ⊆ A ∪ ε is regular
3. Assume L(i, j, k) regular and consider L(i, j, k + 1)

Let p be a path form qi to qj where intermediate nodes have labels ≤ k + 1.

– (a) p ∈ L(i, j, k) (the path p does not reach qk+1)
– (b) p begins at qi,reaches qk+1 a first time, possibly other times, until a last time, and

ends at qj

Cases (a) and (b) give

L(i, j, k + 1) = L(i, j, k) ∪ L(i, k + 1, k)L(k + 1, k + 1, k)?L(k + 1, j, k)

Therefore L(i, j, k + 1) is regular

4. In particular L(i, j,m) is regular

Conclusion: L(A) =
⋃{

L(i, j,m)|qi ∈ S, qj ∈ F
}
is regular, since it is a finite union of

regular languages
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5 Counting

5.1 Generating Functions of Languages
L a language (a possibly infinite set of words)

– Enumeration
L(z) =

∑

w∈L
z|w| =

∑

n≥0

lnz
n

where ln is the number of words of length n of L

– Weighted generating Function

W (z) =
∑

w∈L
P(w)z|w| =

∑

n≥0

pnz
n

where pn is the probability that a random word of length n belongs to L

– Enumeration

L(a, b) =
∑

w∈L
a|w|ab|w|b =

∑

i,j

li,ja
ibj

li,j = number of words in the language with
{
i letters a
j letters b

F (z) = L(z, z) =
∑
n fnz

n, fn = number of words of length n in the language

– Weighted counting F (z) = L(P(a)z,P(b)z) =
∑

n

pnz
n

pn = probability that a word of length n is in the language

5.2 Generating Function of a Regular Expression
The following algorithm is usually attributed to Chomsky-Schützenberger (1963), but may be
older.
We provide here a trivial example, but the algorithm used is fully general.
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0 1 2 3
a b a

b a

b

a

b

P = A?aba = (a+ b)?aba
Build the automaton that accepts the language defined by P ;
it recognizes the set of words terminating with aba

Define Li as the language of runs
{

that start at state i
and terminate in an accepting state

L1 = ba+a?ba+ba(ba)?+. . .

L0 = a.L1 + b.L0 L0(a, b) = a×L1(a, b) + b×L0(a, b)
L1 = a.L1 + b.L2 L1(a, b) = a×L1(a, b) + b×L2(a, b)
L2 = a.L3 + b.L0 L2(a, b) = a×L3(a, b) + b×L0(a, b)
L3 = a.L1 + b.L2 + ε L3(a, b) = a×L1(a, b) + b×L2(a, b) + 1

solve: L0(a, b) =
1

1− (a+ b)
× aba F (z) =

∑
pnz

n = L0(P(a)z,P(b)z)

The resulting generating function is always the solution of a linear system of equations, and
therefore a rational function.

5.3 Asymptotics of a rational function

– if F (z) =
P (z)

Q(z)
with P (ρ 6= 0), Q(ρ = 0)

– and ρ real, positive, dominant singularity of order k

Then,

fn = [zn]F (z) =
P (ρ)

Q(ρ)
× ρ−n × (n− k + 1)× (1 +An) (A < 1)

Expand the polynomial P (z) at ρ

P (z) = P (ρ) + (z − ρ)P ′(ρ) +
1

2!
(z − ρ)2P ′′(ρ) + . . .

to get a full expansion

Generating Functions of Regular Languages

1. Any regular expression is recognized by a Finite Automaton

2. The Chomsky-Schützenberger algorithm applies to any regular expression.

Theorem 5.1 (Chomsky-Schützenberger 1963). The generating function of a regular language
is rational.

Corollary 5.1. Let R a regular language and Rn = R∩An. ∃n0, ∀n > n0, |Rn| = p1(n)λn1 +
· · ·+ pk(n)λnk , with pi(n) complex polynomials and λi ∈ C
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5.4 An asymptotic test of non-regularity
For any regular language R, there exists a real positive number λ and a polynomial p(n) such
that

lim
n→∞

rn = λn × p(n), rn =
∣∣∣R
⋂
An
∣∣∣

– The number of words of length 2n in Dyck Languages ((()(()))) is the Catalan number
(
2n
n

)
/(2n+ 1) asymptotic to

4n

n3/2
√
π
.

Dyck languages are not regular and cannot be recognized by a DFA; however they can
be recognized by a push-down automaton, and they have an algebraic generating function.

– Let π(x) be the number of prime numbers less than x ∈ R+.

lim
x→∞

π(x)

x/ log x
= 1

There is no known generating function enumerating the primes. Would one find one it
would not be regular. It is not possible to enumerate the primes by an automaton.

6 Some classical pattern matching algorithms

6.1 Aho-Corasick (1975) - Finite Motif - Multiple Counting

0 1

2

3

4

a

a

b

b

a

b

a

b

a

b

P = {a, aa, ab, b}

δ(2, a) = 2 w2.a = a.aa

δ(2, b) = 3 w2.b = a.ab

δ(3, a) = 1 w3.a = ab.a

δ(3, b) = 4 w3.b = ab.b

for each specific match ring a bell
 
 
 

1. Build a trie (a tree that is here equivalent to an automaton) recognizing all the words of
P

– let Q be the set of nodes of the trie: Q = {0, 1, 2, 3, 4}
– ∀q ∈ Q, let wq the word spelling the run from 0 to q − (as instance w3 = ab)

2. for each node q with a missing transition `

– add a transition δ(q, `) to state q′

– such that wq′ is the longuest possible suffix of wq.`
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6.2 Knuth-Morris-Pratt automaton (1977) - Only one word

0 1 2 3
a b a

b a

b

a

b

P = aba

– same construction as Aho-Corasick

– for each match ring the bell

– aaaaaba
bbaba
ba
bb

7 Statistics of Motifs
We learned how to compute the number of matches of a finite pattern in a random text.

What about counting the occurrences of a Regular Expression in such texts?

7.1 Tools and Aim - Generating Functions
For a given pattern P , we want to compute

F (z, u) =
∑

n≥0,k≥0

fn,ku
kzn

where fn,k = P

(
P occurs k times

in a random text of length n

)

If Xn is the random variable

– counting the number of occurrences of P
– in a random text of size n

F (z, u) =
∑

n≥0,k≥0

fn,ku
kzn =

∑

n≥0

zn
∑

k≥0

P(Xn = k)uk

The variables z and u are formal variables

– z is related to the length of the texts
– u is related to the number of occurrences of P

7.2 Counting with Regular Expressions - The right language
1. Input:

– a finite alphabet A
– a regular expression R

2. Output: F (z, u) =
∑

n≥0,k≥0

fn,ku
kzn,

where fn,k is the number of occurrences of the pattern R in a random sequence of length
N .
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Method

1. Build the DFA recognizing A?.R
2. Use a variant of Chomsky-Schützenberger to ring the bell and produce the variable u

Counting the number of occurrences of ab+a

0 1 2 3
a b a

b a b

a

b

P = A?ab+a = (a+ b)?ab+a

L0 = a.L1 + b.L0 L0(a, b, u) = a×L1(a, b, u) + b×L0(a, b, u)
L1 = a.L1 + b.L2 L1(a, b, u) = a×L1(a, b, u) + b×L2(a, b, u)
L2 = a.L3
+b.L2 L2(a, b, u) = a×u×L3(a, b, u) + b×L2(a, b, u)
L3 = a.L1 + b.L2 + ε L3(a, b,u) = a×L1(a, b,u) + b×L2(a, b,u) + 1

We define Li as the language of words
that are recognized by the automaton,
with the condition that state i is cho-
sen as initial state.
This leads to the linear set of equa-
tions on languages {L0,L1,L2,L3}.
There is a particular case for state 3,
where you must ring the bell; this
translates to the formal parame-
ter u.

Solve:
L0(a, b, u) =

1− b+ ab− uab
1− a− 2b+ 2ab+ b2 − ab2 − u(ab− ab2)

, F (z, u) =
∑
fn,ku

kzn = L0(P(a)z,P(b)z, u)

P(a) = P(b) =
1

2
; F (z, u) =

8− 4z + 2z2 − 2uz2

8− 12z + 6z2 − z3 − u(2z2 − z3)

Once again, this method is fully general.

7.3 Exploiting the generating Function

R = ab+a, F (z, u) =
8− 4z + 2z2 − 2uz2

8− 12z + 6z2 − z3 − u(2z2 − z3)

– Expand in series with respect to z in the neighborhood of 0

F (z, u) = 1 + z + z2 +

(
1

8
u+

7

8

)
z3 +

(
5

16
u+

11

16

)
z4 +

(
1

2
+

15

32
u+

1

32
u2

)
z5 + O(z6)

– Compute the generating function of the expectations of the number of occurrences of the pattern

E(z) =
∑

n

E(Xn)z
n =

∂F (z, u)

∂u

∣∣∣∣
u=1

= −1

2

z2

1− z
+

1

4

z2

1− 1

2
z
+

1

4

z2

(1− z)2

– Get E(Xn)

E(Xn) = −
1

2
+ 2−n +

1

4
(n− 1) =

1

4
(n− 3) + 2−n

R = ab+a, F (z, u) =
8− 4z + 2z2 − 2uz2

8− 12z + 6z2 − z3 − u(2z2 − z3)
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– Generating function of the Second Moment M2(z) =
∑

n≥0

E(X2
n)z

n =
∂

∂u
u
∂F (z, u)

∂u

∣∣∣∣
u=1

M2(z) =
1

4

z2(z2 − 2)

1− z − 1

4

z2(z2 − 1)

(1− z)2 −
1

8

z2(z2 − 2)

1− z

2

+
1

8

z4

(1− z)3

– Extract the nth. Taylor coefficient

E(X2
n) = [zn]M2(z) =

1

16
n2 − 5

16
n+

5

8
− 2−n

– Standard Deviation σn

σn =
√

E(X2
n)−E2(Xn) =

1

4

√
n+ 1− 2−n+3n+ 2−n+3 − 4−n+2

7.4 Limit law
– Laplace transform L of a random variable X of density function f(x)

L(X, t) = E(etX) =

∫ ∞

−∞
etxf(x)dx

– Laplace transform of a standard Gaussian variable N

L(N , t) =
1√
2π

∫ ∞

−∞
etxe−x

2/2dx = et
2/2

Theorem 7.1 (Paul Lévy Continuity Theorem - 1925).

If, for t ∈ [−α,+α], limn→∞E(etXn) = L(N ) = et
2/2,

then Xn
D−→ N (convergence in distribution or law) : lim

n→∞
P(Xn < x) =

1√
2π

∫ x

−∞
e−w

2/2dw

7.5 Limit law of the number of occurrences of ab+a.

We assume that P(a) = P(b) = 1/2

F (z, u) =
8− 4z + 2z2 − 2uz2

8− 12z + 6z2 − z3 − u(2z2 − z3)
= − 1− u

u
(

1− z

2

)+
1 +
√
u

2u

(
1− z 1 +

√
u

2

)+
1−√u

2u

(
1− z 1−√u

2

)

(1)

Ψn(u) = [zn]F (z, u) =
1

u

(
1 +
√
u

2

)n+1

+O

(
1

2n

)
for u close of 1

We consider Ψn(et) = E(etXn) and the normalised law
Xn − µn

σn

Φn(t) = Ψn(t
Xn − µn

σn
) = E

[
exp

(
t(Xn − µn)

σn

)]
= exp

(
−µnt
σn

)
E

[
exp

(
tXn

σn

)]
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We substitute: µn =
n− 3

4
+O(2−n), σn =

√
n+ 1

4
+O(2−n)

In a neighborhood of t = 0, we expand log(Φn(t))

log(Φn(t)) =
t2

2
− t4

12(n+ 1)
+O

(
t6

n2

)
, lim

n→∞
log(Φn(t)) =

t2

2

7.6 The Gaussian law is general

0 1 2 3
a b a

b a b

a

b

R = ab+a P = A?ab+a
L0(z, u) = L0 = zpaL1 + zpbL0 + 1,

L1 = zpbL2 + zpaL1 + 1,
L2 = zpauL3 + zpbL2 + 1
L3 = zpaL1 + zpbL2 + 1

General case: L =



L0

...
Ln


 = zT(u)L + 1, and T(u) positive n× n matrix for u ≥ 0

Theorem 7.2 (Perron-Frobenius, 1907-1912). If T(u) is positive, irreducible and aperiodic, the
dominant eigenvalue is unique, real and positive.

L0(z, u) =
P (z, u)

Q(z, u)
=

P (z, u)

(1− zλ1(u)) · · · (1− zλn(u))
λi(u) eigenvalue of T(u)

λ1(u) dominant =⇒ 1

|λ1(u)| <
1

|λ2(u)| ≤ . . .

Perron-Frobenius conditions in the context of automata.

– irreducibility: from any state, any other state can be reached (The above automaton is
not irreducible)

– primitivity: there exists a large enough e such that any state can be reached by any
other state in exactly e steps

Remark 7.1.

– The above automaton with initial state 1 and states 1, 2, 3, is irreducible and primitive

– The automaton with states 0, 1, 2, 3 is such that L0 =
L1

1− zpb
+

1

1− zpb
– For u = 1, we have L0 = L1 = L2 = L3 = 1/(1− z)
– by continuity, λ1(u) is close of 1 for u ∈ [1− ε, 1 + ε]

– for L0, we have
1

λ1(u)
<

1

pb

P. Nicodème, Automata and Motif Statistics, CIMPA Summer School 2014, Nablus 125



Uniform Separation Property with respect to n

1

1/λ1(u)

1/λ2(u)

1/λ3(u)

1/λ4(u)

1/λ5(u)

R = 1/A

Γ

pn(u) = [zn]F (z, u) =
1

2iπ

∮

Γ

dz

zn+1
F (z, u) =

1

2iπ

∮

Γ

c(u)

zn+1(1− λ1(u)z)
+

1

zn+1
g(z, u) dz, (2)

= c(u)λ1(u)n(1 +O(An)) (A < 1),

where g(z, u) has no singularity inside the disk |z| ≤ radius of Γ.

Hwang’s quasi-power theorem → limiting Gaussian distribution

Variability condition: λ′′(1) + λ′(1)− λ′(1)2 6=0 (λ(u) = λ1(u))

7.7 Statistics of one regular motif
Let Xn count the number of occurrences of a regular motif R in a random text of length n.
With g(z, u) defined as in Equation (2), we have

F (z, u) =
∑

n,k

P(Xn = k)ukzn =
c(u)

1− λ(u)z
+ g(z, u)

Theorem 7.3 (N, Salvy, Flajolet - 1999). Both in the Bernoulli and Markov model, with
T(u) the fundamental matrix, and λ(u) its dominant eigenvalue,

1. F (z, u) is rational and can be computed explicitly

2.
Moments





E(Xn) = λ′(1)n+ c1 +O(An), (c1 = c′(1))

Var(Xn) = (λ′′(1) + λ′(1)− λ′(1)2)n+ c2 +O(An)

(c2 = c′′(1) + c′(1)− c′(1)2)

3. Limit Gaussian law: Pr

(
Xn − µn
σ
√
n

)
→ 1√

2π

∫ x

−∞
e−t

2/2 dt

[Bourdon, Vallée - 2006] Extension to dynamical sources
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Counts of R = ab+a Assuming again P(a) = P(b) =
1

2
,

with Xn number of occurrences of R in a random text of size n

we have

σn =
√

Var(Xn) =

√
n+ 1

4
+O(2−n)

The Variability condition: is verified

Var(Xn) = (λ′′(1) + λ′(1)− λ′(1)2)n+ c2 +O(An) = Θ(n)

We have Var(Xn) = Θ(n) =⇒ normal limit law

Counts of R = ab? P(a) = P(b) =
1

2

F (z, u) =
∑

n≥0

∑

k≥0

P(Xn = k)ukzn =
uz/2− 1

1− z/2− uz + uz2





E(Xn) = n− 1 + 2−n

E(X2
n) = n2 − 2n+ 3− 3×2−n

Var(Xn) = 2− (2n+ 1)2−n − 4−n

lim
n→∞

Var(Xn) = 2

– The variation condition is not verified

– The limiting law is not normal

Hwang’s Quasi-Power theorem - Gaussian form

Notation: m(f) =
f ′(1)

f(1)
, v(f) =

f”(1)

f(1)
+
f ′(1)

f(1)
−
(
f ′(1)

f(1)

)2

Theorem 7.4 (Hwang 1994). Let the Xn be non-negative discrete random variables (supported
by Z≥0) with probability generating function pn(u). Assume that, uniformly in a complex neigh-
borhood of u = 1, for sequences βn, κn →∞, there holds

pn(u) = A(u).B(u)βn
(

1 +O
(

1

κn

))
,

where A(u), B(u) are analytic at u = 1 and A(1) = B(1) = 1. Assume finally that B(u) satisfies
the so-called “variability condition”,

v(B(u)) ≡ B′′(1) +B′(1)−B′(1)2 6= 0.
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Under these conditions, the mean and variance of Xn satisfy

µn ≡ E(Xn) = βnm(B(1)) +m(A(1)) +O
(
κ−1
n

)

σ2
n ≡ Var(Xn) = βnv(B(1)) + v(A(1)) +O

(
κ−1
n

)
.

The distribution of Xn is, after standardization, asymptotically Gaussian,

Pr

{
Xn −E(Xn)√

Var(Xn)
≤ x

}
= N (x) +O

(
1

κn
+

1√
βn

)
,

7.8 What about counting with several motifs simultaneously?

0 








a

a

b

b

a

b

a

b

a

b

P = {a, aa, ab, b} Several Finite Motifs

Where are the bells?
Easy: upon some nodes of the trie

It is not so easy for several general regular motifs

7.9 Product of Marked Automata
The product of automata is classical in automata theory. For two automata

– Auto1 = (A, Q1, s1, δ1, F1),
– Auto2 = (A, Q2, s2, δ2, F2),

The product automatonP = Prod(Auto1,Auto2) is defined as: P = (A,Q ⊆ Q1×Q2, (s1, s2),∆,F)
where

∀q1 ∈ Q1, q2 ∈ Q2,∀` ∈ A, ∆
(
(q1, q2), `

)
=
(
δ1(q1, `), δ2(q2, `)

)

F = {(qi, qj)with qi ∈ F1 or qj ∈ F2

Remarks. Like for the determinization of an automaton, the algorithm generating the product au-
tomaton starts from the initial state (s1, s2), and only the accessed states encountered during the
algorithm are generated to build Q
The construction is quadratic in the worst case with respect of the size of the two initial automata.
The product of more than two automata follows the same rules.

We need however to distinguish the type of terminal states with respect to the corre-
sponding match within the multiple pattern by assigning different marks to them.
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0 1 2


3


a

b

a

b

a

ba

b

U = aa + b
AutoU = (A, 0, Q, δ, F = Q,Mark = {2, 3})

0 1 2
 3
a

b

a

b

a

b

a

b

V = b?aab?;
AutoV = (A, 0, Q, δ, F = Q,Mark = {2, 3})

0, 0 1, 1 2,2



3,0
 3,3



a

b

a

b

a

a

b

ba

b

Prod(AutoU,AutoV)

Prod(AutoU,AutoV) =
(
A, (0, 0),Q ⊆ Q×Q,∆,F = Q,

Mark1 = {(2, 2), (3, 0), (3, 3)},
Mark2 = {(2, 2), (3, 3)}

)

∆
(
(qi, qj), (`1, `2)

)
=
(
δ(qi, `1), δ(qj, `2))

Mark1 = Q
⋂(⋃

q∈Mark q ×Q
)

Mark2 = Q
⋂(⋃

q∈MarkQ× q
)

Getting the Multivariate generating Function

0, 0 1, 1 2,2



3,0
 3,3



a

b

a

b

a

a

b

ba

b

U = aa+ b, V = b?aab?

Chomsky-Schützenberger again

L00 = πazL11 + πbzuL30 + 1
L11 = πazuvL22 + πbzuL30 + 1
L30 = πazL11 + πbzuL30 + 1
L22 = πazuvL22 + πbzuvL33 + 1
L33 = πazL11 + πbzuvL33 + 1

P(a) = πa P(b) = πb

Assume πa = πb =
1

2

{
Un number of occurrences of U in texts of length n
Vn number of occurrences of V in texts of length n

F (z, u, v) =
∑

n≥0

zn
∑

u≥0
v≥0

P(Un = r, Vn = s)urvs

=
8 + 4z − 8uvz − 2uv(1− uv)z2

8− 4uz − 8uvz − 2u(1− 2uv − uv2)z2 − u2v2(1 + u)z3
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Covariance of Un and Vn

∑

n≥0

E(Un)zn =
∂F (z, u, 1)

∂u

∣∣∣∣
u=1

,
∑

n≥0

E(U2
n)zn =

∂

∂u
u
∂F (z, u, 1)

∂u

∣∣∣∣
u=1

∑

n≥0

E(Vn)zn =
∂F (z, 1, v)

∂v

∣∣∣∣
v=1

,
∑

n≥0

E(V 2
n )zn =

∂

∂v
v
∂F (z, 1, v)

∂v

∣∣∣∣
v=1

∑

n≥0

E(UnVn)zn =
∂

∂u

∂

∂v
F (z, u, v)

∣∣∣∣
u=1
v=1

=
z2

8
× 8 + 8z − 14z2 + 5z3 − z4

(1− z)3(2− z)2

E(UnVn) =
3

8
n2 − 3n+ 1

4
+ 2−nn





E(Un) =
3n− 1

4

E(Vn) =
n− 2

2
+ 2−n

Cov(Un, Vn) = E(UnVn)−E(Un)E(Vn) =
n− 4

8
+ 2−n

n+ 1

4

Correlation of Un = aa+ b and Vn = b?aab?

Cor(Un, Vn) =
Cov(Un, Vn)

σUnσVn

=
E(UnVn)−E(Un)E(Vn)

σUnσVn

=
n− 4 + 2−(n−1)(n+ 1)√

(n+ 1)(3n− 6− 2−n(4n− 12)− 4−(n−1))

1√
3

Cor(Un, Vn)

Remark:
For n = 100, we would get
by exhaustive enumeration
2100 ≈ 1.27× 1030 texts

weak correlation
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7.10 More on Marked-Automata
1. TheMarked-States have the same properties as the Accepting-States, with respect

to

– determinization of NFAs

– minimization of DFAs

2. It is possible to make the product of any finite number of automata; this is not
limited to the product of two automata. The automata need only be complete.

7.11 Reg-Exp to NFA by Glushkov (1961) or Berry-Sethi (1986) al-
gorithm

R = (a+ b)∗aba

1. Index the occurrences of letters R′ = (a1 + b1)∗a2b2a3

2. Use the constructors first, last, follow, while considering that you are “looking” from left
to right to the regular expression for first and follow and backwards for last

– first: the set of indexed letters that you can access by reading “only” one indexed
letter from the left; you can bypass “stared” expressions H? for any sub-regular-
expression within the indexed original regular expression.
I first(R′) = {a1, b1, a2}

– last: symmetric of first while reading backward.
I last(R′) = {a3}

– follow(R′, `): you put yourself at the position `, where ` is a marked letter of R′, and
you compute the set of indexed letters you can get by a single “read”; the conditions
are identical to those of first.
I follow(R′, b1) = {a1, b1, a2}

3. Build the Automaton

– indexed letters → states

– suppression of the indices → transitions
I δ(b1, a) = {a1, a2}, δ(b1, b) = {b1}, etc.

Glushkov and Berry-Sethy algorithm.

Recursive definition of first, last, follow and nullable

nullable(R) = true if ε ∈ language of R

first(R1R2) ={
first(R1) ∪ first(R2) if nullable(R1),
first(R1) otherwise

follow(R1R2, x) =
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



follow(R2, x) if x ∈ R2,
follow(R1, x) ∪ first(R2) if x ∈ last(R1)
follow(R1, x) otherwise

follow(R∗, x) ={
follow(R, x) ∪ first(R) if x ∈ last(R),
follow(R, x) otherwise

Technical Condition ⇒ quadratic complexity

8 Fast exact extraction of Taylor coefficients

F (z, u) =
P (z, u)

Q(z, u)
=⇒





E(z) =
∑
n≥0 E(Xn)zn =

∂F (z, u)

∂u

∣∣∣∣
u=1

=
U(z)

V (z)
,

M2(z) =
∑
n≥0 E(X2

n)zn =
∂

∂u
u
∂F (z, u)

∂u

∣∣∣∣
u=1

=
H(z)

K(z)

,

where U(z), V (z), H(z) and K(z) are polynomials.
We are looking for E(Xn) and E(X2

n) that are Taylor coefficients of order n of a rational
function.
E(Xn) = [zn]E(z), E(X2

n) = [zn]M2(z)

Aim: we want to perform a fast extraction of the nth Taylor coefficient of a rational
function

Method: (a) find a recurrence for the coefficients.

E(z) =

∑

0≤i≤j
uiz

i

∑

0≤i≤k
viz

i
=
∑

n≥0

enz
n =⇒

∑

0≤i≤k
viz

i
∑

n≥0

enz
n =

∑

0≤i≤j
uiz

i

=⇒ emv0 + em−1v1 + · · ·+ em−kvk = 0 (m > j)

(b) Build a matrix recurrence of order 1.

Etm = Am−kEtk

{
Em = (em, em−1, . . . , em−k)

Etm+1 = A× Etm
with A =




−v1/v0 −v2/v0 . . . −vk/v0

1 0 . . . 0
0 1 . . . 0
. . .




square
matrix

(c) Use an algorithm known as binary exponentiation to compute Am−k: A4 =
(
A2
)2
, A8 =(

A4
)2
, . . .

Example - R = aba, P(a) = P(b) = 0.5 - E(400000)?

∑

n≥0

E(Xn)zn =
z3/2

4− 8z + 5z2 − 2z3 + z4
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en = 2en−1 −
5

4
en−2 +

1

2
en−3 −

1

4
en−4

Et
400000 =




2 −5/4 1/2 −1/4
1 0 0 0
0 1 0 0
0 0 1 0




399997


1/8
0
0
0




399997
= 1100001101001111101

(base 2) (19 bits)

19 matrix products, 11 matrix by vector products (number of bits equal to 1)

E(X400000) =
399998

8
(0.001sec), E(X4000000) =

3999998

8
(0.002sec)

Complexity O(log n) number of operations for the computation of the nth coefficient

log(4000000)/ log(400000) ≈ 1.179 beware of bit complexity

Automatic computations - Lib. regexpcount (N.-Salvy)
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Automatic computations - Library gfun (Salvy-Zimmerman)

Automatic computations - Lib. gfun (Salvy-Zimmerman)
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9 An application to biology - Protein Motifs Statistics
Motif PS00844 (1998): DALA_DALA_LIGASE_2

[LIV]-x(3)-[GA]-x-[GSAIV]-R-[LIVCA]-D-[LIVMF](2)-x(7,9)-[LI]-x-E-[LIVA]-N-[STP]-x-P-[GA]

– A: alphabet of the proteins (20 letters)
– [LIV] = L+ I + V
– [LIVMF](2) = (L+ I + V +M + F )2

– x = A
– x(3) = x3

– x(7,9) = x7 + x8 + x9

The automaton recognizing A?.PS00844 and counting the matches of the motif in a random
non-uniform Bernoulli text has 946 states while the number of words of the finite language
generated by the motif is about 2× 1026

Comparison of Observed and Predicted Counts

y =
log(O)

log(10)

x =
log(E)

log(10)

71 Motifs with Expectation ≥ 2
in a Database of 6.75 million positions

For these motifs, σ ≈
√
E (Poisson-like)

Curves: ±3σ

From [Nicodème, Salvy, Flajolet] - Motif Statistics, TCS2002

P. Nicodème, Automata and Motif Statistics, CIMPA Summer School 2014, Nablus 135



10 Short Bibliography
– Kelley, D. Automata and Formal Languages, an Introduction. Prentice Hall, 1995. A

very clear introduction to the subject.

– Kozen, D. C. Automata and Computability, Springer Verlag, 1997. Probably more
complete than Kelley’s book, but more difficult to read.

– Nicodème,P. , Salvy, B., Flajolet, F. Motif Statistics, TCS 2002

– Nicodème, P. Regexpcount, a symbolic package for counting problems on regular ex-
pressions and words, Fundamentae Informaticae, 2003.

– Nicaud, C., Pivoteau, C., Razet, B. Average Analysis of Glushkov Automata under
a BST-Like Model, FSTTCS’10, 2010

– Nuel, G., Dumas, J.-G. Sparse approaches for the exact distribution of patterns in long
state sequences generated by a Markov source, TCS 2012

P. Nicodème, Automata and Motif Statistics, CIMPA Summer School 2014, Nablus 136


