Segmentation and kinematics of the North America-Caribbean plate boundary offshore Hispaniola

To cite this version:

HAL Id: hal-01213955
https://hal.archives-ouvertes.fr/hal-01213955
Submitted on 9 Oct 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Segmentation and kinematics of the North America-Caribbean plate boundary offshore Hispaniola

Corresponding author: sylvie.leroy@upmc.fr

1- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7193, ISTEP, F-75005, Paris, France
2- IFP Energies Nouvelles, Rueil-Malmaison, France
3- Géoazur, CNRS, Univ. Sophia-Antipolis, Valbonne, France
4- Université d’Etat d’Haiti, Port au Prince, Haiti
5- Universidad Complutense, Madrid, Spain
6- Obs. Volc. Seis. Martinique, IPGP, Martinique, FWI
7- Anamar, Santo Domingo, Dominican Republic
8- Department of Geography and Geology, The University of the West Indies, Mona, Kingston 7, Jamaica, W.I
9- CENAIS Santiago de Cuba, Cuba
10- BME, Port au Prince, Haiti
11- Semanah, Port au Prince, Haiti
12- Lamont Doherty Earth Observatory, Palisades, NY, USA
13- Servicio Geológico Nacional, Santo Domingo, Dominican Republic

Keywords: plate kinematics, strike-slip faults, North American-Caribbean plate boundary, Haiti

Highlights:
• We explored submarine portions of fault systems bounding the Gonâve microplate
• Structures are a series of delineated left-lateral strike-slip fault segments
• The distinct segments 50 to 100 km-long cut across pre-existing structures
• A 16.5km total strike-slip displacement on the northern system estimated since ~1.8 Ma

Abstract
We explored the submarine portions of the Enriquillo-Plantain-Garden Fault zone (EPGFZ) and Septentrional-Oriente Fault zone (SOFZ) along the Northern Caribbean plate boundary using high-resolution multi-beam echo-sounder and shallow seismic reflection. The bathymetric data shed light on poorly documented or previously unknown submarine fault zones running over 200-km between Haiti and Jamaica (EPGFZ) and 300-km between Dominican Republic and Cuba (SOFZ). The primary plate-boundary structures are a series of strike-slip fault segments associated with pressure ridges, restraining bends, step-over, and dogleg offsets indicating very active tectonics. Several distinct segments 50 to 100 km-long cut across pre-existing structures inherited from former tectonic regimes or bypass recent morphologies formed under the current strike-slip regime. Along the most recent trace of the SOFZ, we measured a strike-slip offset of 16.5 km that indicates steady activity for the past ~1.8 Ma if its current GPS-derived motion of 9.8 ±2 mm/yr has remained stable during the entire Quaternary.

1 – Introduction

Following the 2010 Mw 7.0 Haiti earthquake, an international effort was initiated to investigate the corresponding fault system and to constrain both the individual fault slip rates and their seismic history. Such an effort depends critically on knowledge of the detailed geometry of the fault system delineating the northern boundary of the Caribbean domain (Fig. 1). The Caribbean plate is currently moving eastward relative to North America and the plate motion is accommodated along a complex, 200 km-wide deformed zone, the Northern Caribbean plate Boundary (NCarB). The NCarB is a seismogenic zone extending over 3000 km along the northern edge of the Caribbean Sea (Fig. 1) and a deforming region that includes two large strike-slip fault systems, the Septentrional-Oriente fault zone (SOFZ) in the north and the Enriquillo-Plantain-Garden fault zone (EPGFZ) in the south (Mann et al., 1991; Calais and De Lépinay, 1995). The SOFZ extends from the Mid Cayman spreading center, initiated 50 Ma ago (Leroy et al., 2000), runs along the Southern coast of Cuba to cut across the northern Hispaniola (Calais and Mercier de Lépinay, 1989; Mann et al., 1998). The EPGFZ, the prolongation to the east of Jamaica of the Walton fault, cuts across the Southern Peninsula in Haiti and dies out eastwards in the vicinity of the Muertos trough south of Hispaniola, delimiting the Gonâve microplate (DeMets and Wiggins-Grandison, 2007) (Fig. 1). Between the two strike-slip systems, the middle to late Eocene East Cayman margin is described offshore Jamaica (Leroy et al., 1996) and the early Miocene to Present collisional wedge of Haiti, well-described onshore (Pubellier et al., 2000), continues offshore in the Gonâve Gulf (Figs. 1 and 2).
Destructive earthquakes are reported along the NCarB both onshore and offshore (Ali et al., 2008; Fig. 1). The most recent historical earthquakes known to have hit Northern Hispaniola are the 1842 event in Haiti and the 1562 event in Dominican Republic (Prentice et al., 1993). Both events are commonly ascribed to the offshore portion of the Septentrional fault because paleosismological studies show that no surface rupture has occurred on the onshore Septentrional fault in central Dominican Republic in the last 800 years (Prentice et al., 2003). Recent studies of historical earthquake accounts (ten Brink et al., 2011; Bakun et al., 2012) that have nonetheless assigned historical earthquakes to the onshore strike-slip faults remain challenged by the available paleosismological studies (Prentice et al., 2013). The 6-12 mm/yr late Holocene slip rate of the Septentrional fault derived from the paleoseismological restoration (Prentice et al., 2003) appears in agreement with the rate of 9.8 ±2 mm/yr computed from GPS along the Septentrional fault (Benford et al., 2012, Fig.1). Historical events reported for southern Hispaniola are commonly ascribed to the Hispaniola onshore portion of the EPGFZ (Ali et al., 2008). The source of the 2010 Haiti earthquake that remains uncertain (Bilham, 2010; Calais et al., 2010; Prentice et al., 2010; Mercier de Lépinay et al., 2011, Douilly et al., 2013) demonstrates the uncertainty inherent in the assignment of historical events to particular fault segments in the absence of contemporary observations of surface rupture or paleoseismic data. Benford et al. (2012) computed a 6.8 ±1 mm/yr GPS-derived horizontal slip rate for the EPGFZ but the short-term geological slip rate is unknown.

Offshore and onshore investigations were performed soon after the 2010 earthquake in the vicinity of Port-au-Prince to search for the source fault of this event (Hayes et al., 2010; Prentice et al., 2010; McHugh et al., 2011; Mercier de Lépinay et al., 2011). Here we report the results of two systematic offshore surveys of the NCarB from Cuba to Hispaniola and from Jamaica to Haiti and our analysis aimed at deciphering the segmentation of both fault systems. The marine geophysical data we collected (swath bathymetry from Haiti-sis and Norcaribe cruises, 1.8-5.3 kHz sub-bottom profiles and seismic reflection from Haiti-sis cruise) allow us to characterize the detailed geometry and kinematics of these two fault systems as well as to image the most recent cumulative fault trace disrupting the sea-bottom.

2 – Geometry and segmentation of the strike-slip fault systems

Multibeam bathymetry data reveal the geometry of the active submarine fault systems between Cuba and Haiti for the SOFZ, and between Jamaica and the Southern Peninsula of Haiti for the EPGFZ (Fig. 2). The faults we characterize as active bear by sharp scarps disrupting the sea-bottom and affect the shallowest unconsolidated sediments on the seismic profiles with suitable resolution to image the surficial sediments. Older faults bear significantly degraded scarps and the faults reported
inactive do not disrupt the uppermost seismic units on the high-resolution seismic profiles. Active fault traces are very well preserved, especially the youngest strike-slip cumulative fault scarps that imprint the submarine landscape (Figs. 3, 4). The active fault system is remarkably linear and comprises a single strand along much of its length (Figs. 3, 4). Both fault systems display notable bends in their strikes. The strike of the SOFZ changes from N88°E to N100°E at 20°N and 72°50′W, south of Tortue Island (Fig. 3) and that of EPGFZ changes from N78°E to about EW west of Southern peninsula at 18°18′N and 74°30′W (Fig. 4). The fault segmentation, key information for seismic hazard assessment (e.g.; Wells and Coppersmith, 1994), can be defined on the basis of morphological and structural discontinuities such as fault bends and small jogs.

Along the active trace of the SOFZ, four distinct overlapping segments can be mapped from west to east. The western 90 km-long segment, segment 1 on Figure 3, runs offshore Cuba eastward to the Punta Caleta high, from 75°W to 74°05′W. From 74°10′W to 73°03′W, a second 125 km-long segment bends 10° clockwise near longitude 73°40′W, changing strike from N80°E to N90°E and traverses the no longer active Windward Passage Deep pull-apart. From 73°25′W to 72°25′W, a third 100 km-long segment trends N95°E west of the south Tortue Island bend and N100°E east of the bend. A fourth 100 km-long segment also trends N100°E and runs from east of Tortue Island eastward to the Dominican Republic (segment 4 in Fig. 3).

Along the EPGFZ, we interpret three distinct, overlapping, offshore segments on the basis of structural discontinuities (Fig. 4). Each segment has a clear morphologic imprint on the seafloor. From west to east, the eastern Jamaican segment corresponds to the offshore continuation of the Plantain Garden Fault described in Jamaica (Burke et al., 1980; Mann et al., 1985; Koehler et al., 2013). The offshore portion of the eastern Jamaican segment is 25 km-long. The boundary between the Eastern Jamaican segment and the Western segment is defined by a left stepover at longitude 75°58′W (Fig. 4). The Western segment, about 70 km long, is associated with horsetail structures near the left step (Fig. 5) and traverses the 2800 m-deep Morant basin. Midway across the basin the active fault trace bisects a small compressional push-up (Fig. 5) and continues eastward to longitude 75°20′W. The Central segment (75°20′W to 75°10′W) is about 50 km long and overlaps the western segment for about 25 km. North-dipping thrusts, a few km apart of and sub-parallel to the central segment occur south of the main fault along most of its length (Fig. 4, 6). The eastern segment extends from 75°10′W, where a series of thrusts splay off the main strike-slip trace, to 74°33′W. The distance between the strike-slip trace and the thrust traces increases eastwards to reach a maximum of 15 km in the eastern Matley basin. The boundary between the 40 km-long eastern segment and the western Haitian segment is marked by a 2 km left-stepover, with both segments overlapping by 20 km. The western Haitian segment continues onshore Southern peninsula of Haiti along the base of a south-facing cumulative fault scarp (Figs. 1 and 4).
3. Fault kinematics, offset morphologies and slip-rate estimate

3.1 – Southern system - EPGFZ

Young submarine morphologies offset by strike-slip faults are rare because passive markers are unusual on the seafloor or because any such passive markers, if present, are commonly buried by sedimentation. This is the case for the EPGFZ and one has to rely on unambiguous kinematic indicators to assess the fault motion, such as in the Morant basin where the western and central segments overlap (Figs. 4 and 6). There, nearby the western tip of the central segment, en echelon pressure ridges testify for a primary left-lateral motion (Figs. 6 a,b). The en echelon ridges are well-expressed on the seafloor over a length of 7-8 km (Fig. 6b). An extensional horsetail splay by the left step-over between the western tip of the western segment and the eastern tip of the Jamaican segment also attests to left-lateral motion (Fig. 5). The regularly spaced normal faults branch from the master fault to the north where the western and Jamaican segments of the EPGFZ step-over.

Further east, on the floor of the Morant basin, the fault cuts across a prominent structure obvious both on the reflectivity image and on the bathymetric map. A superficial analysis may induce doubt regarding the sense of motion of the EPGFZ, as it shows an apparent right-lateral offset (Fig. 6c). However, a more careful analysis reveals the presence of a restraining bend on the master fault that is associated with left-lateral motion (Fig. 5). In the Gobi Altai region such features have been extensively described along gentle bends of the main strike-slip system (Bayasgalan et al., 1999; Cunningham, 2007). The local restraining bend along the EPGFZ is now bypassed by the main strike-slip fault in agreement with a primary strike-slip motion at depth.

The Navassa basin, located on the central segment at the longitude of 75°15'W, is a 40-km-long and 5km-wide asymmetric basin (Fig. 4). Sub-bottom seismic profiles (1.8-5.3 kHz) show that this basin is deeper along the master strike-slip fault (Fig. 4 lower right inset). Such asymmetric basins are typically formed along strike-slip fault systems (Ben-Avraham and ten Brink, 1989; Mann et al., 1995; Cunningham, 2007; Mann, 2007; Smit et al., 2008). The sedimentary sequence infilling the Navassa basin is thicker towards the north, where the present-day depocentre is located along the main strike-slip fault (lower right inset of Fig. 4). A large landslide (4 by 4 km), possibly earthquake-induced, impinges on the southern flank of the Navassa ridge and moved southward within the Navassa basin (Fig. 4 upper right inset). Similar mass movement may present a source of tsunami for the nearby coast of Haiti and Jamaica (Hornbach et al., 2010).

The EPGFZ cross cuts pre-existing morphologies and the current deformation stage is superimposed on older tectonic structures as depicted by the seismic section crossing the Morant basin (Fig. 7). The sediment layers have been tilted by the previous activity of a normal fault in a large half-graben
similar to the ones identified in the northern Jamaica margin (Fig. 1; Leroy et al., 1996). The overall sedimentary infill has been subsequently folded with unevenly distributed gentle folds and the final crosscutting by the EPGFZ is associated with very limited adjacent compressive structures.

3.2 – Northern fault system - SOFZ

We identified a notable exception to the lack of well-identified offset geomorphic features on the SOFZ at about 19°50’N-72°14’W. There, the course of a NS channel flowing northward veers abruptly to the west within the strike-slip furrow (Fig. 8, red arrows) and bends abruptly again to the north to cross the North Hispaniola Deformed Belt (Fig. 3a). The canyon is 400-800m deep and its downstream course incises a carbonate platform, which outcrops closely (<~20km) in Dominican Republic and Haiti (Calais et al., 1992). In between the upstream and downstream courses, there is no significant canyon south of the fault. However, the upstream part of the channel faces another channel north of the fault (Fig. 8, green arrow) but the latter is beheaded at the fault precluding a former continuity of these channels as well as the piracy of the upstream course of the offset channel. Therefore the 16.5 km-long dogleg offset of the channel has been preserved (Fig. 8, red arrows).

A similar shift of a second canyon occurs toward the west, near the Tortue Island (Fig. 8). The corresponding offset is more difficult to assess because there are several possibilities of upstream courses (blue arrows on Fig. 8), the easternmost one pointing to a plausible offset of 16.5 km. The analysis of the bathymetric profiles (Fig. 9) confirms this estimate although we lack full multibeam bathymetry coverage of the shallow platform merging with the shore to verify that this largest offset does correspond to a large canyon merging onland with a significant river. The NGA nautical charts offshore Cap-Haitien and Tortue Island combined with the new dataset provide some candidates for the onshore source river system (Fig. 8).

In the western part of the SOFZ, the active fault trace crosses the Windward Passage Deep through the basin (Fig. 3; at the longitude of 73°50W). This 40 km-long, 10 km-wide and 3700 m-deep basin is described as an early Miocene pull-apart by Calais and De Lépinay (1995), and it is now cross-cut by the present trace of SOFZ (Fig. 3).
4 – Discussion and Conclusions

Our work brings to light a hitherto poorly known, 500km-long portion of the offshore active strike-slip fault systems of the North America-Caribbean plate boundary. The bathymetry and seismic data delineate multiple left-lateral, 50 to 100 km-long, strike-slip fault segments. The geometry of the active fault systems does not seem to be controlled by pre-existing tectonic features (rifted basin, folds). The lengths of the fault segments we have identified along both the EPGFZ and the SOFZ are capable of producing Mw ~7-7.7 earthquakes (e.g.; Wells and Coppersmith, 1994) that are likely to trigger prominent submarine landslides in the vicinity of Hispaniola similar to the one we highlight in Fig. 4.

Paleoseismic studies performed along the onshore SOFZ trace in Dominican Republic show that the most recent ground-rupturing earthquake occurred more than 800 years ago (Prentice et al., 1993; Prentice et al., 2003), suggesting the 1842 earthquake most likely occurred along the offshore segment documented here, in tune with the triggering of a tsunami at Cap Haitien (Lander et al. 2002; Prepetit, 2008).

On the SOFZ, the 16.5 km dogleg offset of two canyons is not dated, nor is the limestone platform into which the canyons are incised, ruling out a direct determination of the geological slip-rate of the SOFZ. Based on the geology of adjacent coast we propose an estimate age of 2 Ma for the upper part of the carbonate platform which is reefal onshore (Villa Vasquez series; De Zoeten and Mann, 1991; Calais et al. 1992) and with a suggestive karstic morphology offshore (Fig. 8) indicating a low sea level and subaerially environments, respectively. The occurrence of stepped terraces along the northern wall fault implies the record of paleo-sealevels, a position above sea surface where waves action progressively erase the karstic terrain and a progressive uplift of the northeastern block relative to the southern one. Eastward wedge of stepped terraces indicates a variable uplift along the fault coeval with the activity of the SOFZ for significant time periods (Fig. 8). If the 9.8 ±2 mm/yr slip rate derived from the GPS (Benford et al., 2012) has remained constant, at least during the whole Quaternary, the 16.5 km offset would yield an age of ~1.8 Ma for its inception. Interestingly, this age matches that estimate of the upper part of the carbonate platform and of the recent uplift of the Septentrional Cordillera in the northern Dominican Republic which is bounded on its southern edge by the onshore portion of the SOFZ (Calais and Mercier de Lépinay, 1989) and of the northwestern Cordillera of Haiti (Bowin, 1975; Nagle et al., 1979; Prentice et al., 1993; Mann et al., 1995; 1998). ~ 1.8 Ma is the likely age for the uplift above sea-level of the erased karst block, the Tortue island and further west, the windward passage sill (Calais and De Lépinay, 1995). Channels offset and vertical movements are probably indicative of a southward plate boundary shift along SOFZ (around 2 Ma).
that could be driven either by the Bahamas-Hispaniola collision (Dolan et al. 1998; Mann et al. 2002) or deeper processes such as Slab Edge Push (Van Bethem et al. 2014). Our study does not allow deciphering between the importance of the two mechanisms. Nonetheless the geometry and segmentation of the offshore SOFZ and EPGFZ and the primary strike-slip motion highlighted along the offshore portion EPGFZ are key information for seismic hazard assessment, stress-transfer calculations and GPS-derived kinematic models.

Acknowledgments

We thank Captain Moimeaux, crews and technicians from L’Atalante (IFREMER/GENAVIR). We are indebt from French Embassies in Haiti, Bruno Asseray, and Cuba, Aurelie Nogues, Oliver Tenes. The local authorities are also thanked, Daysarih Tapanes Robau from CITMA, Claude Prépetit from BME, D. Boisson and J. Jadotte from UEH. We wish to thank captain and crew of the R/V Sarmiento de Gamboa and technicians of the UTM (Norcaribe cruise funded by the SMIS (CGL2010-17715). We also thank UPMC and IFPEN for solving several administrative issues. We acknowledge constructive comments by three reviewers and are grateful to the Associate Editor and Editor for the efficient processing of the manuscript.

References

Figures Captions

Figure 1: Tectonic map of the northern Caribbean plate boundary. Orange dots indicate the presumed epicenter of Mw>7 historical earthquakes from (Ali et al., 2008), orange dashed lines indicate imprecisely localized historical earthquakes. Velocities in mm/yr reported from a block model incorporating the available GPS data (Benford et al., 2012). The studied parts of the fault systems in this paper are outlined in red. Faults in black are from previous studies (Calais and de Lepinay et al. 1989; Calais, E., and de Lepinay, B.M., 1991; Mann et al. 1995; 1998; Leroy et al. 1996; Mauffret and Leroy 1997; Granja Buna et al. 2014; in Gulf of Gonave from Corbeau et al. 2014)

Figure 2: 50 m resolution bathymetric map of the Hispaniola area from several cruises: Haiti-sis 1&2 (2012, 2013 on R/V L’Atalante), Norcaribe (2013 on R/V Sarmiento de Gamboa), Haiti-OBS (2010; R/V L’Atalante; (Mercier de Lépinay et al., 2011)) and Seacarib 1 & 2 (1985, R/V Conrad; 1987, R/V J. Charcot; (Calais and De Lépinay, 1995; Leroy et al., 1996; Mauffret and Leroy, 1997)). Rectangles with number locate the corresponding figures. Inset: Location of the cruises Haiti-OBS (orange); Seacarib 1 & 2 (purple); Norcaribe (green); Haiti-sis 1 & 2 (blue).

Figure 3: Bathymetric map of the Septentrional-Oriente fault zone (SOFZ) and tectonic interpretation. Fault segmentation inferred from distinct geometric fault complexities (fault bends and small jogs). W.P. Deep: Windward Passage Deep. Active fault segments are in red and inactive one or pre-existing structures from older tectonic events are in black. Onland Hispaniola the main rivers are shown in blue.

Figure 4: Bathymetric map of the southern system Enriquillo-Plantain Gardain Fault zone (EPGFZ) and tectonic interpretation (Lower panel). Active fault segments are in red while inactive or older ones are in black. The eastern Jamaican segment is the offshore continuity of the Plantain Garden Fault identified onland in Jamaica. The western Haitian segment is the prolongation of the Southern Peninsula fault observed in Haiti (faults are drawn in green onland). These segments are connected

Lower right Inset is a subbottom seismic profile (1.8-5.6kHz) crossing the EPGFZ in the Navassa basin (grey line for location). Upper right inset is a close-up of the northern wall of the Navassa basin showing a large landslide (4x 4 km). The white dashed lines represents the scar of the mass failure and white arrows point to the corresponding deposits on the basin floor.

Figure 5: Upper panel: Bathymetric map of the western termination of the western segment of the EPGFZ. See figure 2 for location. Lower panel: Tectonic interpretation with extensional horsetail splay and restraining bend in the Morant basin. Note the very limited local shortening observed at the restraining bend ultimately bypassed by the most recent fault trace in the Morant basin, in agreement with the occurrence of recent releasing bend described onshore crosscut by the Haitian prolongation of the strike-slip fault system (i.e Clonard pull-apart (Fig. 1) (Mann *et al.*, 1995)).

Figure 6: a, 3D-view from the SW of the western offshore portion of the EPGFZ. Two overlapping segments with linear fault traces (black arrows), 3 km apart, cut across a pre-existing bathymetry. The dashed line indicates the location of the seismic profile on Fig. 7. b, Detailed bathymetry along the two parallel fault traces. The western segment to the north is highlighted by a narrow strike-slip furrow. The central segment to the south displays 1.5 km long, 150 m wide, and 15 m high en echelon pressure ridges. c, Reflectivity image of the active trace of the western segment ot the EPGFZ cutting across a prominent transpressive structure (restraining bend; see Cunningham & Mann, 2007 for classification).

Figure 7: Migrated shallow seismic profile across the EPGFZ nearby the Morant basin and corresponding interpretation (upper panel). Red lines represent recent active trace of the EPGFZ, clearly identified on the profile. Other faults (black lines) are supposed to be active before and not during the very recent motion along the EPGFZ. A gentle compressive structure in the north of the EPGFZ is also crosscut by this seismic profile. Pre-existing southward-tilted series and syn-tectonic sequence are deformed before the recent motion along the active fault (Corbeau *et al*. 2014).

Figure 8: Map view of the offshore prolongation of the Septentrional Fault (labelled SOFZ), North of Haiti (see Figs 1 & 2 for location). Note the linearity of the fault trace and fault parallel canyon, and the downstream and upstream courses of two offset channels (large vertical arrows). Note the 16.5 km dogleg offset of the eastern canyon (red arrows) which upstream course faces a beheaded
channel north of the fault (oblique white arrow) and parallels a shallow canyon south of the fault (vertical orange arrow) For the western dogleg offset canyon, the downstream canyon is beheaded while the upstream feasible ones merge with the bottom of the fault parallel canyon. The size of the blue arrows south of the fault increases with that of the resulting offset, the biggest arrow pointing to the likely 16.5 km offset. The offset channels, 400-800m deep, incise a platform, presumably carbonated which outcrops in Dominican Republic (Calais et al., 1992). North of the fault, large parts of the platform display a hummocky pattern with impressive swallow holes, which is suggestive of drowned karstic terrain. Stepped terraces may indicate a gradual uplift of the northeastern block relative to the southern wall fault. Onland present-day rivers are indicated (thicked lines are the major one) and NGA nautical charts available offshore Cap-Haitien and Tortue Island are used to draw two channels (brawn lines). Note that the large canyon (orange arrow) was already mapped on the nautical chart but appears unlikely for matching the red arrow canyon with our multibeam data.

Figure 9: a, Bathymetric profiles parallel to the fault projected on a vertical plane striking N100°E. Arrows are drawn as in fig. 8 and location of the profile is shown in the inset map. The downstream offset canyons are 400-800 m wide and 1600-1250 m deep while the downstream-beheaded channel to the east (oblique green arrow) is less incised. Minimum offset of the eastern channel, shown by the red arrows, is 16.5km. A smaller offset is ruled out by the absence, south of the fault, of any significant canyon between the upstream and downstream courses. A larger offset of 24 km (orange arrow) appears unlikely because, south of the fault, the next channel to the east with an appropriate width is less incised and too shallow to match the morphology of the downstream offset channel. b, The profile in the south of the fault (grey) has been displaced by 16.5 km to restore the offset of the canyon. Note also the restoration of the overall morphology with similar regional slopes on both side of the main canyon.
Fig 7
Figure 9