Quantification of nonlinear elasticity for the evaluation of submillimeter crack length in cortical bone
Sylvain Haupert, Sandra Guérard, David Mitton, Françoise Peyrin, Pascal Laugier

To cite this version:

HAL Id: hal-01213909
https://hal.archives-ouvertes.fr/hal-01213909
Submitted on 11 Apr 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Quantification of nonlinear elasticity for the evaluation of submillimeter crack length in cortical bone

Sylvain Haupert, Sandra Guérard, David Mitton, Françoise Peyrin, Pascal Laugier

INTRODUCTION

This study focuses on bone microdamage and particularly on the microcracks that are thought to play an important role in bone strength (Burr et al., 1998; Diab and Vashishth, 2005; Hernandez et al., 2014; Yeni and Fyhrie, 2002), toughening mechanisms (Diab and Vashishth, 2005; Fletcher et al., 2014; Vashishth, 2004; Yeni and Fyhrie, 2002) and remodeling (Cardoso et al., 2009; Verborgt et al., 2000). The link between microcracks and bone fracture is not fully elucidated yet (Burr, 2011; Chapurlat and Delmas, 2009; Gupta and Ziopoulos, 2008), though microdamage is suspected to be at the origin of some spontaneous fractures (Shane et al., 2010).

The quantitative assessment of damage characteristics remains challenging. Histomorphometry is the gold standard, although providing only 2-D damage.
characterization (Lee et al., 2003; O’Brien et al., 2007, 2002). New techniques are emerging, such as synchrotron radiation micro-computed tomography (SR-μCT) (Haupert et al., 2014; Muller et al., 2008), nonlinear wave modulation spectroscopy (NWMS) (Ulrich et al., 2007) and dynamic acousto-elastic testing (DAET) (Moreschi et al., 2011; Renaud et al., 2008). These approaches, directly inspired from nonlinear elastic wave spectroscopy (NEWS) methods developed in the field of nondestructive testing of materials, have been reported to be sensitive to fatigue-induced damage in materials such as concrete (Antonacci et al., 2010; Chen et al., 2010; Van den Abeele and De Visscher, 2000), metals (Cantrell, 2006; Cantrell and Yost, 2001; Frouin et al., 1999; Kim et al., 2006, 2004; Nagy, 1998; Sagar et al., 2010; Zagrai et al., 2008) or composites (Aymerich and Staszewski, 2010; Bentahar and El Guerjouma, 2009; Meo et al., 2008; Van den Abeele et al., 2009, 2001b). However, so far, few studies have attempted to quantify microdamage, using nonlinear acoustic methods (Moreschi et al., 2011; Van den Abeele et al., 2009, 2001a). Haupert & al (Haupert et al., 2014) have investigated the relationship between the nonlinear elastic behavior measured by NRUS and fatigue-induced microdamage of cortical bone specimens, taking advantage of micrometer resolution imaging by SR-μCT. With this approach, the study evidenced a significant correlation between the variation of bone microcrack density and the variation of nonlinear elasticity. These findings not only revealed the sensitivity of NRUS to early bone microdamage, but also established the first quantitative relationship between the variation of nonlinear elasticity of bone and variation of a microcrack characteristic.

A complementary vision to the fatigue test is to produce damage locally by initiating and propagating a single crack in a controlled manner. In this study, calibrated specimens of human cortical bone undergoing a toughness test were measured by NRUS and then imaged by SR-μCT. Our main objective was to investigate whether the nonlinear elastic behavior or the elastic modulus are changed after propagation of a localized single crack and to specifically assess the relationship between the nonlinear elastic behavior and the length and the orientation of the crack. This was achieved by comparing NRUS measurements on native and cracked specimens in dry condition. An ancillary objective was to investigate the influence of hydration on the nonlinear response. To this goal, NRUS testing were performed on cracked specimens in dry and wet conditions.

METHODS

Specimen preparation

Fourteen human cortical bone specimens were prepared from the femoral mid-diaphysis of four donors (age = 79.4±3.9). Ethical approval for the collection of samples was granted by the Human Ethics Committee of the Département Universitaire d’Anatomie de Rockfeller (Lyon, France). The tissue donors or their legal guardians provided informed written consent to give their tissue for investigation, in accord with legal clauses stated in the French Code of Public Health. Parallelepiped beams-shaped specimens (50x2x2mm³) were wet machined (Isomet 4000, Buehler GmbH, Düsseldorf, Germany) oriented along the proximal to distal direction of the femur. Then they were notched by a diamond wire saw (ESCL W3000, Chassieu, France) in their middle to form a notch of roughly a quarter of the specimen width (i.e. 500μm). The notch orientation was such that the nominal crack-growth direction for subsequent toughness testing was transverse to the long axis of the specimen, in a direction perpendicular to the osteon alignment. All specimens were defatted for 12 h in a chemical bath of diethylether and methanol (1:1) and stored at -20°C until experiments.

Apparent dry density (ρ_{dv}) was evaluated by measuring the specimen volume and weight. Bone specimens were dried at 37°C during 12h in a climate chamber (Memmert GmbH HCP 108, Schwabach, Germany) at relative humidity below 20% in the presence of desiccators. According to several authors, collagen molecular structure remains intact during drying and rewetting procedures, so that this protocol is believed not to affect bone properties (Currey, 1988; Rho and Pharr, 1999).

Measurement protocol

The experimental protocol began with the NRUS measurements to determine the initial elastic nonlinearity of the dry notched specimens. Previous NRUS measurements on cortical bone (Haupert et al., 2014, 2011; Muller et al., 2008) were all performed on dry specimens. In the present study, we kept measuring bone specimens in dry condition in order to compare the results with previous reports. The specimens were then taken
Corresponding author: sylvain.haupert@upmc.fr

through a toughness test in wet conditions. Crack initiation and growing was carefully controlled to avoid the rupture of the specimens. NRUS measurements were repeated after the toughness test for all the cracked specimens in dry condition (i.e. relative humidity < 20%). Because some studies have evidenced that the nonlinear elastic response of materials such as concrete and rocks is influenced by the level of hydration (Johnson et al., 2004; Payan et al., 2010; Van den Abeele et al., 2002), NRUS measurements were repeated on the cracked specimens in wet condition (i.e. relative humidity > 80%). Finally, the crack length was estimated using SR-µCT. The sequence of measurement steps is illustrated on Fig. 1.

Figure 1: Diagram illustrating the measurement protocol

NRUS measurements

When damaged materials are subjected to a dynamic loading, the elastic modulus decreases as strain amplitude increases. A typical manifestation of this phenomenon, the so-called “softening effect”, is the decreasing of the resonance frequency of the first compression modes (Haupert et al., 2011) when the excitation amplitude increases. In addition, the Q-factor of the resonance peak, defined as the ratio of the resonance frequency to the resonant peak width at half maximum, also decreases for increasing excitation amplitudes. This behavior, which is typical of the non-linear non-classical elastic behavior (Guyer and Johnson, 2009), also known as hysteretic elasticity, of damaged materials appears for strains above approximately 10^{-5} (Johnson and Sutin, 2005). It conveys information about the amount of hysteretic nonlinear units representing the damaged zones in the material.

The principles of NRUS measurements have been extensively described elsewhere (Van den Abeele et al., 2000). The protocol was adapted to achieve high sensitivity to detect small variations of bone nonlinear parameters (Haupert et al., 2011). Briefly, a piezoceramic emitter (Fuji Ceramics Corporation, Yamamiya, Japan) glued on a backlight was bonded at one end of the specimen to ensure it is in free-fix boundary condition for NRUS measurements. Such boundary conditions impose a null displacement (i.e. maximum strain) at the fixed end of the specimen and a maximum displacement (i.e. null strain) at its free end. Each specimen was probed by a swept-sine (M2i.6612, Spectrum GmbH, Grosshansdorf, Germany) encompassing the first resonant mode of the cortical beam (assumed to be pure compression mode under asymmetric boundary conditions). The peak resonance frequency f and energy loss Q were measured as a function of strain applying increasing voltage drive level. Two hysteretic nonlinear elastic (α_f) and dissipative (α_Q) parameters, related to the frequency shift Δf and to the energy loss variation (ΔQ) as a function of strain, respectively, were extracted as follows (Van den Abeele et al., 2000):

\[
\frac{f - f_0}{f_0} = \frac{\Delta f}{f_0} = \frac{\alpha_f}{2} \Delta \varepsilon \quad (1)
\]

\[
\frac{1}{Q} - \frac{1}{Q_0} = \frac{\alpha_Q}{2} \Delta \varepsilon \quad (2)
\]

where f and Q are the resonance frequency and Q-factor at increased strain level, f_0 and Q_0 are the reference values (assumed to be linear) at the lowest drive amplitude, $\Delta \varepsilon$ is the maximal dynamic strain level over a period. The dynamic strain amplitude ε was calculated from the longitudinal particle displacement U at the free end of the specimen measured by a laser vibrometer (LSV 1MHz, SIOS, Ilmenau, Germany):

\[
\varepsilon = \frac{\delta U}{\delta x} = U \ast k = U \ast \frac{2\pi}{4L} \quad (3)
\]

where k is the wave number and L is the specimen length.
Both nonlinear elastic α_1 and dissipative α_0 parameters were evaluated on intact and cracked specimens in dry condition. During NRUS measurements, specimens were kept at fixed temperature (37°C ±0.1°C).

Given the free-fix boundary conditions for NRUS measurements, the resonance mode is such that the length of the specimen L equals a quarter of the wavelength at the corresponding resonance frequency ($\lambda = 4L$). Thus, the sound velocity c_0 can be estimated by:

$$c_0 = 4L \times f_0 \quad (4)$$

As the wavelength λ is much larger than the characteristic dimension of the cross section of the specimens, the wave propagates in the specimens according to the bar mode. Thus, the ultrasonic Young’s modulus (E_u) can be estimated by (Achenbach, 1984; Grimal et al., 2009):

$$E_{us} = \rho_{dry} \times c_0^2 \quad (5)$$

Toughness testing

The piezoceramic emitter attached to the specimen was removed before mechanical testing. To be closer to realistic in-vivo cracking conditions, the notched specimens were hydrated into saline during 12 hours. The wet specimens were monotonically loaded at a displacement rate of 0.05 mm/s with a preload of -4N, using a crack opening (mode I) four-point bending setup. The test was stopped before failure at different crack lengths. The test was conducted on wet specimens in the air, at ambient temperature, using a hydraulic testing machine (INSTRON, 8802, High Wycombe, England) with a 1kN loading cell (accuracy 0.5%) and the internal displacement transducer (accuracy 1%). The specific four-point bending assembly is composed of 6.35 mm diameter roller-bearing with a 40 mm outer span and a pivoting 20 mm inner span. In this configuration, the formation of grooves under the rollers is minimized (Griffin et al., 1997).

3-D synchrotron radiation µCT (SR-µCT)

After NRUS measurements and mechanical testing, the samples were measured by SR-µCT at the European Synchrotron Radiation Facility (Grenoble, France) on beam-line ID19 following the data acquisition protocol extensively presented in previous studies (Haupert et al., 2014; Larrue et al., 2011). The photon energy was 25 KeV and the size of the measured volume was 2.8x2.8x1.96 mm³ with a voxel size of 1.4 µm³.

For crack characterization, a sub volume of interest (VOI) of 2.15x1.75x1.75 mm³, encompassing the notch and the crack over the entire width of the sample, was analyzed.

The VOI was sampled by 2-D longitudinal cross-sections regularly spaced with an interval of 350µm (Fig. 2). Each cross-section was obtained by averaging a stack of 10 adjacent 1.4µm-thick slices in order to decrease the noise level and improve the contrast between the crack and the bone matrix (Fig. 2).

For crack length determination, only the main crack starting at the notch was considered, while all peripheral microcracks that were not connected to the main crack were removed to avoid including bias in the analysis. Crack length was manually determined by approximating the main crack as a succession of line segments. The total crack length was estimated by summing the length of the line segments. A line segment n was represented by a vector of length L_n and angle θ_n. The total mean crack length (Cr.Le [µm]) was the average of the total crack lengths measured on six different longitudinal sections regularly sampling the VOI. The mean crack angle θ is estimated in a coordinate system composed by the osetone direction (x-axis) and the notch direction (y-axis). It corresponds to the vector orientation delimited by both extremities of the main crack. Lengths (L_n) and angles (θ_n) were measured using the software ImageJ (NIH, USA) with the plugin NeuronJ (Meijering, 2010). The length of the cracks projected in the notch direction, i.e. perpendicular to the ultrasound wave propagation, is Cr.Le.Proj. (Fig.3). Cr.Le.Proj is the sum of the length projected on y-axis of all the line segments of the crack at 90° ($L_{n,proj} = L_n \times \sin (\theta_n)$) (Fig.3).

The bone surface was computed as the total area of bone section, including the pores (Harversian and Volkmann canals, and resorption cavities) (Lee et al., 2000; Zioupos, 2001). The apparent bone porosity corresponds to pores appearing as dark pixels on SR-µCT cross-section images. The pores, visible as dark regions, were segmented using a low threshold value chosen heuristically, following by an opening on the binary image to remove isolated pixels. Cortical porosity was derived as the ratio of the summed area of all pores to the total bone area, including pores.
Corresponding author: sylvain.haupert@upmc.fr

Figure 2: Diagram illustrating the process leading to an equivalent histomorphometric 2-D transverse cross-section image from 3-D reconstructed bone volumes acquired by SR-µCT.

Data analysis

Matlab 7.8 with statistics toolbox 7.6 (Mathworks, Natick, MA, USA) was used for statistical analyses. The difference between measurements (α_f and α_Q) before and after the mechanical testing, hydrated or dry, were assessed with a non-parametric Wilcoxon signed rank test on nonlinear parameters (α_f and α_Q). The relationship between nonlinear parameters (α_f and α_Q) and crack length (total Cr.Le and projected Cr.Le.Proj) was assessed using the Pearson correlation coefficient after checking for the normality of the parameters distributions. (Shapiro-Wilk test). The significance level was measured using a p-value p<0.05.

RESULTS

Evaluation of the crack length

The characteristics measured for all the specimens are displayed in Table I. The total length of the cracks varies from 6µm to 2277µm while the mean angle of the cracks (θ) varies from θ =13° to 81° (0° means an alignment with osteon direction) with a mean value of 27±19°. The projected length (Cr.Le.Proj) of the cracks varies from 6µm to 664µm.

Note that two specimens (#2 and #5) were fractured during the toughness test therefore data analysis was performed with twelve specimens.
Figure 3: (a) Decomposition of the main crack into 5 vectors with lengths L_n and angles θ_n. The crack length $Cr.Le = L_1 + L_2 + L_3 + L_4 + L_5$. The mean crack angle is estimated in a coordinate system composed by the osteon direction (x axis) and the notch direction (y axis). It corresponds to the vector orientation between both extremities of the main crack. (b) The orthogonal projection of the main crack on the transverse axis corresponds to the sum of the 5 vectors projected on the same axis. $Cr.Le.Proj = L_1.proj + L_2.proj + L_3.proj + L_4.proj + L_5.proj$ (with $L_n.proj = L_n \times \sin (\theta_n)$).

NRUS

We remind that the measurement precision of NRUS was found to be 16.2% for α_f and 14.2% for α_Q in previously reported results (Haupert et al., 2011). The initial values of α_f and α_Q were remarkably similar for all the specimens and vary within a relatively narrow range: $\alpha_f = -5.5\pm1.5$ (min: -4.4; max: -10.0) and $\alpha_Q = 1.8\pm0.6$ (min: 0.7; max: 3.1). After crack propagation, the nonlinear elastic coefficient α_f has increased significantly ($p<0.006$), with α_f values ranging from -4.0 to -296.7 (Fig. 4a). Two specimens manifested a huge increase of α_f (#1: α_f varies from -4.9 to -296.7; #8: α_f varies from -5.8 to -120.5). Two specimens (#3, #11) showed an insignificant change of α_f, compared to the technique precision.

In contrast, the values of α_Q after crack propagation, ranging between 1.1 to 3.5, remained close to the initial values and the variation did not reach a significant level (Fig. 4b). The dissipative nonlinear α_Q could not be extracted for two specimens (#1 and #8). Indeed, in these two cases, there was no linear dependence between the strain level ε and the energy loss variation ΔQ^{-1} as expected from Eq. 2. For high strain level above $\varepsilon = 10^{-4}$, the variation ΔQ^{-1} saturated. For these reasons, these two specimens were removed from the statistical analysis.

Finally, a statistically significant difference was found between both nonlinear coefficients ($\alpha_f p=0.002; \alpha_Q p=0.01$) between measurements achieved on cracked specimens under hydrated or dehydrated conditions, suggesting that hydration has an effect on nonlinear
elasticity. Nonlinearity was higher under hydrated condition.

Both nonlinear hysteretic parameters measured after crack propagation, in dry and wet conditions, were significantly correlated (hydrated specimens: R=0.78 p=0.007; dehydrated specimens R=0.85, p=0.002) (Fig. 5).

The nonlinear elastic parameter α_f was significantly correlated to Cr.Le (dehydrated R= 0.79 p<0.01: hydrated R= 0.84 p<0.005) and to Cr.Le.Proj (dehydrated R= 0.88 p<10$^{-3}$; hydrated R= 0.94 p<10$^{-4}$) (Fig. 6). Similarly, the nonlinear dissipative parameter α_Q was significantly correlated to Cr.Le (dehydrated R= 0.71 p=0.02: hydrated R= 0.79 p<0.005) and to Cr.Le.Proj (dehydrated R= 0.76 p=0.01; hydrated R= 0.76 p=0.01).

There was no significant difference between the values of the Young’s modulus (E_{US}) measured before or after crack propagation.

Table I: Apparent density (ρ_{dry}), porosity, Young’s modulus E_{US}, total mean crack length Cr.Le, mean angle, projected mean crack length Cr.Le.Proj, nonlinear elastic α_f and dissipative α_Q parameters before and after the toughness test and in dry and wet conditions.

specimen	ρ_{dry} [g/cm3]	Porosity [%]	Initial E_{US} [GPa]	Final E_{US} [GPa]	Cr.Le [µm]	angle [°]	Cr.Le.Proj [µm]	Initial dry α_f	Final dry α_f	Final wet α_f	Initial dry α_Q	Final dry α_Q	Final wet α_Q	
#1	1909	6.2	22.6	21.4	2277	17	664	-4.9	-296.7	-217.6	1.8	-	-	
#2	1987	22.8	failure	18.8	19.8	65	14	16	-5.5	-4.0	-6.2	2.1	2.0	1.5
#3	1778	11.0	21.6	22.2	208	33	112	-6.3	-10.8	-19.7	2.2	2.7	3.7	
#4	1867	7.8	21.0	failure	21.0	failure	-5.0	failure	1.4	failure				
#5	1856	21.0	failure	22.3	22.2	341	38	209	-4.1	-21.3	-21.5	1.5	2.7	4.0
#6	1886	7.1	21.0	20.6	738	26	318	-4.4	-20.2	-37.0	1.7	3.5	6.7	
#7	1847	8.5	19.6	19.7	917	20	315	-5.8	-120.5	-119.1	0.7	-	-	
#8	1759	11.7	20.8	19.8	104	21	37	-4.5	-6.3	-14.6	1.6	1.9	4.3	
#9	1744	12.2	20.8	19.9	924	42	128	-7.1	-11.5	-17.5	1.5	2.4	2.0	
#10	1635	16.2	20.4	17.4	738	26	318	-4.5	-6.3	-14.6	1.6	1.9	4.3	
#11	1762	11.6	20.4	21.0	6	81	6	-5.0	-5.6	-7.4	2.6	1.1	2.8	
#12	1744	12.2	20.4	21.3	475	25	203	-4.4	-11.8	-28.7	1.6	1.8	4.5	
#13	1877	7.4	21.5	21.3	547	13	126	-5.3	-16.0	-23.0	2.2	2.6	4.3	
#14	1871	7.6	21.9	21.5	618	14	147	-10.0	-14.5	-17.8	3.1	2.6	4.3	

Figure 4: Nonlinear elastic α_f (a) and dissipative α_Q (b) before and after crack propagation, measured in dry and wet conditions. For the sake of clarity, the two outliers (#1 and #8) are not represented.
FIGURE 5: Correlation between the nonlinear elastic coefficient α_f and the nonlinear dissipative coefficient α_Q measured in dry and wet cortical bone specimens.

DISCUSSION

To our best knowledge, this study represents the first investigation of the variations of linear (E_{us}) and nonlinear hysteretic elastic parameters (α_f, α_Q) of human cortical bone specimens after a crack initiation and propagation experiment. Similar studies have been reported, but in metal or in concrete (Courtney et al., 2008; Donskoy et al., 2001; Duffour et al., 2006; Straka et al., 2008; Zardan et al., 2010). Linear and nonlinear measurements of elastic properties were achieved on each specimen before and after crack propagation, so that each specimen was its own control. The results evidence an increase of the nonlinear hysteretic elastic coefficient α_f of the bone specimens after crack propagation in agreement with the results reported on different materials (Courtney et al., 2008; Duffour et al., 2006). Furthermore, we found a significant correlation between crack length and the nonlinear parameters α_f and α_Q, which is consistent with the recent results reported by Zardan et al. (Zardan et al., 2010) in concrete and Donskoy et al. in steel (Donskoy et al., 2001).

In contrast, the crack propagation has no measureable effect on the elastic modulus E_{us}. This suggests that the nonlinear hysteretic elastic behavior is more sensitive to the presence of a single crack than linear elasticity corroborating the result found in concrete by Zardan et al. (Zardan et al., 2010).

The values of α_f and α_Q measured in the specimens before crack initiation and propagation are in agreement with those observed in previous experiments conducted on human or bovine dry cortical bone (Haupert et al., 2014, 2011). However, the damaged specimens of the present study, with a single crack, exhibit values of α_f that are far higher than those measured in damaged specimens with an accumulation of non-localized microcracks occurring after a fatigue test (Haupert et al., 2014). During the fatigue test conducted in our previous study, the damage remained at an early stage of development resulting in the accumulation of tiny microcracks with a lower nonlinear responses compared to the current specimens. We hypothesize that the total volume of the accumulated microcracks, within which the nonlinear mechanisms may occur, is probably much less extended than the volume of a region damaged with a large crack. Future studies are required to gain insight into the role played by the volume occupied by cracks on the nonlinear elastic behavior.

FIGURE 6: Correlation between the crack length (total Cr.Le (a) or projected Cr.Le.Proj (b)) and the nonlinear elastic coefficient α_f measured in dry and wet cortical bone specimens.

We assume that the activation of the nonlinear elastic behavior by crack opening/closing processes is larger when the crack is perpendicular to the direction of propagation of the compression wave. As a consequence, the correlation of the nonlinear elastic behavior is expected to be stronger.
with the length of crack portions perpendicular to the wave direction than with the total crack length. Although our data showed a trend to a higher correlation of α_f with Cr.Le.Proj than with Cr.Le, the difference did not reach a statistically significant level (Z<1.65, Steiger’s Z-test for correlated correlations (Meng et al., 1992)), probably because of the weak statistical power of the test due to the limited number of specimens included in the study. A larger sample size is needed to confirm this assumption.

The nonlinear elastic behavior was investigated under different hydration conditions upon the same set of cracked specimens. Both nonlinear hysteretic parameters increase after bone hydration (Fig. 4). The influence of hydration was also studied in rocks (Johnson et al., 2004; Tutuncu et al., 1998; Van den Abeele et al., 2002; Zinszner et al., 1997), woods (Derome et al., 2011) and concrete (Payan et al., 2010). In rocks, the nonlinear elastic behavior increases as the water content increases (Johnson et al., 2004) contrary to concrete (Payan et al., 2010). These observations are interpreted based on different mechanisms, such as 1) capillarity forces due to water (non-viscous) (Van den Abeele et al., 2002), 2) adhesion forces due to a viscous liquid between grain boundaries or cracks lips (Nazarov, 2001), or 3) fluid flow that modify the diameter of tubes where the fluid moves (Nazarov and Radostin, 2008). Whether such mechanisms may exist in cortical bone which can be considered as a matrix pervaded by a porous network filled with viscous fluids, in the specific case of bone, collagen with hydration-dependent elastic properties (Rho and Pharr, 1999) may be another factor that has to be considered. From an experimental point of view, this result has important consequence as it suggests that humidity must be strictly controlled during measurement.

The nonlinear dissipative parameter α_q was measured concurrently with the nonlinear elastic parameter α_f. We found a significant correlation between α_f and α_q in the damaged specimens when they were measured in dry or in wet conditions. Such a correlation between α_f and α_q has already been described in various damaged material (Van den Abeele et al., 2009, 2001a; Van den Abeele and De Visscher, 2000). Like Van Den Abeele et al (Van den Abeele et al., 2009), we report a lower sensitivity of α_q to crack length, in comparison to α_f.

Nonlinear resonant ultrasound spectroscopy is suitable for a multimodal approach (Rivière et al., 2010) as each resonant mode generates a different strain field. In this report, we focus the analysis of the first compression mode. But other resonant modes can be measured. For example, we measured also the second and third compression modes. The results obtained with these modes were similar to the results obtained by processing the first compression mode (data not shown). These results are consistent with the theory (Liu et al., 2010; Van den Abeele, 2007). Indeed, the value of the measured nonlinear parameter depends on the local strain field: if the crack is located in a node of the strain field, the crack would not be excited by opening/closing and no nonlinear hysteretic behavior would be measured. In fixed-free boundary conditions, the strain field is identical for the three modes in the center of the specimens where the crack is localized. It means that the value of the nonlinear parameter must be the same for the three modes. Different nonlinear elastic behavior would be expected under symmetric boundary conditions (free-free or fixed-fixed) as the local strain fields may vary depending on the mode (Liu et al., 2010; Van den Abeele, 2007; Van den Abeele et al., 2004).

Although NRUS most often exploits the first compression mode (or Pochammer-Chree mode for cylinder), other modes have also been exploited, such as flexural mode (Van den Abeele et al., 2009, 2001b). In this study, the nonlinear hysteretic behavior of our specimens has also been investigated using the flexural mode (data not shown). The nonlinear hysteretic parameters extracted from this mode were similar to those derived from the compression mode. Indeed, in case of flexural modes, shear stresses exist but remain weak such that they are generally neglected. This may explain why the nonlinear elastic parameters measured in compression and flexural modes are similar, as we observed it in this study. They reflect mostly the nonlinear longitudinal elastic behavior of the specimens. For both compression and flexural modes, the activation of the nonlinear hysteretic behavior is mainly controlled by opening/closing mechanism due to the longitudinal traveling wave, while the friction mechanisms due to shear stresses remaining too small. In order to investigate selectively the sensitivity of shear elastic coefficients to the nonlinear hysteretic behavior, one would have to perform NRUS measurements with torsion resonant modes for instance.

CONCLUSION

The results described in this study provide new insights into the nonlinear elastic behavior of human cortical bone. The proposed experimental protocol allowed the concurrent assessment of acoustic nonlinear parameters reflecting hysteretic elasticity of human cortical bone specimens subject to a crack initiation and propagation. SR-µCT was used to assess crack lengths and orientations at the end of the toughness test. Results showed a significant correlation between the nonlinear hysteretic elasticity of bone and crack length. NRUS is a promising minimally invasive approach for assessing microdamage in situ. Although the results relate primarily to the characterization of bone, they can be useful for other materials such as metals, composites or concrete.

9

Corresponding author: sylvain.haupert@upmc.fr
ACKNOWLEDGEMENTS

The authors are grateful to G. Renaud and J. Rivière for their helpful comments and suggestions during the preparation of the experiments, as well as P.A. Johnson, Los Alamos National Laboratory, NM, USA for fruitful discussions and E. Boller, M. Zuluaga and M. Langer for help during the ESRF experiment performed in the framework of LTP MD431.

This research was supported by the Agence Nationale pour la Recherche (ANR), France (Grant BONUS_07BLAN0197).

REFERENCES

Corresponding author: sylvain.haupert@upmc.fr

Crack detection technique using bispectral analysis. NDT E Int. 41, 223–234.

Van den Abeele, K., Carmeliet, J., Ten Cate, J.A., Johnson, P.A., 2000. Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage,

Corresponding author: sylvain haupert@upmc.fr