
HAL Id: hal-01213247
https://hal.science/hal-01213247

Preprint submitted on 8 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A novel code generation methodology for block diagram
modeler and simulators Scicos and VSS

Jean-Philippe Chancelier, Ramine Nikoukhah

To cite this version:
Jean-Philippe Chancelier, Ramine Nikoukhah. A novel code generation methodology for block diagram
modeler and simulators Scicos and VSS. 2015. �hal-01213247�

https://hal.science/hal-01213247
https://hal.archives-ouvertes.fr

A novel code generation methodology for block diagram modeler

and simulators Scicos and VSS

Jean-Philippe Chancelier∗

Universit Paris-Est, Cermics (ENPC)
Ramine Nikoukhah∗

Altair Engineering

October 8, 2015

Abstract

Block operations during simulation in Scicos and VSS environments can naturally be de-
scribed as Nsp functions. But the direct use of Nsp functions for simulation leads to poor
performance since the Nsp language is interpreted, not compiled. The methodology presented
in this paper is used to develop a tool for generating efficient compilable code, such as C and
ADA, for Scicos and VSS models from these block Nsp functions. Operator overloading and
partial evaluation are the key elements of this novel approach. This methodology may be used
in other simulation environments such as Matlab/Simulink.

Contents

1 Introduction 2

2 Simple Example 4

3 Operator overloading and pseudo-code generation 9

3.1 New data types and overloading . 10

4 Code generation directives 13

4.1 Creating persistent variables . 13
4.2 Creating function arguments . 14
4.3 Function constant . 14
4.4 Function expand . 15
4.5 Functions bvarcopy and bvarempty . 15

5 Application to code generation for Scicos 16

5.1 Code generation script . 16
5.2 Conditional subsampling . 17
5.3 Example . 21

6 Conclusion 23

∗This code generation tool was developed during a three-years research projects funded within the French FUI
2011 called “Projet P” [6]

1

A C code generated for the extended Kalman filter example 23

1 Introduction

In this paper we present a new methodology of code generation for block diagram simulation tools
such as Scicos [2], VisSim SIMULATE1 (VSS) and Simulink. This methodology takes advantage
of the operator overloading facilities available in matrix based languages such as Matlab, Scilab,
Nsp [4] or Octave. The implementation is done in Nsp/Scicos and VSS environments [2] but the code
may easily be ported to Matlab/Simulink and other similar environments. In our implementation,
the final C code can be either generated directly using a C pretty printer or through the use of
Gnat Model Compiler [1]. In the latter case, an .xmi file is generated and then gmc is invoked to
generate the C code. Either way, the C code may be reimported automatically in the Scicos and
VSS environments as a CBlock for validation.

Not only the block behaviors may easily and naturally be implemented in the Nsp language
but they can also be simulated directly in Scicos, if implemented as such. The implementation
is natural because most Scicos blocks support matrices and Nsp data types. But also because
Nsp is the working language in the Nsp/Scicos environment. In particular Scicos model and block
parameters are defined via Nsp scripts and expressions, and evaluated by the Nsp interpreter.

The main reason for which only parameter definitions in Scicos blocks use Nsp programs and
run-time block code is invariably expressed in C is performance. Parameters are evaluated once at
compile time, so peformance is not an issue, but if the run time block behavior is expressed in Nsp,
the simulation performance would be significantly reduced.

The methodology proposed in this paper provides the possibility of defining Scicos/VSS blocks
entirely in Nsp. These blocks, which can be developed by Scicos developers, toolbox developers or
end-users, may be tested and validated directly by (low performance because interpreted) simula-
tions in Scicos. The Nsp code of the block can then be used for code generation by the methodology
presented in this paper.

In this methodology, an Nsp script is generated from the Scicos/VSS model. The generation
of this script is based on the result of the compilation of the model by Scicos or VSS compilers.
The compiler result includes in particular the order in which the blocks in the model must be
executed (their functions called) and the types and sizes of all the block inputs and outputs. This
generated script, which contains calls to the Nsp functions of the blocks, evaluates block outputs,
new discrete states, state derivatives, zero-crossing surfaces, etc., i.e., all the information needed
for both simulation and code generation.

The main obstacle in generating compilable code (such as C or ADA) from Nsp, and more
generally from all Matlab-like languages, is the inability, in the general case, to determine the types
and sizes of variables before run-time. But this is not an issue for the script generated from a Scicos
or VSS model since in this case, all the sizes and types of the variables representing block inputs
and outputs are known (determined by the compiler). The main component of the code generation
tool presented here is the Nsp code generation facility that can produce compilable code from such
Nsp scripts. It should be emphasized that this facility is not a general purpose code generator
for arbitray Nsp scripts. It is developed especially for Scicos/VSS usage where in the generated
code, data types involved are limited to matrices of doubles and various integer data types, and all
variable sizes can be statically determined.

1VisSim SIMULATE is a commercial modeling and simulation product based on Scicos.

2

This Nsp code generation facility is entirely developed in Nsp using its abilities to define new
data types and performing operator overloading for these new data types. In particular we define
a new data type called bvar representing a matrix and containing:

• type: numerics or symbolics

• value: a matrix

• name: string

If a variable of type bvar is of type numerics, then its value represents its actual value and it is
similar to a regular Nsp matrix with the same value. However using the type bvar, it is possible
to associate a name to the variable. If the variable is of type symbolics, then its value is just a
“nominal value”, often zero, but its data type (double, int8, int16,...) and its size represent the
actual data type and size of the variable.

Operations involving numeric variables (of type bvar) and regular Nsp variables never produce
symbolic variables (of type bvar). Operations involving symbolic variables produce in general
symbolic variables except in special cases. In particular if X is a symbolic variable, then size(X) is
not; neither is datatype(X). The overloading of basic operators and language primitives for these
data types automatically overloads all Nsp functions that use these operators and primitives thanks
to dynamic scoping property of the Nsp language.

The main idea of the approach used in this paper is to overload basic Nsp operators and
functions for variables of type bvar so that if we have an Nsp script that performs operations on
regular matrices, if these matrices are replaced by variables of type bvar, the script runs as before
but in addition, a pseudo-code (a sequence of “instructions”) is generated and stored in a global
list variable named code. Every time an operation involves a variable of type bvar, the overloaded
operation performs the original operation returning the corresponding value as if the arguments
were not of type bvar but in addition it adds one or several “instructions” to the list code. This
mechanism may be seen as spying the script as it is executed: when an operation involving a type
bvar variable is performed, it is recorded in the code list. The record includes not only the nature
of the operation (for example matrix multiplication) but also certain information on its operands.
The information in the generated pseudo-code is rich enough so that it can be used to generate
code in C, ADA or other languages, by simple pretty printing operations.

The execution of the script can be seen as partial evaluation. When the value is unknown,
only the type and size information is propagated; when the value is known, the actual value is
propagated. As long as the script can run to the end by propagating this partial information, the
code generation can be performed.

Unlike most code generators where the objective is to transform a program written in a source
language into a program in the target language preserving its functionality, in our approach the
program in the source language contains not only the code to be translated but also specifications
on how this transformation should be performed. This is done by providing a set of functions for
use as code generation directives so that a code generation task may be expressed as a part of
the Nsp script. The Scicos/VSS block Nsp codes however will not make use of these functions.
Scicos users need not know about these directives; as far as they are concerned, the block codes are
written in standard Nsp language with regular Nsp data. During code generation, the script will
be calling these block codes with the variables expressing blocks input/outputs and states defined
as symbolic bvar variables unbeknownst to the Scicos user.

3

There are many advantages in using the technique presented here as opposed to developing an
independent code generator: this code generator does not use a different parser for the scripting
language; the script is run using the tool itself. Similarly, the operator and functions used in
the process of partial evaluation are that of the scripting language itself. Finally the operator
overloading is being performed in the scripting language, so it can be customized easily for different
targets.

The method presented here is implemented in Nsp but it may be developed in other languages
providing similar overloading facilities, in particular Matlab, Scilab and Octave.

The tool based on this methodology provides a powerful and easily customizable code generator
for Scicos and VSS. Despite the existence of code generators for Simulink (Matlab and Simulink
coder in particular) a tool based on the approach presented in this paper would still be of interest
since it provides more control over the generated code.

In this paper we will focus on code generation for discrete-time subsystems of Scicos and VSS
models. This is what is needed in the majority of embedded code generation applications, in
particular for the implementation of embedded controllers. We consider double, boolean and signed
and unsigned 8, 16 and 32 bit integers data types. We do not consider the complex data type (seldom
used in embedded code), nor do we consider fixed-point data types, which will be considered in a
subsequent paper and for which the methodology presented here is very promising.

2 Simple Example

We start with a very simple example to illustrate the basic idea of our approach. Consider the
Scicos model depicted in Fig. 1. The objective is to generate C code for the Super Block the
contents of which is depicted in Fig. 2.

Figure 1: Main diagram.

Scicos code generator produces an Nsp script, based on the result of the Scicos compiler, corre-
sponding to the subsystem inside the Super Block. This script calls the Nsp functions associated
with the blocks in the subsystem. The block functions have an imposed calling sequence and pro-
vide specific callback functionalities. Here we review the functions associated with the basic blocks
used in this subsystem to illustrate how block functions may be developed for code generation.

A simplified version of the Nsp code of the delay block 1/z is given below:

4

Figure 2: Content of Super Block for which C code is generated.

function block=P_Unit_Delay(block,flag)

if flag==1 then

block.io(2)=block.state(1)

elseif flag==2 then

block.state(1)=block.io(1)

elseif flag==-1 then

z=convert(block.params.p1,datatype(block.io(1)))

if prod(size(z))==1 then z=z*convert(ones(size(block.io(1))),datatype(z));end

block.state(1)=z

end

endfunction

The arguments of the block functions are an Nsp structure and an integer. The structure,
named block in this code, contains the fields

• io: a list of matrices of possibly different types and sizes representing block input and output
values

• state: a list of matrices of possibly different types and sizes representing block states

• params: an Nsp structure coding the names and values of block parameters.

The second argument of the function is a flag that indicates what job the function should perform.
The value −1 is used for initialization. The function is called with this flag once at the beginning so
that it can initialize the internal states of the block, if any. Flag values 1 and 2 are used respectively
to code the output update and state update phases of the block behavior. Here, we consider only
code generation for discrete-time subsystems. For more general blocks, other flag values are used
for example for the computation of state derivative, evaluation of zero-crossing surfaces, etc. For
more information on the usage of flags see [2], Chapter 9.

In the script generated from the Scicos or VSS model, the Nsp code of the blocks are called
several times with different flag values. Unlike block parameters, which are known at the time of

5

code generation, block input/output and state values are not known. Their values are defined as
bvar variables when the block function is called. Even though the function has been developed
to receive a structure containting regular matrix arguments, thanks to operator overloading, the
function accepts this new argument.

The structures io and state are also new data types for which insertion and extraction oper-
ations have been overloaded. But once again, the developer of the block function code needs not
know about it.

When this function is called with flag −1, normally we would simply copy the parameter value
in the state, but the Delay block accepts that the parameter be defined as a scalar, even if the
state is not scalar, in which case all the entries of the state matrix take the value of the parameter.
Moreover, even if the parameter is defined as a double (default data type in Nsp), the block may be
of a different data type so the parameter should be converted into correct data type before being
copied in the state. Note that the expressions datatype(block.io(1)) and size(block.io(1)) in
this code can be evaluated even if block.io(1) is symbolic (their values depend only on the data
type and size of block.io(1)). Needless to say that the execution of this part of the code does not
perform any code generation, and thus no trace of this code will be seen in the final generated code.

For this block, the state update and output update operations (Flag values 1 and 2) consist
simply of copying respectively the input to the state, and the state to the output. The corresponding
pseudo-code is generated thanks to the overloading of the insertion operation in the io and state

fields.
The simplified version of the code for the Gain block is as follows:

function block=P_GAINBLK(block,flag)

if flag==1 then

put_annotation("Gain block begins.")

block.io(2)=convert(block.params.p1,datatype(block.io(1)))*block.io(1)

put_annotation("Gain block ends.")

end

endfunction

This block does not have a state, so its function contains no initialization phase or state update
phase. As in the case of the previous block, the block parameter, the gain value in this case, may be
defined as a double even if the block data type is something else, for example any type of integer.

The Gain block in Scicos may perform different types of operations. The gain parameter may
be a matrix and the block output is the product of this matrix with the input vector (which must
have compatible sizes). But the gain parameter may also be a scalar, in which case the input and
output have identical sizes and the product multiplies all the elements of the input matrix with this
parameter to compute the output. But the parameter may also be a matrix when the input is a
scalar. But all of this complexity is captured in the Nsp multiplication operation used in the code.
Indeed the Nsp multiplication operation has exactly the same properties. This similarity is often
seen between basic Nsp operators and primitives, and basic Scicos and VSS block behaviors. This
is the fundamental reason why using Nsp coding is a convenient way of describing the behavior of
Scicos and VSS blocks, often leading to a compact, readable and maintainable Nsp code.

The function put_annotation is used to place comments in the generated code.
We now give the complete code of the SUMMATION block function because it shows some advanced

features of block definitions that can directly be handled by our approach:

function block=P_SUMMATION(block,flag)

6

if flag==1 then

vars=block.io

nin=length(vars)-1

sgns=block.params.p2

put_annotation("Sum block begins with "+string(nin)+" inputs.")

if nin == 1 then

put_annotation("Using the sum function.")

if sgns(1)==-1 then

out=-sum(vars(1))

elseif sgns(1)==+1 then

out=sum(vars(1))

else

error(’wrong sign: "+string(sgns(1)))

end

else

if sgns(1)==-1 then

out=-vars(1)

elseif sgns(1)==+1 then

out=vars(1)

else

error(’wrong sign: "+string(sgns(1)))

end

for i=2:nin

if sgns(i)==-1 then

out=out-vars(i)

elseif sgns(i)==+1 then

out=out+vars(i)

else

error(’wrong sign: "+string(sgns(i)))

end

end

end

block.io($)=out // $ indicates the last element of the list

end

endfunction

This block performs two very different summing operations. When the block has only one input,
the output of the block is the sum of the entries of the input matrix. When it has more than one
inputs, the block performs the addition (or substraction depending on the value of parameter p2) of
the input matrices. The Nsp code contains both algorithms and the selection is made by testing the
number of inputs. This test and other tests in particular for deciding if the operation to perform
is an addition or a subtraction are “partial evaluated” and will not appear in the generated code.

Note that the conditional expressions of the if statements and the range of for loops must be
known (through partial evaluation) at the time of code generation. For example in this case, nin,
which represents the number of inputs, is known because the length of block.io is known. The
generated code will of course contain no trace of these conditional statements or loops. Clearly
if the conditional expression of an if statement is not known, the execution of the script cannot
continue. This is a limitation of this approach.

Note also that the error functions generate errors at the time of code generation if a parameter
value is incorrect. But if the Nsp code is used as run time code for simulation, they generate error

7

messages at the beginning of the simulation if a parameter does not have correct value.
The Nsp code for the Scicos MUX block is also straightforward since the operation of this block

corresponds to row concatenation in Nsp. The block may have more than two inputs in which case
repeated concatenations are required within a for loop:

function block=P_MUX(block,flag)

if flag==1 then

vars=block.io

y=vars(1)

put_annotation("MUX block begins with "+string(length(vars)-1)+" inputs.")

for i=2:length(vars)-1

y=[y;vars(i)]

end

block.io($)=y

put_annotation("MUX block ends.")

end

endfunction

The generated C code for the Super Block in Fig. 2 contains two functions for state update and
output update:

#include <scicos/scicos_block4.h>

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#include <math.h>

typedef int boolean;

/* Start1000*/

static double z_10001=0;

static double z_10002=0;

static double link10004=0;

void initialize1000(){

static double tmp_13=0;

static double tmp_14=0;

static double tmp_15=0;

z_10001=tmp_13;

z_10002=tmp_14;

link10004=tmp_15;

}

void updateOutput10001(double *inouts1,double *inouts2){

double tmp_1;

double tmp_5[2];

/* Gain block begins.*/

/* Gain block ends.*/

tmp_1=z_10001;

/* Sum block begins with 2 inputs.*/

link10004=(tmp_1-z_10002);

/* MUX block begins with 2 inputs.*/

8

tmp_5[0]=tmp_1;

tmp_5[1]=*inouts1;

/* MUX block ends.*/

inouts2[0]=tmp_5[0];

inouts2[1]=tmp_5[1];

}

void updateState10001(double *inouts1,double *inouts2){

z_10001=link10004;

z_10002=*inouts1;

}

/* End1000*/

void toto1000(scicos_block *block,int flag)

{

if (flag == 1) {

updateOutput10001((GetRealInPortPtrs(block,1)),(GetRealOutPortPtrs(block,1)));

}

else if (flag == 2) {

updateState10001((GetRealInPortPtrs(block,1)),(GetRealOutPortPtrs(block,1)));

}

else if (flag == 4) {

initialize1000();

}

The calling sequence of the state update and output update C routines of the block contain
pointers to the input and output data, in that order. The “state” of the block, which consists of
the subsystem blocks’ input/outputs (link values), and the state of the Delay block are defined as
global variables so that their values are preserved from the output update phase to state update
phase, and from one time step to the next. Not all link values need to be treated as global, further
code optimization may be used to identify link values that need not be preserved and thus simplify
the code by removing these links out of the global variables. In this case additional optimization
will also remove the unnecessary temporary variables tmp_1 and tmp_2, but the C compiler does
this anyway.

Even though there is no scalar type in Nsp (a scalar is just a one by one matrix) the generated
C code uses, for example for real values, the type double for scalar variables and not double *,
which is used for non-scalars only. But the arguments of function calls are all passed as pointers.

Following the code generation process, the Super Block is automatically replaced in the model
with a CBlock containing the generated C code; see Fig. 3. The simulation of this new model can
be used to compare simulation results before and after code generation. This is a fast and efficient
method for testing the generated code.

3 Operator overloading and pseudo-code generation

Overloading of operators and primitives is a powerful method in Matlab like environments used for
various applications, such as automatic differentiation [7, 5]. Overloading can be used to alter the
behavior of an existing code, in particular by adding additional operations such as the evaluation
of the derivatives for automatic differentiation, or pseudo-code generation in our case.

9

Figure 3: Super Block is automatically replaced with a C block for testing.

3.1 New data types and overloading

In Nsp [4], defining new datatypes for which operator overloading is possible is done by writing the
new datatype definition in a C code. Some Nsp internal tools are available to ease the writing of
the code necessary to implement a new datatype definition. As an example, the C-code needed to
implement the bvar datatype was generated from the following simple definition of the bvar object.

(define-object Bvar

(in-module "Bvar")

(parent "Object")

(c-name "NspBvar")

(fields

’("gboolean" "sym" "hidden" "FALSE");

’("NspObject*" "value" "hidden" "NULL");

’("char*" "varname" "hidden");

)

(gtype-id "Bvar")

)

When the new datatype is defined, the definition of the overloaded operators can be performed
in Nsp or in C. Examples on how to define new data types in Nsp are given in the src/types-test

directory of Nsp source code.
The main new data type used in this application is called bvar (block variable). An object of

type bvar is a wrapper around a standard Nsp object decorated with new attributes: an attribute
containing the name of the variable and an attribute to specify whether the object is numeric or
symbolic. The following lines of code explain how to create a bvar variable, which encapsulates a
1x1 symbolic matrix of type double named x having nominal value 67.

-nsp->A=bvar(varname="x",value=67,symbolic=%t)

A = "x",%t,Mat

-nsp->type(A,’short’)

ans = s (1x1)

bvar

10

-nsp->A.get_value[]

ans = r (1x1)

| 67 |

-nsp->A.get_varname[]

ans = s (1x1)

x

-nsp->A.is_symbolic[]

ans = b (1x1)

| T |

The fields in the A variable can be obtained or changed using methods, and the type of object
A is obtained by using the type function. The short type name of a variable is the string which is
used to define functions used for overloading. Suppose we define the function f_bvar in a function
library as follows :

function y=f_bvar(A) y=size(A.get_value[]);endfunction;

Then calling f(A) will return the size of the value stored in the bvar variable A:

-nsp->f(A)

ans = r (1x2)

| 3 4 |

Nsp operators and functions used for writing Scicos and VSS blocks are overloaded for bvar

variables. As an example we give the code for the function inv_bvar, which implements matrix
inversion. When the matrix to be inverted is 2x2 we use the explicit inverse formula.

function out=inv_bvar(in)

[m,n]=size(in);

if m<>n then error("Division by non square matrix not supported.");end

if m==1 then

out=1/in

elseif m==2 then

out=bvarempty(in)

out(1,1)=in(2,2)

out(2,2)=in(1,1)

out(1,2)=-in(1,2)

out(2,1)=-in(2,1)

out=out/(in(1,1)*in(2,2)-in(1,2)*in(2,1))

else

....

end

endfunction

When used with a 2x2 symbolic matrix, the evaluation of the above function executes the
previous code, which emits corresponding pseudo-code directives stored in a global variable called
code. This variable can then be used to produce code for different targets. Here is the C code
obtained after calling inv on a symbolic 2x2 matrix:

11

-nsp->codegen_init();

-nsp->A=symbolics(rand(2,2));

-nsp->inv(A);

-nsp->global(’code’);

-nsp->[L,code,declarations]=code_optimize(list(),code,list(),list(),opt=[%t,%t,%f]);

-nsp->txt=code_printer_c(code,list())

txt = s (10x1)

tmp_2[0]=(tmp_1[3]);

tmp_2[3]=(tmp_1[0]);

tmp_2[2]=(-(tmp_1[2]));

tmp_2[1]=(-(tmp_1[1]));

tmp_19=(((tmp_1[0])*(tmp_1[3]))-((tmp_1[2])*(tmp_1[1])));

tmp_20[0]=((tmp_2[0])/ tmp_19);

tmp_20[2]=((tmp_2[2])/ tmp_19);

tmp_20[1]=((tmp_2[1])/ tmp_19);

tmp_20[3]=((tmp_2[3])/ tmp_19);

By looking at the code of function inv_bvar, it may seem surprizing that its execution emits
pseudo-code. But, note that affectations, minus operation and multiplications are also overloaded.
It is precisely the role of the overloaded functions to produce the required pseudo-code.

As an example of a function which contains explicit code directives, we give the overloaded code
for the overloaded unary minus function:

function out = minus_bvar(in)

// unary minus

global overflow_option

if ~is_sym(in) then out= (- valueof(in));return,end

if prod(size(valueof(in)))==1 then

out=symbolics(-valueof(in),getunique())

rhs=expression("-",list(in),overflow_option)

gen_def(out,rhs)

else

out=bvarempty(in)

sz=size(valueof(in))

for i=1:sz(1)

for j=1:sz(2)

out(i,j)=-in(i,j)

end

end

end

endfunction

When the function argument is not symbolic then the function just performs (- valueof(in))

and no code is emitted. When the variable is symbolic and of size 1x1 the function returns a new
symbolics variable (out=symbolics(-valueof(in),getunique()) and the code is emitted by the call
to the expression function (expression("-",list(in),overflow_option)) and by the call to the
function gen_def(out,rhs). When the variable is a general matrix, the same function is applied to
every entry of the matrix.

12

4 Code generation directives

A number of specific Nsp functions are used as directives to control code generation during the ex-
ecution of the script. Some are easy to understand, for example directives to initiate and terminate
the code generation process:

codegen_init()

textout=codegen_finalize()

or to start and end a function definition in the target language:

StartFunction(f,_io)

EndFunction()

More complex directives are used to specify properties of the generated code that cannot be nat-
urally expressed in Nsp due to semantic differences between the Nsp language and the target
language. The most important directives are described below.

4.1 Creating persistent variables

Persistent or static variables do not exist in Nsp but they exist in the target languages considered for
code generation (in particular C) and are needed. So special directives are introduced for creating
them. A pool of persistent variables may be created with the functions persistent_create() and
persistent_insert(...). Each variable in the pool of persistent variables is a bvar object of type
symbolics. When code is emitted, a top level declaration (of static type) will be generated for each
persistent variable used in the generated code. The function persistent_extract() can be used to
obtain the persistent variable.

When the function persistent_insert is used with a variable name already present in the pool
of persistent variables then a local variable declaration is emited and the local variable value is
copied into the persistent variable.

In the generated code a special function called initialize will contain code which resets all the
persistent variables to their default values.

-nsp->// demo for creation of a pool of persistent variables

-nsp->codegen_init();

-nsp->states=persistent_create();

-nsp->states=persistent_insert(states,’x1’,1:3);

-nsp->states=persistent_insert(states,’x2’,7);

-nsp->// note that not used persistent declarations are removed from the

-nsp->// generated code (x3 is unsued).

-nsp->states=persistent_insert(states,’x3’,1:6);

-nsp->io=inouts();

-nsp->StartFunction("foo",io);

-nsp->code_insert(’annotation’,’copy [4:6] into x1 with memcpy’);

-nsp->states=persistent_insert(states,’x1’,[4:6]);

-nsp->code_insert(’annotation’,’copy with assign since x2 is 1x1’);

-nsp->states=persistent_insert(states,’x2’,8);

-nsp->EndFunction("foo",io);

-nsp->txt=codegen_finalize()

txt = s (17x1)

13

static double x1[]={ 1, 2, 3 };
static double x2=7;

void initialize(){
static double tmp_4[]={ 1, 2, 3 };
static double tmp_5=7;

memcpy(x1,tmp_4,3*sizeof(double));

x2=tmp_5;

}

void foo(){
double tmp_1[]={ 4, 5, 6 };
/* copy [4:6] into x1 with memcpy*/

memcpy(x1,tmp_1,3*sizeof(double));

/* copy with assign since x2 is 1x1*/

x2=8;

}
-nsp->txt=codegen_finalize()

4.2 Creating function arguments

Function arguments are created with the use of the functions inouts and inouts_insert. Arguments
are bvar objects of type symbolics. When the inouts_insert function is used with a variable name
already present in a sequence of function arguments, then a local variable declaration is emited and
the local variable value is copied into the function argument.

In the following example a function foo with one argument is created. When calling the function
foo, the persistent variable x1 is filled with the value of the function foo argument and then the
function foo argument is filled with the constant value [7,8,9].

-nsp->codegen_init();

-nsp->states=persistent_create();

-nsp->states=persistent_insert(states,’x1’,1:3);

-nsp->// in and out arguments of the function

-nsp->io=inouts();

-nsp->io=inouts_insert(io,’inouts1’,[4,8,9]);

-nsp->//

-nsp->StartFunction("foo",io);

-nsp->code_insert(’annotation’,’copy inouts1 to x1 with memcpy’);

-nsp->states=persistent_insert(states,’x1’,io.inouts1);

-nsp->code_insert(’annotation’,’copy [7,8,9] into inouts1’);

-nsp->io = inouts_insert(io,’inouts1’,[7,8,9]);

-nsp->EndFunction("foo",io);

-nsp->txt=codegen_finalize();

4.3 Function constant

The declaration and initialization of local variables (automatic variables) may be performed with
the constant function.

14

-nsp->// declaration for a constant

-nsp->codegen_init();

-nsp->out=constant([5,0;7,8],’x1’); // declaration + set

-nsp->global(’declarations’,’code’,’top_declarations’,’text’);

-nsp->txt=code_printer_c(code,declarations)

txt = s (1x1)

double x1[]={ 5, 7, 0, 8 };

4.4 Function expand

The function expand returns in a new symbolic variable. In particular, expand(in,m,n) returns a
new symbolic bvar variable with the same type as the variable in but with size mxn. It also inserts
a declaration for the new returned variable in the generated code.

-nsp->// demo for expand

-nsp->codegen_init();

-nsp->in=numerics(%t);

-nsp->var=expand(in,2,3)

var = "tmp_2",%f,BMat

-nsp->global(’declarations’,’code’,’top_declarations’,’text’);

-nsp->txt=code_printer_c(code,declarations)

txt = s (1x1)

int tmp_2[]={ TRUE, TRUE, TRUE, TRUE, TRUE, TRUE };
-nsp->

-nsp->

4.5 Functions bvarcopy and bvarempty

The functions bvarcopy and bvarempty are used to create new symbolic bvar variables with same
type and size as their argument. In the case of bvarcopy, a code for copying the value of the
argument in to the value of the newly created variable is also emitted.

-nsp->// demo for bvarcopy and bvarempty

-nsp->codegen_init();

-nsp->in=numerics(rand(2,3));

-nsp->var=bvarcopy(in); // var is declared and set or mcopy is generated

-nsp->global(’declarations’,’code’,’top_declarations’,’text’);

-nsp->txt=code_printer_c(code,declarations)

txt = s (2x1)

Column 1 :

double tmp_2[]={ 0.8147236919030547, 0.1354770041070879,

0.9057919341139495, 0.8350085897836834,

0.1269868118688464, 0.9688677710946649 };
memcpy(tmp_2,tmp_1,6*sizeof(double));

-nsp->

-nsp->codegen_init();

-nsp->in=numerics(rand(2,3));

15

-nsp->var=bvarempty(in); // var is declared and filled in declaration.

-nsp->global(’declarations’,’code’,’top_declarations’,’text’);

-nsp->txt=code_printer_c(code,declarations)

txt = s (1x1)

Column 1 :

double tmp_4[]={ 0.91337585565634072, 0.22103404277004302,

0.63235924998298287, 0.30816705035977066,

0.09754040162079036, 0.54722059634514153 };

5 Application to code generation for Scicos

5.1 Code generation script

Code generation script is an Nsp script generated automatically from a Scicos/VSS model, and
in particular from the content of the Super Block for which code generation is requested. Scicos
compiler provides all the information needed to generate this script. The information includes in
particular the list of blocks and their order of execution for the initialization, state update and
output update phases. The compilation result contains also the data types and sizes of all the link
variables inside the Super Block and those of its input and output ports.

To generate the script, the model variables are first determined. These variables contain the
signals on various links and the internal block states. They lead to static C variables in the final C
code because they have to retain their values from one call to the next. Links that transfer constant
values are partial evaluated and do not appear in the generated code. This is done by propagating
constants through the diagram, when possible.

The script starts with a section to determine the variables’ initial values, which are then explic-
itly deefined in the generated code. This section calls the block routines with flag −1 and does not
use bvar type variables. Subsequently the generated script calls in proper order the block routines
with flags 1 and 2. The input and output values in these calls are of type bvar and the C code is
generated thanks to operator overloading.

Unlike the code generation script, which is generated automatically and deals explicitly with
variables of type bvar, the developer of the Nsp Scicos/VSS block functions writes the function
codes in standard Nsp as if these functions were only used for simulation. In fact, he does not even
need to know that the arguments of his functions may be at any time be of any type other than
regular Nsp data types. There are however certain limitations on what he can use in his code. In
particular, no conditional tests may be based on values that cannot be constant propagated (partial
evaluated to a numeric value) and the compiler should be able to determine the number of iterations
in for and while loops, assuming the types and sizes of all the input arguments to his functions are
known. Note also that not all Nsp primitives may be used; only those that have been overloaded
for the bvar type may be used (most basic Nsp primitives have already been overloaded).

The constraint on the usage of conditional statements such as the if then else construct may
seem severe, but it turns out that for describing Scicos/VSS block behaviors, conditional statements
based on non-constant propagated conditions are rarely encountered. In most cases such conditions
may be expressed as expressional if then else and select case statements, which are implemented
as If_exp and Select_exp functions.

An expressional if then else statement expressed as If_exp function is used as follows:

16

out = If_exp(cond, exp1, exp2)

If cond is true, out takes the value of the expression exp1, if not, it takes the value of the expression
exp2. Note however that in either case both expressions exp1 and exp2 are evaluated, unlike for
a real if then else statement where only one of the expressions is evaluated. These structurel
conditions used in particular for subsampling in Scicos and VSS are realized using the special
blocks IfThenElse and ESelect.

5.2 Conditional subsampling

We have seen so far that in order for the code generation script to function, the expressions of
all conditional statements (if-then-else, when,...) must be partial evaluated, which means that it
cannot be dependent on symbolic variables. But Scicos and VSS models may include conditional
subsampling using in particular the IfThenElse block. Subsampling is an important mechanism
available in Scicos, so a special method is introduced to handle such models for efficient code
generation.

Figure 4: Model for testing the coding scheme.

An example of Scicos model with conditional subsampling is given in Fig. 4. The content of
the Super Block for which C code is generated is illustrated in Fig. 5. This model implements a
simple coding scheme where the Super Block receives a sequence of 0 and 1 integers and generates
a sequence providing the number of consecutive 0’s or 1’s. The Super Block contains an IfThenElse

block for testing whether or not two successive integers have the the same value, and depending on
the result, a counter is either incremented or reset to 1.

17

Figure 5: The Super Block modeling the coding scheme using subsampling. Code is generated for
this Super Block.

18

The generated code shows that the test implemented by the IfThenElse block has produced an
if statement in C:

/* Scicos Computational function

* Generated by Code_Generation toolbox of Scicos with scicos4.4.1

* date : 05 mars 2015

*/

#include <scicos/scicos_block4.h>

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#include <math.h>

/* Start1004*/

static int32_t z_10041=0;

static int32_t z_10042=0;

static int32_t link10046=0;

static int32_t link10048=1;

void initialize1004(){

static int32_t tmp_13=0;

static int32_t tmp_14=0;

static int32_t tmp_15=0;

static int32_t tmp_16=1;

z_10041=tmp_13;

z_10042=tmp_14;

link10046=tmp_15;

link10048=tmp_16;

}

void updateOutput10041(int32_t *inouts1,int32_t *inouts2,int32_t *inouts3){

/* Selct block starts*/

/* Selct block ends*/

link10046=0;

}

void updateOutput10042(int32_t *inouts1,int32_t *inouts2,int32_t *inouts3){

/* Selct block starts*/

/* Selct block ends*/

link10046=*inouts2;

}

void updateOutput10043(int32_t *inouts1,int32_t *inouts2,int32_t *inouts3){

int tmp_6;

int tmp_7;

/* RELATIONALOP block starts*/

tmp_6=(*inouts1!=z_10041);

/* RELATIONALOP block ends*/

*inouts3=tmp_6;

19

*inouts2=z_10042;

tmp_7=(*inouts3>0);

if (tmp_7) {

updateOutput10041(inouts1,inouts2,inouts3);

} else {

updateOutput10042(inouts1,inouts2,inouts3);

}

/* Sum block begins with 2 inputs.*/

link10048=(link10046+1);

}

void updateState10043(int32_t *inouts1,int32_t *inouts2,int32_t *inouts3){

int tmp_11;

z_10041=*inouts1;

/* RELATIONALOP block starts*/

/* RELATIONALOP block ends*/

z_10042=link10048;

tmp_11=(*inouts3>0);

}

/* End1004*/

void toto1004(scicos_block *block,int flag)

{

if (flag == 1) {

updateOutput10043((Getint32InPortPtrs(block,1)),(Getint32OutPortPtrs(block,1)),(Getint32OutPortPtr

}

else if (flag == 2) {

updateState10043((Getint32InPortPtrs(block,1)),(Getint32OutPortPtrs(block,1)),(Getint32OutPortPtrs

}

else if (flag == 4) {

initialize1004();

}

}

The code geneation script uses the if_cos function, which uses the If_exp function. The if_cos
function is defined as follows:

function if_cos(in,f1,f2)

// f1 and f2 are expressions of type call(..)

if is_sym(in) then

code_insert("if_expr", in > (0),f1,f2);

elseif valueof(in)>0 then

code_insert("ident",f1)

else

code_insert("ident",f2)

end

endfunction

Note that the if_cos function does not return any value. This is consistent with the fact that the
IfThenElse block has no regular output. The second and third arguments of this function are calls
to external (generated) C routines. The arguments are the Super Block inputs and outputs, passed

20

as pointers, so that these external routines can only modify these inputs/outputs (in general only
outputs) and global variables.

5.3 Example

The methodology presented in this paper may be used to generate code for models using existing
Scicos blocks but it can also be used to generate code for models containing sciblks, i.e. blocks
where the user has expressed the block’s behavior in Nsp. The following example is adapted from
an extended Kalman filter application developed in [3] for Simulink with an embedded Matlab
block.

Figure 6: Model of an extended Kalman filter.

The Kalman filter equation is expressed in Nsp in the sciblk block:

function [blk] = P_sciblk(blk,flag)

if flag==1 then //output computation

meas=blk.io(1);xhat=blk.io(2);P=blk.io(3);

//put_annotation("sciblk block begins.")

// This Nsp Function implements an extended Kalman filter used

// for object tracking.

//

21

Figure 7: The Nsp block is included in a Super Block for code generation. The delay blocks are
used to hold the state of the filter and the corresponding covariance matrix.

// The states of the process are given by

// x = [x_position; x_velocity; y_position; y_velocity];

//

// and the measurements are given by

// y = [range; bearing]

//

// where

// range = sqrt(x_position^2 + y_position^2)

// bearing = atan(y_position/x_position)

// Author: Phil Goddard (phil@goddardconsulting.ca)

// Date: Q2, 2011.

// Adapted to Nsp/Scicos in 2015

dt=0.1

Q = diag([0 .1 0 .1]);

R = diag([50^2 0.005^2]);

// Calculate the Jacobians for the state and measurement equations

F = [1 dt 0 0;0 1 0 0;0 0 1 dt;0 0 0 1];

rangeHat = sqrt(xhat(1)^2+xhat(3)^2);

bearingHat = atan(xhat(3),xhat(1));

yhat = [rangeHat; bearingHat];

H = [cos(bearingHat) 0 sin(bearingHat) 0;

-sin(bearingHat)/rangeHat 0 cos(bearingHat)/rangeHat 0];

// Propogate the state and covariance matrices

xhat = F*xhat;

P = F*P*F’ + Q;

// Calculate the Kalman gain

K = P*H’/(H*P*H’ + R);

// Calculate the measurement residual

resid = meas - yhat;

// Update the state and covariance estimates

xhat = xhat + K*resid;

22

P = (eye(size(K,1),size(K,1))-K*H)*P;

// Post the results

blk.io(4)=xhat

blk.io(5)=P

elseif flag==2 then //discrete state computation (if any)

end

//put_annotation("sciblk block ends.")

endfunction

Note that this is a very general Nsp code; it uses a number of matrix manipulation operators
and functions. All these operators and functions are overloaded. The constraints on the usage of
conditional statements and loops are also satisfied since there are no such statements in the code.

6 Conclusion

This paper has provided a short presentation of a new methodology based on partial evaluation
and overloading used for the implementation of a code generation tool developed for Scicos and
VSS. The code is freely available in Nsp 1.0 (See [4]).

A C code generated for the extended Kalman filter example

/* Scicos Computational function

* Generated by Code_Generation toolbox of Scicos with scicos4.4.1

* date : 06 mars 2015

*/

#include <scicos/scicos_block4.h>

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#include <math.h>

/* Start1002*/

void quote(double *res, double *a, double *dm,double *dn)

{

int i,j, m1=(int) (*dm), n1 = (int) (*dn) ;

for (i = 0 ; i < (m1); i++)

for (j = 0 ; j < (n1); j++)

{

res[j+(n1)*i]= a[i+(m1)*j];

}

}

void mult(double *res, double *a, double *b,double *md1,double *nd1,double *md2,double *nd2)

{

int i,j,k,m1=(int) (*md1),n1= (int) (*nd1),m2= (int) (*md2),n2=(int) (*nd2);

for (i = 0 ; i < m1; i++)

for (j = 0 ; j < n2; j++)

{

res[i+m1*j]=0;

for (k = 0 ; k < n1; k++)

res[i+(m1)*j] += a[i+(m1)*k]*b[k+(m2)*j];

}

}

static double z_10021[]={ -900, 80, 950, 20 };

static double z_10022[]={ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

static double link10024[]={ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

void initialize1002(){

static double tmp_400[]={ -900, 80, 950, 20 };

static double tmp_401[]={ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

static double tmp_402[]={ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

memcpy(z_10021,tmp_400,4*sizeof(double));

memcpy(z_10022,tmp_401,16*sizeof(double));

memcpy(link10024,tmp_402,16*sizeof(double));

}

23

void updateOutput10021(double *inouts1,double *inouts2){

double tmp_3;

double tmp_5;

double tmp_8;

double tmp_11;

double tmp_12[2];

double tmp_18[2];

double tmp_23[3];

double tmp_30[4];

double tmp_41[2];

double tmp_47[3];

double tmp_54[4];

double tmp_62[8];

double tmp_79[4];

double tmp_104[16];

double tmp_105[]={ 1.0000000000000000, 0 ,

0, 0 ,

0.1000000000000000, 1.0000000000000000 ,

0, 0 ,

0, 0 ,

1.0000000000000000, 0 ,

0, 0 ,

0.1000000000000000, 1.0000000000000000 };

double tmp_106=4;

double tmp_107=4;

double tmp_108=4;

double tmp_109=4;

double tmp_110[16];

double tmp_111[]={ 1.0000000000000000, 0.1000000000000000 ,

0, 0 ,

0, 1.0000000000000000 ,

0, 0 ,

0, 0 ,

1.0000000000000000, 0.1000000000000000 ,

0, 0 ,

0, 1.0000000000000000 };

double tmp_112=4;

double tmp_113=4;

double tmp_114=4;

double tmp_115=4;

double tmp_116[16];

double tmp_151[8];

double tmp_152=2;

double tmp_153=4;

double tmp_154[8];

double tmp_155=4;

double tmp_156=4;

double tmp_157=4;

double tmp_158=2;

double tmp_159[8];

double tmp_160=2;

double tmp_161=4;

double tmp_162=4;

double tmp_163=4;

double tmp_164[8];

double tmp_165=2;

double tmp_166=4;

double tmp_167[4];

double tmp_232[4];

double tmp_243[4];

double tmp_260;

double tmp_261[4];

double tmp_274[8];

double tmp_275=4;

double tmp_276=2;

double tmp_277=2;

double tmp_278=2;

double tmp_279[2];

double tmp_288[4];

double tmp_321[4];

double tmp_338[16];

double tmp_339=4;

double tmp_340=2;

double tmp_341=2;

double tmp_342=4;

double tmp_343[16];

double tmp_392[16];

double tmp_393=4;

double tmp_394=4;

double tmp_395=4;

double tmp_396=4;

tmp_3=(z_10021[0]);

tmp_5=(z_10021[2]);

tmp_8=sqrt(((tmp_3*tmp_3)+(tmp_5*tmp_5)));

tmp_11=atan2((z_10021[2]),(z_10021[0]));

tmp_12[0]=tmp_8;

tmp_12[1]=tmp_11;

/* Begin concatr of tmp_17 with unknown*/

24

tmp_18[0]=cos(tmp_11);

tmp_18[1]=0;

/* end concatr of tmp_17 with unknown*/

/* Begin concatr of tmp_21 with tmp_22*/

tmp_23[0]=(tmp_18[0]);

tmp_23[1]=(tmp_18[1]);

tmp_23[2]=sin(tmp_11);

/* end concatr of tmp_21 with tmp_22*/

/* Begin concatr of tmp_29 with unknown*/

tmp_30[0]=(tmp_23[0]);

tmp_30[1]=(tmp_23[1]);

tmp_30[2]=(tmp_23[2]);

tmp_30[3]=0;

/* end concatr of tmp_29 with unknown*/

/* Begin concatr of tmp_40 with unknown*/

tmp_41[0]=(-(sin(tmp_11)/ tmp_8));

tmp_41[1]=0;

/* end concatr of tmp_40 with unknown*/

/* Begin concatr of tmp_44 with tmp_46*/

tmp_47[0]=(tmp_41[0]);

tmp_47[1]=(tmp_41[1]);

tmp_47[2]=(cos(tmp_11)/ tmp_8);

/* end concatr of tmp_44 with tmp_46*/

/* Begin concatr of tmp_53 with unknown*/

tmp_54[0]=(tmp_47[0]);

tmp_54[1]=(tmp_47[1]);

tmp_54[2]=(tmp_47[2]);

tmp_54[3]=0;

/* end concatr of tmp_53 with unknown*/

tmp_62[0]=(tmp_30[0]);

tmp_62[1]=(tmp_54[0]);

tmp_62[2]=(tmp_30[1]);

tmp_62[3]=(tmp_54[1]);

tmp_62[4]=(tmp_30[2]);

tmp_62[5]=(tmp_54[2]);

tmp_62[6]=(tmp_30[3]);

tmp_62[7]=(tmp_54[3]);

tmp_79[0]=((z_10021[0])+(0.1*(z_10021[1])));

tmp_79[1]=(z_10021[1]);

tmp_79[2]=((z_10021[2])+(0.1*(z_10021[3])));

tmp_79[3]=(z_10021[3]);

/* Product of matrices resulting size 16>6: calling external function*/

tmp_105[0]=1;

tmp_105[1]=0;

tmp_105[2]=0;

tmp_105[3]=0;

tmp_105[4]=0.1;

tmp_105[5]=1;

tmp_105[6]=0;

tmp_105[7]=0;

tmp_105[8]=0;

tmp_105[9]=0;

tmp_105[10]=1;

tmp_105[11]=0;

tmp_105[12]=0;

tmp_105[13]=0;

tmp_105[14]=0.1;

tmp_105[15]=1;

tmp_106=4;

tmp_107=4;

tmp_108=4;

tmp_109=4;

mult(tmp_104,tmp_105,z_10022,&tmp_106,&tmp_107,&tmp_108,&tmp_109);

/* Product of matrices resulting size 16>6: calling external function*/

tmp_111[0]=1;

tmp_111[1]=0.1;

tmp_111[2]=0;

tmp_111[3]=0;

tmp_111[4]=0;

tmp_111[5]=1;

tmp_111[6]=0;

tmp_111[7]=0;

tmp_111[8]=0;

tmp_111[9]=0;

tmp_111[10]=1;

tmp_111[11]=0.1;

tmp_111[12]=0;

tmp_111[13]=0;

tmp_111[14]=0;

tmp_111[15]=1;

tmp_112=4;

tmp_113=4;

tmp_114=4;

tmp_115=4;

mult(tmp_110,tmp_104,tmp_111,&tmp_112,&tmp_113,&tmp_114,&tmp_115);

tmp_116[0]=(tmp_110[0]);

tmp_116[4]=(tmp_110[4]);

tmp_116[8]=(tmp_110[8]);

25

tmp_116[12]=(tmp_110[12]);

tmp_116[1]=(tmp_110[1]);

tmp_116[5]=((tmp_110[5])+0.1);

tmp_116[9]=(tmp_110[9]);

tmp_116[13]=(tmp_110[13]);

tmp_116[2]=(tmp_110[2]);

tmp_116[6]=(tmp_110[6]);

tmp_116[10]=(tmp_110[10]);

tmp_116[14]=(tmp_110[14]);

tmp_116[3]=(tmp_110[3]);

tmp_116[7]=(tmp_110[7]);

tmp_116[11]=(tmp_110[11]);

tmp_116[15]=((tmp_110[15])+0.1);

/* Transpose of matrix of size 8>6: calling external function*/

tmp_152=2;

tmp_153=4;

quote(tmp_151,tmp_62,&tmp_152,&tmp_153);

/* End of Transpose*/

/* Product of matrices resulting size 8>6: calling external function*/

tmp_155=4;

tmp_156=4;

tmp_157=4;

tmp_158=2;

mult(tmp_154,tmp_116,tmp_151,&tmp_155,&tmp_156,&tmp_157,&tmp_158);

/* Product of matrices resulting size 8>6: calling external function*/

tmp_160=2;

tmp_161=4;

tmp_162=4;

tmp_163=4;

mult(tmp_159,tmp_62,tmp_116,&tmp_160,&tmp_161,&tmp_162,&tmp_163);

/* Transpose of matrix of size 8>6: calling external function*/

tmp_165=2;

tmp_166=4;

quote(tmp_164,tmp_62,&tmp_165,&tmp_166);

/* End of Transpose*/

tmp_167[0]=(((((tmp_159[0])*(tmp_164[0]))+((tmp_159[2])*(tmp_164[1])))+((tmp_159[4])*(tmp_164[2])))+((tmp_159[6])*(tmp_164[3])));

tmp_167[2]=(((((tmp_159[0])*(tmp_164[4]))+((tmp_159[2])*(tmp_164[5])))+((tmp_159[4])*(tmp_164[6])))+((tmp_159[6])*(tmp_164[7])));

tmp_167[1]=(((((tmp_159[1])*(tmp_164[0]))+((tmp_159[3])*(tmp_164[1])))+((tmp_159[5])*(tmp_164[2])))+((tmp_159[7])*(tmp_164[3])));

tmp_167[3]=(((((tmp_159[1])*(tmp_164[4]))+((tmp_159[3])*(tmp_164[5])))+((tmp_159[5])*(tmp_164[6])))+((tmp_159[7])*(tmp_164[7])));

tmp_232[0]=((tmp_167[0])+2500);

tmp_232[2]=(tmp_167[2]);

tmp_232[1]=(tmp_167[1]);

tmp_232[3]=((tmp_167[3])+0.000025);

tmp_243[0]=(tmp_232[3]);

tmp_243[3]=(tmp_232[0]);

tmp_243[2]=(-(tmp_232[2]));

tmp_243[1]=(-(tmp_232[1]));

tmp_260=(((tmp_232[0])*(tmp_232[3]))-((tmp_232[2])*(tmp_232[1])));

tmp_261[0]=((tmp_243[0])/ tmp_260);

tmp_261[2]=((tmp_243[2])/ tmp_260);

tmp_261[1]=((tmp_243[1])/ tmp_260);

tmp_261[3]=((tmp_243[3])/ tmp_260);

/* Product of matrices resulting size 8>6: calling external function*/

tmp_275=4;

tmp_276=2;

tmp_277=2;

tmp_278=2;

mult(tmp_274,tmp_154,tmp_261,&tmp_275,&tmp_276,&tmp_277,&tmp_278);

tmp_279[0]=((inouts1[0])-(tmp_12[0]));

tmp_279[1]=((inouts1[1])-(tmp_12[1]));

tmp_288[0]=(((tmp_274[0])*(tmp_279[0]))+((tmp_274[4])*(tmp_279[1])));

tmp_288[1]=(((tmp_274[1])*(tmp_279[0]))+((tmp_274[5])*(tmp_279[1])));

tmp_288[2]=(((tmp_274[2])*(tmp_279[0]))+((tmp_274[6])*(tmp_279[1])));

tmp_288[3]=(((tmp_274[3])*(tmp_279[0]))+((tmp_274[7])*(tmp_279[1])));

tmp_321[0]=((tmp_79[0])+(tmp_288[0]));

tmp_321[1]=((tmp_79[1])+(tmp_288[1]));

tmp_321[2]=((tmp_79[2])+(tmp_288[2]));

tmp_321[3]=((tmp_79[3])+(tmp_288[3]));

/* Product of matrices resulting size 16>6: calling external function*/

tmp_339=4;

tmp_340=2;

tmp_341=2;

tmp_342=4;

mult(tmp_338,tmp_274,tmp_62,&tmp_339,&tmp_340,&tmp_341,&tmp_342);

tmp_343[0]=(1-(tmp_338[0]));

tmp_343[4]=(-(tmp_338[4]));

tmp_343[8]=(-(tmp_338[8]));

tmp_343[12]=(-(tmp_338[12]));

tmp_343[1]=(-(tmp_338[1]));

tmp_343[5]=(1-(tmp_338[5]));

tmp_343[9]=(-(tmp_338[9]));

tmp_343[13]=(-(tmp_338[13]));

tmp_343[2]=(-(tmp_338[2]));

tmp_343[6]=(-(tmp_338[6]));

tmp_343[10]=(1-(tmp_338[10]));

tmp_343[14]=(-(tmp_338[14]));

tmp_343[3]=(-(tmp_338[3]));

tmp_343[7]=(-(tmp_338[7]));

26

tmp_343[11]=(-(tmp_338[11]));

tmp_343[15]=(1-(tmp_338[15]));

/* Product of matrices resulting size 16>6: calling external function*/

tmp_393=4;

tmp_394=4;

tmp_395=4;

tmp_396=4;

mult(tmp_392,tmp_343,tmp_116,&tmp_393,&tmp_394,&tmp_395,&tmp_396);

memcpy(link10024,tmp_392,16*sizeof(double));

memcpy(inouts2,tmp_321,4*sizeof(double));

}

void updateState10021(double *inouts1,double *inouts2){

memcpy(z_10021,inouts2,4*sizeof(double));

memcpy(z_10022,link10024,16*sizeof(double));

}

/* End1002*/

void toto1002(scicos_block *block,int flag)

{

if (flag == 1) {

updateOutput10021((GetRealInPortPtrs(block,1)),(GetRealOutPortPtrs(block,1)));

}

else if (flag == 2) {

updateState10021((GetRealInPortPtrs(block,1)),(GetRealOutPortPtrs(block,1)));

}

else if (flag == 4) {

initialize1002();

}

}

References

[1] AdaCore, IB Krates, GNAT Pro MOdel Compiler User Guide, Release 1.0w, 2015.

[2] S. L. Campbell, and J.-Ph. Chancelier, and R. Nikoukhah. Modeling and Simulation in
Scilab/Scicos with ScicosLab 4.4, 2nd ed., Springer 2010.

[3] P. Goddard, http://www.goddardconsulting.ca/simulink-extended-kalman-filter-tracking.html,
2011.

[4] Nsp, http://cermics.enpc.fr/~jpc/nsp-tiddly/mine.html.

[5] M. A. Patterson, M. J. Weinstein, and A. V. Rao. An efficient overloaded method for computing
derivatives of mathematical functions in matlab. ACM Transactions on Mathematical Software,
39(3):17:117:36, July 2013.

[6] Project P http://www.open-do.org/projects/p/.

[7] M. J. Weinstein and A. V. Rao. A source transformation via operator overloading method for
automatic differentiation in matlab. ACM Transactions on Mathematical Software, In Revision
2014.

27

