J. Bibette, F. Leal-calderon, and P. Poulin, Emulsions: basic principles, Rep Prog Phys, vol.62, pp.696-1033, 1999.

M. Chappat, Some applications of emulsions, Colloids Surf A, vol.91, pp.57-77, 1994.

D. S. Tawfik and A. D. Griffiths, Man-made cell-like compartments for molecular evolution, Nat Biotechnol Jul, vol.16, issue.7, pp.652-658, 1998.

T. Valerie, K. Bernard, T. , G. Andrew, and D. , Droplets as microreactors for high-throughput biology, ChemBioChem, vol.8, issue.3, pp.263-72, 2007.

J. Lederberg, A simple method for isolating individual microbes, J Bacteriol, vol.68, pp.258-267, 1954.

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, Dynamic pattern formation in a vesicle-generating microfluidic device, Phys Rev Lett, vol.86, issue.18, pp.4163-4169, 2001.

B. Jean-christophe, M. Oliver, J. , T. Valerie, R. Michaël et al.,

A. Jeremy, J. Link-darren, R. , W. David, A. et al., Fluorescenceactivated droplet sorting (fads): efficient microfluidic cell sorting based on enzymatic activity, Lab Chip, vol.9, issue.13, pp.1850-1858, 2009.

A. Adam, R. , T. Julian, and W. Marie, Weitz David A. Patterning microfluidic device wettability using flow confinement, Lab Chip, 2010.

P. Craig, H. Stephan, and S. Ralf, Controlled electrocoalescence in microfluidics: targeting a single lamella, Appl Phys Lett, vol.89, issue.13, pp.134101-134104, 2006.

S. Ralf, B. Martin, P. Thomas, and H. Stephan, Dropletbased microfluidics, Rep Prog Phys, vol.75, p.16601, 2012.

B. Jean-christophe, Surfactants in droplet-based microfluidics, Lab Chip, vol.12, issue.3, pp.422-455, 2012.

K. Bernard, T. , B. Jean-christophe, and T. Valerie, Griffiths Andrew D. Miniaturizing chemistry and biology in microdroplets, Chem Commun, issue.18, pp.1773-88, 2007.

T. Shia-yen and L. Robert, Hung Lung-Hsin, Lee Abraham P. Droplet microfluidics, Lab Chip Feb, vol.8, issue.2, pp.198-220, 2008.

T. Ashleigh, B. , C. Fabienne, S. Yolanda, F. Martin et al., Huck Wilhelm TS. Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology, Angew Chem Int Ed, vol.49, pp.5846-68, 2010.

G. Mira, T. , R. Assaf, H. John, A. et al., Droplet microfluidics for high-throughput biological assays, Lab Chip, vol.12, pp.2146-55, 2012.

L. Sjostrom-staffan, B. Yunpeng, H. Mingtao, L. Zihe, and N. Jens, Joensson Haakan N, Andersson Svahn Helene. High-throughput screening for industrial enzyme production hosts by droplet microfluidics, Lab Chip, vol.14, issue.4, pp.806-819, 2014.

A. Jeremy, J. , A. Eugene, A. Adam, R. et al., Ultrahigh-throughput screening in drop-based microfluidics for directed evolution, Proc Natl Acad Sci, vol.107, issue.9, pp.4004-4013, 2010.

P. Deniz, S. Yousr, B. Jean-christophe, L. C. Delphine, M. Linas et al., Quantitative and sensitive detection of rare mutations using droplet-based microfluidics, Lab Chip, vol.11, pp.2156-66, 2011.

M. Oliver, J. El-harrak-abdeslam, M. Thomas, B. Jean-christophe, F. Lucas et al., Link Darren R, Griffiths Andrew D. High-resolution doseresponse screening using droplet-based microfluidics, Proc Natl Acad Sci, vol.109, issue.2, pp.378-83, 2012.

J. Lim, O. Caen, J. Vrignon, M. Konrad, V. Taly et al., Parallelized ultra-high throughput microfluidic emulsifier for multiplex kinetic assays, Biomicrofluidics, vol.9, p.341101, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01179083

R. Liat, F. Lin, C. Yunhan, and S. Ryan, Tang Sindy KY. Break-up of droplets in a concentrated emulsion flowing through a narrow constriction, Soft Matter, vol.10, issue.3, pp.421-451, 2014.

N. Bremond, A. R. Thiam, and J. Bibette, Decompressing emulsion droplets favors coalescence, microfluidics, droplet flow is shown to be a source of destabilisation of emulsions: counterintuitively, it is not when droplet approach that they coalesce but rather when they start to separate, vol.100, p.24501, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00264516

N. Bremond, H. Domejean, and J. Bibette, Propagation of drop coalescence in a twodimensional emulsion: a route towards phase inversion, Phys Rev Lett, p.214502, 2011.

C. Fabienne, O. Luis, F. , W. Graeme, T. Ashleigh et al., Controlling the retention of small molecules in emulsion microdroplets for use in cell-based assays, Anal Chem Apr, vol.81, issue.8, pp.3008-3024, 2009.

B. Yunpeng, H. Ximin, L. Dingsheng, P. Santoshkumar, N. et al., Huck Wilhelm TS. A double droplet trap system for studying mass transport across a droplet-droplet interface, Lab Chip, vol.10, issue.10, pp.1281-1286, 2010.

C. Wu-nan, Z. Fabienne, O. Yonggang, E. John, A. Chris et al., Management of the diffusion of 4-methylumbelliferone across phases in microdroplet-based systems for in vitro protein evolution, Electrophoresis, vol.31, issue.18, pp.3121-3129, 2010.

W. Gabrielle, M. El-harrak-abdeslam, S. Estelle, M. Olivier, J. Oliver et al., New generation of amino coumarin methyl sulfonate-based fluorogenic substrates for amidase assays in droplet-based microfluidic applications, Anal Chem, vol.83, issue.8, pp.2852-2859, 2011.

A. Shelley, L. , and B. Nathalie, Stone Howard A. Formation of dispersions using "flow focusing" in microchannels, Appl Phys Lett, vol.82, issue.3, pp.364-370, 2003.

D. Rémi, C. Kayi, S. , B. Charles, and N. , Droplet microfluidics driven by gradients of confinement, Proc Natl Acad Sci, vol.110, issue.3, pp.853-861, 2013.

N. Takasi and T. Torii, Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles, Lab Chip, vol.8, issue.2, pp.287-93, 2008.

J. Shim, R. T. Ranasinghe, C. A. Smith, S. M. Ibrahim, F. Hollfelder et al., Ultrarapid generation of femtoliter microfluidic droplets for singlemolecule-counting immunoassays, ACS Nano, vol.7, pp.5955-64, 2013.

L. Marie, A. Faris, G. Andrew, D. , and T. Patrick, Droplet-based microfluidics at the femtolitre scale, Lab Chip, vol.15, issue.3, pp.753-65, 2015.

F. Jin, R. Balasubramaniam, and K. J. Stebe, Surfactant adsorption to spherical particles: the intrinsic length scale governing the shift from diffusion to kinetic-controlled mass transfer, J Adhes, vol.80, pp.773-96, 2004.

H. Steven, D. , C. Joao, T. , G. William et al., Amis Eric J. Microfluidic interfacial tensiometry. Appl Phys Lett, vol.87, p.81905, 2005.

T. Cabral-joão, H. Steven, and D. , Microfluidic approach for rapid multicomponent interfacial tensiometry, Lab Chip Mar, vol.6, issue.3, pp.427-463, 2006.

M. Jeffrey, D. , H. Steven, and D. , Mass transfer and interfacial properties in two-phase microchannel flows, New J Phys, vol.11, p.115005, 2009.

J. D. Martin, J. N. Marhefka, K. B. Migler, and S. D. Hudson, Interfacial rheology through microfluidics, Adv Mater, vol.23, pp.426-458, 2011.

V. Brosseau-quentin, B. Jérémy, and . Jean-christophe, Microfluidic dynamic interfacial tensiometry (?DIT), Soft Matter, vol.10, issue.17, pp.3066-76, 2014.

M. Trotta, M. R. Gasco, and S. Morel, Release of drugs from oil-water microemulsions, J Control Release, vol.10, pp.237-280, 1989.

T. Koizumi and W. I. Higuchi, Analysis of data on drug release from emulsions ii, J Pharm Sci, vol.57, pp.87-92, 1968.

A. R. Thiam, N. Bremond, and J. Bibette, From stability to permeability of adhesive emulsion bilayers, Langmuir, vol.28, pp.6291-6299, 2012.

A. J. Webster and M. E. Cates, Stabilization of emulsions by trapped species, Langmuir, vol.14, pp.2068-79, 1998.

L. Boitard, D. Cottinet, C. Kleinschmitt, N. Bremond, J. Baudry et al., Monitoring single-cell bioenergetics via the coarsening of emulsion droplets, Proc Natl Acad Sci, vol.109, pp.7181-7187, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00760719

G. Caldero, M. J. Garcia-celma, C. Solans, M. Plaza, and R. Pons, Influence of composition variables on the molecular diffusion from highly concentrated water-in-oil emulsions (gel-emulsions), Langmuir, vol.13, pp.385-90, 1997.

G. Caldero, M. J. Garcia-celma, C. Solans, M. J. Stebe, J. C. Ravey et al., Diffusion from hydrogenated and fluorinated gel-emulsion mixtures, Langmuir, vol.14, pp.6840-6845, 1998.

G. Caldero, M. J. Garcia-celma, C. Solans, and R. Pons, Effect of ph on mandelic acid diffusion in water in oil highly concentrated emulsion, Langmuir, vol.16, pp.1668-74, 2000.

V. Babak, M. J. Stebe, and N. Fa, Physico-chemical model for molecular diffusion from highly concentrated emulsions, Mendeleev Commun, vol.13, pp.254-260, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00085954

N. Fa, V. G. Babak, and M. J. Stebe, The release of caffeine from hydrogenated and fluorinated gel emulsions and cubic phases, Colloids Surf A, vol.243, pp.117-142, 2004.

S. Patrick, A. , C. Aram, J. , W. Westbrook et al., Sugar additives improve signal fidelity for implementing two-phase resorufin-based enzyme immunoassays, Langmuir, vol.30, issue.23, pp.6637-6680, 2014.

S. Rocca, M. J. Garcia-celma, G. Caldero, R. Pons, C. Solans et al., Hydrophilic model drug delivery from concentrated reverse emulsions, Langmuir, vol.14, pp.6840-6845, 1998.

R. L. Scott, The solubility of fluorocarbons, J Am Chem Soc, vol.70, issue.12, pp.4090-4093, 1948.

J. H. Simons and M. J. Linevsky, The solubility of organic solids in fluorocarbon derivatives, J Am Chem Soc, vol.74, pp.4750-4751, 1952.

L. Meritxell, C. Gabriela, M. García-celma, and P. A. José, New insights on the mechanisms of drug release from highly concentrated emulsions, J Colloid Interface Sci Mar, vol.394, pp.337-382, 2013.

T. S. Dunstan and P. Fletcher, Compartmentalization and separation of aqueous reagents in the water droplets of water-in-oil high internal phase emulsions, Langmuir, vol.27, pp.3409-3424, 2011.

E. Overton, Über die allgemeinen osmotischen eigenschaften der zelle, Vierteljahrsschr Naturforsch Ges Zürich, vol.44, pp.88-135, 1899.

Q. Al-awqati, One hundred years of membrane permeability: does Overton still rule?, Nat Cell Biol, vol.1, pp.201-203, 1999.

Y. Skhiri, P. Gruner, S. Semin, Q. Brosseau, D. Pekin et al., Surfactant is shown to control the transport of small organic molecules in water in fluorocarbon emulsions. Proteins in the dispersed phase are slowing down the transport because they act on the partitionning coefficient between both phases, Soft Matter, vol.8, pp.10618-10645, 2012.

P. Poulin and J. Bibette, Adhesion of water droplets in organic solvents, Langmuir, vol.14, pp.6341-6344, 1998.

A. Finkelstein, Water movement through lipid bilayers, pores, and plasma membranes: theory and reality, 1987.

J. F. Nagle and H. L. Scott, Lateral compressibility of lipid mono-and bilayers. Theory of membrane permeability, Biochim Biophys Acta, vol.513, pp.236-279, 1978.

S. Paula, A. G. Volkov, A. N. Van-hoek, T. H. Haines, and D. W. Deamer, Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness, Biophys J, vol.70, pp.339-387, 1996.

L. David and M. , Perspective on fluorocarbon chemistry, J Org Chem, vol.69, issue.1, pp.1-11, 2004.

. O'hagan, Understanding organofluorine chemistry. An introduction to the C-F bond, Chem Soc Rev, vol.37, pp.308-327, 2007.

J. E. Brady and P. W. Carr, Perfluorinated solvents as nonpolar test systems for generalized models of solvatochromic measures of solvent strength, Anal Chem, vol.54, pp.1751-1758, 1982.

J. M. Vincent, Noncovalent associations in fluorous fluids, J Fluor Chem, vol.129, pp.903-912, 2008.

J. A. Gladysz, D. P. Curran, and . Horváth, Handbook of fluorous chemistry

. Sons, , 2005.

M. Munson, Solutions of fluorochemicals and hydrocarbons, J Phys Chem, vol.68, pp.796-801, 1964.

P. Lo-nostro, Phase separation properties of fluorocarbons, hydrocarbons and their copolymers, Adv Colloid Interface Sci, vol.56, pp.245-87, 1995.

M. A. Hamza, G. Serratrice, M. J. Stebe, and J. J. Delpuech, Solute-solvent interactions in perfluorocarbon solutions of oxygen. An NMR study, J Am Chem Soc, vol.103, pp.3733-3741, 1981.

F. Gollan and L. C. Clark, Organ perfusion with fluorocarbon fluid, Physiologist, vol.9, p.191, 1966.

R. K. Andjus, K. Suhara, and N. A. Sloviter, An isolated, perfused rat brain preparation, its spontaneous and stimulated activity, J Appl Physiol, vol.22, pp.1033-1042, 1967.

R. P. Geyer, Fluorocarbon-polyol artificial blood substitutes, N Engl J Med, vol.289, pp.1077-82, 1973.

C. Jenifer, L. Diana, B. Jean-christophe, E. Abdeslam, M. Oliver et al., Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms, Chem Biol, vol.15, issue.5, pp.427-464, 2008.

A. Paul, T. Pierre-louis, M. Jean-louis, A. Charles-n-baroud, and . Alexandrou, Sickling of red blood cells through rapid oxygen exchange in microfluidic drops, Lab Chip, vol.19, pp.2505-2517, 2010.

J. G. Riess, J. L. Dalfors, G. K. Hanna, D. H. Klein, M. P. Krafft et al., Development of highly fluid, concentrated and stable fluorocarbon emulsions for diagnosis and therapy, Biomater Artif Cell Immobil Biotechnol, vol.20, issue.2-4, pp.839-881, 1992.

M. P. Krafft, M. Postel, J. G. Riess, Y. Ni, T. J. Pelura et al., Drop size stability assessment of fluorocarbon emulsions, Biomater Artif Cell Immobil Biotechnol, vol.20, issue.2-4, pp.865-873, 1992.

J. G. Riess and M. P. Krafft, Advanced fluorocarbon-based systems for oxygen and drug delivery, and diagnosis, Artif Cells Blood Substit Immobil Biotechnol, vol.25, issue.1-2, pp.43-52, 1997.

J. G. Riess and M. P. Krafft, Fluorinated materials for in vivo oxygen transport (blood substitutes), diagnosis and drug delivery, Biomaterials Aug, vol.19, issue.16, pp.1529-1568, 1998.

J. N. Lee, C. Park, and G. M. Whitesides, Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices, Anal Chem, vol.75, pp.6544-54, 2003.

K. L. O'neal and S. G. Weber, Molecular and ionic hydrogen bond formation in fluorous solvents, J Phys Chem B, vol.113, pp.149-58, 2009.

J. M. Vincent, A. Rabion, V. K. Yachandra, and R. H. Fish, Fluorous biphasic catalysis: complexation of 1, 4, 7?[c8f 17 (ch 2 ) 3 ] 3 -1,4,7-triazacyclononane with [m(c 8 f 17 (ch 2 ) 2 c0 2 ) 2 ] (m = mn, co) to provide perfluoroheptane-soluble catalysts for alkane and alkene functionalization in the presence of t-BuOOH and 0 2, Angew Chem, vol.36, pp.2346-2355, 1997.

G. Pozzi, M. Cavazzini, S. Quincy, and S. Fontana, Metal complexes of a tetraazacyclotetradecane bearing highly fluorinated tails: new catalysts for the oxidation of hydrocarbons under fluorous biphasic conditions, Tetrahedron Lett, vol.38, pp.7605-7613, 1997.

C. Palomo, J. M. Aizpurua, I. Loinaz, M. J. Fernandez-berridi, and L. Irusta, Scavenging of fluorinated N,N?-dialkylureas by hydrogen binding: a novel separation method for fluorous synthesis, Org Lett, vol.3, issue.15, pp.2361-2365, 2001.

V. Doan, R. Köppe, and P. H. Kasai, Dimerization of carboxylic acids and salts: an IR study in perfluoropolyether media, J Am Chem Soc, vol.119, pp.9810-9815, 1997.

M. Remko, A theoretical (PCILO) study of hydrogen bonding in carboxylic acids and their adducts with pyridine, Adv Mol Relax Interact Process, vol.15, pp.193-206, 1979.

V. Peddy and N. Ashwini, Lynch Vincent M. Recurrence of carboxylic acid-pyridine supramolecular synthon in the crystal structures of some pyrazinecarboxylic acids, J Org Chem, vol.67, issue.2, pp.556-65, 2002.

K. L. O'neal, S. Geib, and S. G. Weber, Extraction of pyridines into fluorous solvents based on hydrogen bond complex formation with carboxylic acid receptors, Anal Chem, vol.79, pp.3117-3142, 2007.

R. Correa-da-costa, T. Buffeteau, D. Guerzo, A. Mcclenaghan, N. D. Vincent et al., Reversible hydrocarbon/perfluorocarbon phase-switching of rubipy32+ driven by supramolecular heteromic fluorous carboxylate-carboxylic acid h-bond interactions, Inter molecular association between solutes in one phase and surfactant in the other phase is a mechanism strongly affecting the partitioning between phases, vol.47, pp.8250-8252, 2011.

J. R. Burns and C. Ramshaw, The intensification of rapid reactions in multiphase systems using slug flow in capillaries, Lab Chip Sep, vol.1, issue.1, pp.10-15, 2001.

G. Kralj-jason, S. Martin, A. , J. Klavs, and F. , Surfactant-enhanced liquid-liquid extraction in microfluidic channels with inline electric-field enhanced coalescence, Lab Chip, vol.5, issue.5, pp.531-536, 2005.

M. Kumemura and T. Korenaga, Quantitative extraction using flowing nano-liter droplet in microfluidic system, Anal Chim Acta, vol.558, pp.75-84, 2006.

J. Jan-willi, W. Marian, K. Gerri, H. Jonathon, and S. Thomas, Platzman Ilia, Spatz Joachim P. Key factors for stable retention of fluorophores and labeled biomolecules in droplet-based microfluidics, Anal Chem Feb, vol.87, issue.4, pp.2063-2070, 2015.

Y. Chen, A. W. Gani, and S. Tang, Characterization of sensitivity and specifity in leaky droplet-based assays, Soft Matter, vol.12, pp.5093-103, 2012.

G. Chhavi and C. Anuj, Mutharasan Raj, Srinivas Sangly P. Measurement and modeling of diffusion kinetics of a lipophilic molecule across rabbit cornea, Pharm Res, vol.27, issue.4, pp.699-711, 2010.

P. Ming, R. Liat, K. Minkyu, X. Manqi, L. Edith et al., Fluorinated pickering emulsions impede interfacial transport and form rigid interface for the growth of anchorage-dependent cells, ACS Appl Mater Interfaces, vol.6, issue.23, pp.21446-53, 2014.

P. Ilia, J. Jan-willi, P. Spatz, and J. , Synthesis of nanostructured and biofunctionalized water-in-oil droplets as tools for homing t cells, J Am Chem Soc Mar, vol.135, issue.9, pp.3339-3381, 2013.

C. Holtze, A. C. Rowat, J. J. Agresti, J. B. Hutchison, F. E. Angile et al., Biocompatible surfactants for water-in-fluorocarbon emulsions, Lab Chip, vol.8, issue.10, pp.1632-1641, 2008.

R. Scanga, R. Nassar, B. Miller, H. Gang, X. Li et al., Fluorinated amphiphilic block copolymers to stabilize water-in-fluorocarbon emulsions, Polym Prepr, vol.50, p.148, 2009.

H. Daniel, J. , P. Richard, J. , C. Ying et al., Fluorosurfactants for microdroplets: interfacial tension analysis, J Colloid Interface Sci, vol.350, issue.1, pp.205-216, 2010.

M. Wadim, L. , N. Simon, J. Mohammad, R. et al., Uniform amplification of phage display libraries in monodisperse emulsions, Methods, vol.58, issue.1, pp.18-27, 2012.

D. Cheryl, J. , K. Joonyul, M. Haley, L. Xiangpeng et al., Creating biocompatible oil-water interfaces without synthesis: direct interactions between primary amines and carboxylated perfluorocarbon surfactants, Anal Chem Nov, vol.85, issue.21, pp.10556-64, 2013.

F. Loeker, P. C. Marr, and S. M. Howdle, FTIR analysis of water in supercritical carbon dioxide microemulsions using monofunctional perfluoropolyether surfactants, Colloids Surf A, vol.214, issue.1-3, pp.143-50, 2003.

T. Ashleigh, B. , W. Graeme, F. Max, F. Luis et al., Suzuki-Miyaura coupling reactions in aqueous microdroplets with catalytically active fluorous interfaces, Chem Commun, issue.41, pp.6225-6232, 2009.

Q. Jochyms, E. Mignard, and J. M. Vincent, Fluorosurfactants for applications in catalysis, J Fluor Chem, 2015.

D. Zarzar-lauren, S. Vishnu, M. Sletten-ellen, K. Julia, A. et al., This paper shows how the control of a three phase system leads to switchable systems in a soft matter system, Nature, vol.518, p.520, 2015.

M. Stephen, The origins of life: old problems, new chemistries, Angew Chem Int Ed Engl, vol.52, issue.1, pp.155-62, 2013.

T. Nathan, L. Ning, G. Camille, H. Michael, B. Ermentrout et al., Testing Turing's theory of morphogenesis in chemical cells, Proc Natl Acad Sci, vol.111, issue.12, pp.4397-402, 2014.

M. Fallah-araghi-ali, B. Kamel, . Jean-christophe, M. El-harrak-abdeslam, K. Thomas et al., Enhanced chemical synthesis at soft interfaces: a universal reactionadsorption mechanism in microcompartments, Phys Rev Lett, vol.112, issue.2, p.28301, 2014.