S. Bickel, M. Brückner, and T. Scheffer, Discriminative learning under covariate shift, The Journal of Machine Learning Research, vol.10, pp.2137-2155, 2009.

A. Gretton, A. Smola, J. Huang, M. Schmittfull, K. Borgwardt et al., Covariate Shift by Kernel Mean Matching, 2009.
DOI : 10.7551/mitpress/9780262170055.003.0008

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. A. Hernán, S. Hernández-díaz, and J. M. Robins, A Structural Approach to Selection Bias, Epidemiology, vol.15, issue.5, pp.615-625, 2004.
DOI : 10.1097/01.ede.0000135174.63482.43

J. Huang, A. J. Smola, A. Gretton, K. M. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled data, NIPS, pp.601-608, 2006.

T. Kanamori, S. Hido, and M. Sugiyama, A least-squares approach to direct importance estimation, J. Mach. Learn. Res, vol.10, pp.1391-1445, 2009.

T. Kanamori, T. Suzuki, and M. Sugiyama, Statistical analysis of kernel-based least-squares density-ratio estimation, Machine Learning, pp.335-367, 2012.
DOI : 10.1007/s10994-011-5266-3

J. G. Moreno-torres, T. Raeder, R. Alaiz-rodríguez, N. V. Chawla, and F. Herrera, A unifying view on dataset shift in classification, Pattern Recognition, vol.45, issue.1, pp.521-530, 2012.
DOI : 10.1016/j.patcog.2011.06.019

X. Nguyen, M. J. Wainwright, and M. I. Jordan, Estimating divergence functionals and the likelihood ratio by convex risk minimization. Information Theory, IEEE Transactions on Information Theory, issue.11, pp.565847-5861, 2010.

H. Shimodaira, Improving predictive inference under covariate shift by weighting the log-likelihood function, Journal of Statistical Planning and Inference, vol.90, issue.2, pp.227-244, 2000.
DOI : 10.1016/S0378-3758(00)00115-4

M. Sugiyama, S. Nakajima, H. Kashima, P. Bünau, and M. Kawanabe, Direct importance estimation with model selection and its application to covariate shift adaptation, NIPS, 2007.

J. Wen, C. Yu, and R. Greiner, Robust learning under uncertain test distributions: Relating covariate shift to model misspecification, Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp.631-639, 2014.

B. Zadrozny, Learning and evaluating classifiers under sample selection bias, Twenty-first international conference on Machine learning , ICML '04
DOI : 10.1145/1015330.1015425

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=