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Abstract 

This paper reviews a range of methods used to infer characteristic values and probabilities of failure 

from a sample of measured or simulated load effect data. The popular methods of Peaks-Over-

Threshold and Generalized Extreme Value (GEV) are considered but also other methods including the 

Box-Cox approach, fitting to a Normal distribution and the Rice formula. These five methods are 

fitted to the tail of the daily maximum data. Bayesian Updating and Predictive Likelihood are also 

considered, but are fitted to the entire data set. In general, the five tail fitting methods are reasonably 

accurate at inferring characteristic annual maximum values from 1000 days of data and the other 

methods less so. All methods are considerably less accurate at inferring probabilities of failure than 

characteristic values.  

Keywords: Review, Bridge, Load, Traffic, Assessment, POT, Peaks-Over-Threshold, Extreme Value, 

GEV, Box-Cox, Rice, Predictive Likelihood. 

1. Introduction 

A necessary part of bridge management is the assessment of the safety of bridge structures. In its 

simplest form, a bridge is safe when its capacity to resist load exceeds the load applied. More 

precisely, a bridge can be considered safe when there is an acceptably low probability that load 

exceeds capacity. A great deal of work has been carried out on methods of evaluating the load-

carrying capacity of bridges and the associated uncertainties. Load-carrying capacity can be reduced 

by different forms of deterioration, depending on factors such as the structural material, the quality of 

workmanship during construction, the age of the structure, the environment and the loading history. 

To carry out a more accurate assessment of the load-carrying capacity, non-destructive and/or 

destructive tests can be carried out to get more detailed site specific information on these deterioration 

mechanisms to reduce uncertainty and associated conservatism  (Al-Harthy et al., 2011, Frangopol & 

Liu, 2007, Richard et al., 2012, Rücker et al., 2005, Suo & Stewart, 2009). These inspection results 

can be incorporated into time-dependent reliability-based assessments to give up-to-date structure-

specific deterioration rates. These in turn can be used to accurately predict the capacity of the 

structure and to schedule maintenance and repairs (Melchers, 1999, Orcesi & Cremona, 2009, Orcesi 

& Cremona, 2010, Sheils et al., 2010).  

Traffic loading on bridges, perhaps the greatest source of uncertainty, has received less attention and 

is the focus of this paper. Historical developments in the field of traffic loading are reviewed. A wide 
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range of statistical/probabilistic approaches have been applied to the problem with no clear ‘winner’ 

emerging.  

Two Extreme Value examples are used here as benchmark tests, against which a range of approaches 

are compared. The first example is the problem of finding the maximum of numerous normally 

distributed random variables, a problem for which the exact theoretical solution is known. The many 

methods of estimating characteristic maxima are shown to give large errors, to varying degrees.  

The second example is based on a carefully calibrated traffic load simulation model. The simulation is 

run for 5 000 years so that, while the exact solution is unknown, it can be estimated very well and 

there is a high degree of confidence in the lifetime maximum results. As for the first example, several 

methods of prediction, using modest quantities of data, are tested. Again, the errors in the predictions 

are found to be significant and to vary considerably, depending on the approach adopted.  

 

2. Review of Literature 

Load effects (LE’s) – bending moments, shear forces, etc. – result from traffic passing over a bridge. 

The process varies in time with many periods of zero LE when there is no traffic on the bridge and 

peaks corresponding to heavy vehicle crossings or more complex vehicle meeting or overtaking 

scenarios. The majority of the local peaks in LE are due to cars which are relatively light and there 

have been many efforts to simplify the problem by excluding consideration of these data. The 

methods of statistical inference used in the literature to predict the extremes of traffic LE’s are quite 

diverse.  

Tail Fitting 

In the context of this problem, many approaches fit a distribution to the tail of the Cumulative 

Distribution Function (CDF). This can be justified by the fact that the distribution is often made up of 

a mixture of load effect types – for example, LE’s due to 2-axle trucks and those due to heavy low-

loader vehicles. For bridge traffic loading, the heavier vehicles tend to dominate, with the lighter ones 

making very little contribution to the probability of exceedance at the extremes. The tail can be 

chosen by engineering judgement when the cumulative distribution is seen to change at a particular 

probability level. Alternatively, some authors have fitted to the top 2n of a distribution of n data, 

based on theoretical considerations (Castillo, 1988). Others have fitted to the top 30% of data  

(Enright, 2010) based on sensitivity analyses.   

Two of the tail fitting approaches are particularly popular – Peaks-Over-Threshold (POT) and Block 

Maximum. POT considers the extent by which the peaks of LE exceed a specified threshold. The POT 

LE’s are fitted to a probability distribution such as the Generalized Pareto distribution. In the Block 

Maximum approach, only the maximum LE’s in given blocks of time (days, years, etc.), are 

considered. This has the advantage of time referencing the data which is necessary when calculating 

lifetime maximum probabilities of exceedance. Block maximum LE’s can be fitted to one of a range 

of distribution types such as Generalised Extreme Value (GEV) (incorporating Gumbel, Weibull and 

Fréchet), or Normal. Fitting block maximum values to GEV and Normal distributions will be 

considered here. 

The Block Maximum approach has the disadvantage that only one LE in each block of time is 

considered, even if several very large LE’s are recorded. The POT approach addresses this issue but 
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the selection of the threshold, below which LE’s are discarded, is subjective. The Box-Cox approach 

is more general and aims to address the disadvantages of both POT and GEV. The Rice formula is 

also investigated as it was used for the extrapolations in the background study supporting the 

development of the Eurocode for traffic loading on bridges. However, while the Rice formula is a 

fitting to tail data, it is applied to a histogram of ‘upcrossings’ past a threshold, not to a CDF, and 

assumes a normally distributed process. 

 

Full Distribution Fitting 

Bayesian Updating is another approach that can be applied to bridge traffic loading. A probability 

distribution is assumed for the block maximum LE’s and is updated using available LE data. While 

only tail data could be used, in this work, the Bayesian approach is used to update the entire 

distribution, not just the tail. Predictive Likelihood also seeks to develop a probability distribution for 

all LE’s but uses a frequentist likelihood approach, assigning likelihoods on the basis of the quality of 

the fit to the measured data.  

 

2.1  Peaks Over Threshold  (POT)  

Block Maximum approaches use only the maximum LE in each block of time. There is therefore a 

risk that some important data is discarded: if two unrelated extreme loading events occur in the same 

block of time, only one of the resulting LE’s is retained. In such a case, the POT approach would 

retain both LE’s as valid data. 

To find characteristic maximum values of LE, data above the threshold must be fitted to a probability 

distribution. Coles  (2001) provides a brief outline proof that the Generalized Pareto (GP) distribution 

approximates the CDF of such POT data well. Crespo-Minguillón & Casas  (1997) use the GP 

distribution to model the excesses of weekly maximum traffic LE’s over a threshold. James  (2003) 

applies the POT method to analyse load effects on railway bridges. Gindy & Nassif  (2006) analyse 

load effects caused by combined data from over 33 Weigh-in-Motion sites over an 11-year 

measurement period, and compare extreme values as predicted by both GP and GEV distributions. 

A significant drawback of the POT approach is the issue of selecting the threshold. There are many 

different kinds of loading scenario on a typical bridge. For example, there are usually many single-

vehicle crossings of standard 5-axle trucks. The probability distribution of LE’s due to such an event 

type may be quite different from that due to large cranes or that due to 2-truck meeting events 

(Caprani et al., 2007). If the threshold is too low, there may be an excessive mixing of extreme event 

types with other less critical types which can result in convergence to an incorrect characteristic LE. 

On the other hand, if the threshold is too high, there will be too few peaks above the threshold, 

leading to high variance and unreliable results.  

The basic principle in selecting a threshold is to adopt as low a threshold as possible, while 

maintaining a consistent trend. Two methods are available (Coles, 2001): one is an exploratory 

technique carried out prior to model estimation; the other is an assessment of the stability of 

parameter estimates, based on the fitting of models across a range of different thresholds. Crespo-

Minguillón & Casas  (1997) apply the latter method and select the optimal threshold based on the 

overall minimum least-squares value.  
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Having selected the threshold, the next step is to estimate the parameters of the GP (or other) 

distribution. Bermudez & Kotz  (2010) consider several methods of estimating these parameters 

including the method of moments, the probability weighted method, the maximum likelihood method, 

and Bayesian updating. Crespo-Minguillón & Casas  (1997) adopt a methodology that is based on the 

minimization of the weighted sum of squared errors. James  (2003) and Gindy & Nassif  (2006) use 

maximum likelihood estimation. 

 

2.2  Block Maximum – Extreme Value Distributions 

Extreme value theory is based around the extreme value theorem, proved by Gnedenko  (1943) and 

based on initial work by Fisher & Tippett  (1928) and Gumbel  (1935). For a sequence of independent 

random variables X1, X2,..., with distribution function F(x) = Prob(X ≤ x), the distribution of 

max(X1,...,Xn) is F(x)
n
. As n gets large, this degenerates to 0 if F(x) < 1, as is usual. The Fisher-Tippett 

theorem shows that a non-degenerate distribution can be found using a linear function of x, say an + 

bnx. Then, there is a non-trivial limit to F(an + bnx) and this limit must be in the form of the 

Generalised Extreme Value distribution (GEV), also known as the Fisher-Tippett distribution 

(Jenkinson, 1955, Von Mises, 1936): 

 

Equation 1 

 

defined in terms of parameters ,  and  where  is the location parameter,  the scale 

parameter and 
 
the shape parameter, such that  1 0x     . Hence, for an appropriately 

large n, the exact distribution, F(x)
n
, converges asymptotically to FGEV(x). For the Normal distribution, 

the theorem holds and it is well known that its limiting distribution is the Gumbel, the  case of 

the GEV. However, convergence is slow (Cramér, 1946).   

Each block maximum LE is the maximum of many traffic loading scenarios. As convergence may be 

slow, Caprani  (2005) and OBrien et al.  (2010) have fitted block maximum LE data with a ‘Normal to 

the power of n’, i.e., a Normal distribution raised to some power, n, whose value is found by fitting to 

the data. This has merit for smaller data samples. Ghosn et al.  (2003) determine the distribution of 

lifetime maximum LE by raising the parent distribution of LE to an appropriate power. In this way 

they determine the mean and coefficient of variation of the maximum LE. Caprani  (2005) describes a 

probabilistic convolution method to obtain bending moments for single truck loading events and 

obtains the distribution of lifetime maximum LE by raising the parent distribution to an appropriate 

power. Other authors attempt to calculate the exact distribution of extreme load effect, based on a fit 

to the parent distribution (Bailey, 1996, Bailey & Bez, 1994, Cooper, 1995, Getachew, 2005, Ghosn 

& Moses, 1985, Nowak & Hong, 1991, Nowak et al., 1993). This is done by raising the initial 

distribution to an appropriate power.  

Most researchers fit block maximum LE data to one of the extreme value distributions described by 

the GEV equation: Gumbel, Fréchet or Weibull (also known as Types I, II or III). The three types of 

distribution have distinct forms of behaviour, corresponding to the different forms of the tail in the 
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original distribution function (Fisher & Tippett, 1928). Coles  (2001) establishes the conditions under 

which the Gumbel, Fréchet and Weibull distributions are the limiting forms for various parent 

distributions (Gumbel, 1958).  

In early applications of Extreme Value theory, it was usual to adopt one of the three distributions, and 

then to estimate the relevant parameters. There are two weaknesses with this: first, a technique is 

required to choose which of the three distributions is most appropriate for the data at hand; second, 

once such a decision is made, subsequent inferences presume this choice to be correct, and do not 

allow for the uncertainty such a selection involves, even though this uncertainty may be substantial 

(Coles, 2001). Nevertheless, many studies (Caprani & OBrien, 2006, Caprani et al., 2008, Kanda & 

Ellingwood, 1991, O’Connor & OBrien, 2005) indicate that LE data is either Weibull or Gumbel and, 

given that Gumbel is a special case of Weibull (with shape parameter,  = 0), an assumption that LE is 

always of the form of Equation 1, with    0, seems reasonable.  

Grave  (2001) uses a weighted least-squares approach to fit Weibull distributions to critical LE’s. 

O’Connor  (2001) fits Gumbel and Weibull distributions to a population of ‘extreme’ LE’s. OBrien et 

al.  (2003) plot hourly maximum strain values on Gumbel probability paper. A least-squares, straight-

line fit is made to the upper  data points in a similar manner to Grave  (2001) and O’Connor  

(2001). González et al.  (2003) also use the Gumbel and Weibull distributions to extrapolate bridge 

load effect. Getachew  (2005) fits the Generalized Extreme Value distribution to the LE’s from 

simulated 2-truck meeting events representing two weeks of traffic. Bailey  (1996) describes the use 

of plots of the mean and standard deviation of load effects, to estimate the appropriate extreme value 

distribution. Bailey  (1996), Bailey & Bez  (1994) and Bailey & Bez  (1999) describe a qualitative 

analysis of 500 simulated upper tails of mean maximum load effects plotted against the number of 

events that contribute. They determine that the Weibull distribution is most appropriate to model these 

tails and use maximum likelihood estimation. (Cooper, 1997) presents a traffic model of about 81 000 

measured truck events, and uses it to determine the distribution of LE’s due to a ‘single event’. He 

raises this distribution to powers to determine the distribution of LE for 1, 4, 16, 256 and 1024 such 

events. A Gumbel distribution is then fitted to this 1024-event distribution and used to extrapolate to a 

2400-year return period. Cooper  (1997) converts histograms of two-week traffic LE’s into CDF’s, 

which he then raises to a power equal to the number of trucks per day, to give the distribution of daily 

block maxima. 

Moyo et al.  (2002) plot daily maximum strain values on Gumbel probability paper and use a least-

squares fit to determine the parameters of the distribution. Buckland et al.  (1980) use a Gumbel 

distribution to fit the 3-monthly maximum LE’s and extrapolate to find characteristic values. 

Getachew  (2005) uses the GEV distribution to model the parent distribution of load effect, but not as 

an asymptotic approximation to the distribution of extreme values. Sivakumar et al.  (2011) adopt the 

Gumbel distribution to project the statistics of the maximum LE’s for different return periods. 

 

2.3   Box-Cox Approach 

Researchers commonly debate the merits of the POT method relative to the Block Maximum 

approach. The Box-Cox transform  (Box & Cox, 1964) is used by Bali  (2003) to introduce a more 

general extreme value distribution that encompasses the Generalised Pareto and Generalised Extreme 

Value distributions (Caprani & OBrien, 2009, Rocco, 2010). This transformation offers the possibility 

of improving the rate of convergence to the limiting extreme value form, since different distributions 
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converge at different rates. This approach restricts the methodology to cases where the extreme data 

are strictly positive (Wadsworth et al., 2010) but still encompasses a wide variety of practical 

problems including traffic loading on bridges. The use of the Box-Cox transformation in extreme 

value analysis was considered before in an entirely different context by Eastoe & Tawn  (2009).  

The Box-Cox-GEV extreme value distributions are given by Bali  (2003) as: 

 
Equation 2 

 

in which  

 
Equation 3 

 

The parameters of this distribution are those of the GEV (μ, σ, ξ) plus a ‘model parameter’, λ. As λ 

→1, Box-Cox converges to the GEV distribution. Conversely, as λ →0, by L’Hôpital’s Rule, it 

converges to the GP distribution. To apply this model, a high threshold is set on the parent distribution 

(Caprani & OBrien, 2009, Rocco, 2010). Bali  (2003) uses a threshold of two standard deviations 

about the sample mean. Caprani & OBrien’s (2009) thresholds are taken in steps of 0.5 standard 

deviations in the range from −2.5 to +2.5 standard deviations about the sample mean. Tötterman  

(2010) suggests that the additional parameter should increase the accuracy for Box-Cox, compared 

with GEV and GP. 

Bali & Theodossiou  (2008) evaluate the performance of three extreme value distributions including 

the GP, GEV and Box-Cox. The empirical results show that the asymptotic distribution of the 

maximal and minimal returns fits the Box-Cox-GEV distribution in this case. A likelihood ratio test 

between the GEV and Box-Cox results in a rejection of the former (Bali & Theodossiou, 2008, 

Caprani & OBrien, 2009). 

 

2.4 Block Maximum – Normal Distribution 

Block maximum data is often fitted with extreme value distributions as each data point represents the 

maximum of a number of parent values. However, block maximum data is also sometimes fitted to a 

Normal distribution. Nowak  (1999) uses a form of Normal (Gaussian) probability paper, i.e., he fits 

the block maximum data to a Normal distribution and extrapolates to find the characteristic 

maximum. In an earlier study, Nowak  (1993) uses 2.4 hours as the block size and fits the maximum-

per-block data to a Normal distribution. This distribution is then raised to an appropriate power to 

obtain the 75-year maximum LE distribution.  

To calibrate the traffic load model for the AASHTO load and resistance factor design (LRFD) 

approach, Nowak and others use Normal probability paper to extrapolate the maximum LE’s for time 

periods from 1 day to 75 years, based on a set of 9250 heavy vehicles representing about two weeks 

of heavy traffic measured on a highway in Ontario (Kulicki et al., 2007, Moses, 2001, Nowak, 1994, 

Nowak, 1995, Nowak, 1999, Nowak & Hong, 1991, Nowak et al., 1993, Sivakumar et al., 2011). The 

expected values of the lifetime maximum LE’s are found by fitting a straight line to the tails of the 

data on Normal probability paper.  
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Kulicki et al. (2007) identify the fact that block maximum LE’s due to measured trucks are not 

Normal but fits tail data to the Normal distribution. In the background studies for Eurocode 1, Flint & 

Jacob  (1996) fit half-normal curves to the ends of the histograms of LE. They adopt a least-squares 

best fit method to estimate the distribution parameters. Multimodal (bimodal or trimodal) Gumbel and 

Normal distributions are also used.  

 

2.5  Rice Formula 

The Rice formula, introduced by Rice  (1945) and described more recently by Leadbetter et al.  

(1983), can be used to find a parametric fit to statistical data. Ditlevsen  (1994) suggests that a load 

effect created by the traffic on a long span bridge can be modelled as a Gaussian random process. 

Under that hypothesis, the mean rate  of up-crossings for a threshold level,  during 

a reference period , can be expressed by the Rice formula:  

 
Equation 4 

 

where, x is the threshold value of LE,  is the mean value,  is the standard deviation and  is the 

first derivative of  with respect to time. 

The CDF can be found from the definition of return period which is the mean period between two 

occurrences, or the value with an expectation of being crossed one time during the return period, R 

(Cremona, 2001): 

 
Equation 5 

 

where, v0 is     /2π . 

 

Cremona  (2001) suggests the Kolmogorov test (DeGroot, 1986) to select the optimal number of class 

intervals and starting points. Getachew  (2003) adopts Cremona's approach for the analysis of traffic 

LE’s on bridges induced by measured and Monte Carlo simulated vehicle data. O’Connor & OBrien  

(2005) compare the predicted extremes of simply supported moment for a range of span lengths by 

the Rice formula, Gumbel and Weibull Extreme Value distributions: they find about 10% difference 

between Rice and the others. Finally, Jacob  (1991) uses Rice's formula to predict characteristic LE’s 

for the cases of free and congested traffic in background studies for the development of the Eurocode. 

 

2.6   Fitting Distributions to Extreme Data & Bayesian Inference 

The concept of Bayesian Updating stems from Bayes’ Theorem and is a major pillar of modern 

statistics. Bayesian Updating involves the adoption of an initial (prior) probability distribution, 

perhaps based on past experience, and updating it on the basis of measured data to give a posterior 

distribution (Basu, 1964, Bhattacharya, 1967, Holla, 1966). 
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Sinha & Sloan  (1988) use Bayesian Inference to find the full 3-parameter Weibull distribution from 

measured data. They propose the use of Bayes Linear Estimate to approximate the posterior 

expectations and formulate the corresponding calculations for the Weibull parameters. Smith & 

Naylor  (1987) work with the 3-parameter Weibull distribution, comparing Maximum Likelihood with 

Bayesian estimators, using specially adapted versions of numerical quadrature to perform the 

posterior calculations. Although the priors they work with are arbitrary, they are chosen to reflect a 

range of potential scientific hypotheses. They report that the Bayesian inferential framework as a 

whole proves more satisfactory for their data analysis than the corresponding likelihood-based 

analysis. The issue of prior elicitation is pursued by Singpurewalla & Song  (1988), who restrict 

attention to the 2-parameter Weibull model. The predictive density function (Aitchison & Dunsmore, 

1980) is defined as: 

 
Equation 6 

 

where x represents historical data, y a future observation,  the vector of parameters describing the 

distribution,  the likelihood and  the posterior distribution of  given x. Thus, the 

predictive distribution averages the distribution across the uncertainty in  as measured by the 

posterior distribution. Lingappaiah  (1984) develops bounds for the predictive probabilities of extreme 

order statistics under a sequential sampling scheme, when sampling is carried out from either an 

exponential or Pareto population. From a practical viewpoint, the most important issues arising from 

the Bayesian literature are the elicitation and formulation of genuine prior information in extreme 

value problems, and the consequent impact such a specification has on subsequent inferences. Coles 

& Tawn  (1996) consider a case study in which expert knowledge is sought and formulated into prior 

information as the basis for Bayesian analysis of extreme rainfall.  

 

2.7   Predictive Likelihood 

The relatively new theory of frequentist Predictive Likelihood can be used to estimate the variability 

of the predicted value, or predictand. Fisher  (1959) is the first clear reference to the use of likelihood 

as a basis for prediction in a frequentist setting. A value of the predictand (z) is postulated and the 

maximized joint likelihood of the observed data (y) and the predictand is determined, based on a 

probability distribution with given parameters. The graph of the likelihoods thus obtained for a range 

of values of the predictand, yields a predictive distribution. Such a predictive likelihood is known as 

the profile predictive likelihood. Denoting a normed likelihood by  this is given by: 

 
Equation 7 

 

This formulation states that the likelihood of the predictand, z, given the data, y, is proportional to the 

likelihood of both the data (Ly) and the predictand (Lz) for a maximized parameter vector,  (Caprani 

& OBrien, 2010). 

Mathiasen  (1979) appears to be the first to study Fisher’s Predictive Likelihood and notes some of its 

problems. Foremost in this work is the problem that it does not take into account the parameter 

variability for each of the maximizations of the joint likelihood function required (Bjornstad, 1990, 
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Lindsey, 1996). Lejeune & Faulkenberry  (1982) propose a similar predictive likelihood, but include a 

normalizing function. 

Predictive Likelihood is a general concept and in the literature many versions have been proposed. 

Cooley and Parke have a number of papers dealing with the prediction issue (Cooley & Parke, 1987, 

Cooley & Parke, 1990, Cooley et al., 1989). However, their method relies on the assumption that the 

parameters are normally distributed. Leonard  (1982) suggests a similar approach while Davison & 

Hinkley  (1997) use a different form of Predictive Likelihood.                                                        

Caprani & OBrien  (2010) use the Predictive Likelihood method proposed by Butler  (1986), based on 

that of Fisher  (1959) and Mathiasen  (1979) and also considered by Bjornstad  (1990). Lindsey  

(1996) describes the reasoning behind its development. This Predictive Likelihood is the Fisherian 

approach, modified so that the variability of the parameter vector resulting from each maximisation is 

taken into account. 

 

3. Simple Extreme Value Problem 

To assess the safety of a bridge, a limited quantity of data is generally used to infer a probability of 

failure, a characteristic maximum or a statistical distribution of maximum load effects. Probability of 

failure is clearly the most definitive measure of bridge safety. However, it is strongly influenced by 

resistance which varies greatly from one example to the next. In order to retain the focus on load 

effect, the resistance distribution is here assumed to be a mirrored version of the exact LE distribution, 

shifted sufficiently to the right to give an annual probability of failure of 10
-6

 – see Figure 1. 
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Figure 1- Load Effect and Mirror Resistance 

A simple example is used here to compare the alternative methods of extrapolation. A Normally 

distributed random variable (such as vehicle weight in tonnes) is first considered: 

 

Z N(40, 5) Equation 8 
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Three thousand values of Z are considered in a given block, say per day, with maximum: 

 

 max 1,2, ,3000iX Z i   Equation 9 

     

 

Typically, a finite number of days of data is available and extreme value distributions are inferred 

from a dataset of daily maximum values. Hence, a finite number of daily maxima (X values) may be 

used to infer, for example, annual maximum distributions. In all cases, the days are considered to be 

working days and a year is taken to consist of 250 such days.  

The exact solution to this problem is readily calculated. The annual maximum can be expressed as: 

 

 Equation 10 

 

where n is the number of values in a year, equal to (250×3000 =) 750 000. 

 

3.1 Methods of Inference 

Three alternative quantities of daily maximum data are considered: 200, 500 and 1000 working days. 

A wide range of statistical extrapolation methods are tested in each case to estimate the distribution 

for annual maximum LE:  

 Peaks Over Threshold (POT) data, fitted to the Generalized Pareto distribution; 

 Generalized Extreme Value (GEV) fit to tail of daily maximum data; 

 Box-Cox fit to tail of daily maximum data; 

 Normal distribution fit to tail of daily maximum data; 

 Fit of Upcrossing frequency data tail to Rice formula; 

 Bayesian fit to all daily maximum data; 

 Predictive Likelihood (PL) fit to all daily maximum data. 

In each case, the probability distribution of LE is inferred and the theorem of total probability is used 

with the exact resistance distribution to determine the probability of failure (defined as LE exceeding 

resistance).  

Figure 2 uses Gumbel probability paper to illustrate the first four methods of tail fitting to the CDF’s: 

POT, GEV, Box-Cox and Normal. For all four cases, a least squares fit is found for the top 30% of 

values from 1000 daily maximum LE’s. The exact distribution is shown for comparison. All 

distributions give good fits, with the Normal being more ‘bounded’ than the others in this example, 

i.e., tending more towards an asymptote at extremely low probabilities. 
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Figure 2 – Best fit distributions using four tail-fitting methods inferred from 1000 days of data 

The Rice formula fit is illustrated in Figure 3 which gives the histogram of upcrossings above each 

threshold, for the same 1000 daily maxima. While Cremona  (2001) has considered a variable quantity 

of data, the top 30% is used here to provide a direct comparison with the other tail fitting methods. 
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Figure 3 – Rice Formula Fit to Tail for 1000 days of data 

 

Bayesian Updating is the sixth method considered. In this case, unlike the tail fitting methods, all 

1000 daily maximum LE’s are used. The method is therefore a Bayesian approach applied to block 

maximum data. The data is assumed to be GEV except that, in this case, a family of GEV 
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distributions is considered. The GEV parameter values are initially assumed to be equally probable 

within specified ranges (uniform prior distributions). The daily maximum data is then used to update 

their probabilities.  

The final method applied to this problem, Predictive Likelihood, is also based on the entire dataset of 

1000 block maximum values and an assumed GEV distribution. The method is based on the concept 

of calculating the joint likelihood of a range of possible values at a given level of probability 

(predictands), given the value of that predictand and the available daily maxima. For example, Figure 

4 shows the joint fit to Point A, given the daily maximum data and the joint fit to Point B, given that 

same set of daily maxima. The likelihood of actually observing Point A is less than that of Point B, 

given the measurements available. In this way, the joint likelihoods of a wide range of possible 

predictands are calculated and used to infer a probability distribution for a given time period, such as 

a year. 
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Figure 4- Predictive Likelihood 

 

3.2 Inference of Annual Maximum Results from Daily Maximum Data  

For the first four tail fitting methods – POT, GEV, Box-Cox and Normal – the parameters of the daily 

maximum distributions are inferred from the best fits to the top 30% of the daily maximum data, i.e., 

the block size is one day. Allowing for public holidays and weekends, 250 days are assumed per year. 

The annual maximum distribution can then be found by raising the CDF for daily maximum to the 

power of 250.  

The Rice formula approach is also a tail fitting method but, in this case, the CDF for annual maximum 

is found directly from Equation 5. Bayesian Updating and Predictive Likelihood both infer the annual 

maximum distribution directly as described above. 

Figure 5 illustrates the annual maximum CDF’s inferred from all 7 approaches, together with the 

corresponding exact distribution. For this example, most of the tail fitting methods and Predictive 

Likelihood are more bounded than the exact solution, while Bayesian Updating is less so. The 
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horizontal line corresponds to a return period of 75 years and it can be seen that all methods except 

Bayesian Updating, Box-Cox and GEV are slightly non-conservative.  
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Figure 5 – Inferred Annual Maximum CDF’s  

Characteristic values are calculated for a 75-year return period. The process is repeated for three 

different quantities of daily maximum data: 200, 500 and 1000 days. For each of the three quantities, 

the characteristic values are calculated 20 times so that a measure of the variability in the results can 

be found. Figure 6 shows the mean of the 20 runs in each case, ± one standard deviation. 
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Figure 6 – Inferred 75-year Characteristic Values (mean ± one standard deviation)  

For 1000 days of data, the results are moderately accurate in most cases, generally falling in the 66 to 

71 range. For POT, GEV and Box-Cox, the exact value falls within the error bars and the mean error 

is less than 1 from that value. Errors in individual results are less good, being as high as 6.1 in one 

case for GEV. There is no significant difference between these three methods. The Rice formula is 

relatively good. Results from tail fitting to a Normal distribution do not include the exact value in the 

error bars. However, the mean error is only 0.94 from the exact value and all the results are 

reasonably close. Predictive Likelihood is good – the mean is very close to the exact value and the 

error bars are small. For Bayesian Updating, the error bars are very small – results are highly 

repeatable – but it is consistently a little conservative for these 20 examples. 

Not surprisingly, results are considerably less accurate when fewer days of data are available for 

inference. With 500 days of data, Normal includes the exact result within its error bars. Bayesian 

Updating looks better than before with the error bars coming close to the exact solution for both 500 

and 200 days of data. Rice is again better than POT, GEV and Box-Cox with a mean very close to the 

exact and reasonably small error bars. For 200 days of data, PL looks less good than before, with the 

error bars becoming greater than Normal and Rice. 

In order to compare inferred probabilities of failure, the exact annual maximum probability density 

function is mirrored to give a resistance distribution that implies a failure probability of 10
-6

. This 

resistance distribution is then used with each of the inferred distributions to determine the apparent 

probability of LE exceeding resistance. The calculated probabilities are illustrated in Figure 7. 
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Figure 7 – Mean ± One Standard Deviation of Inferred Probabilities of Failure, Pf  plotted to a Normal scale (ϕ 

= cumulative distribution function for Normal distribution)  

 

Even when plotted on a Normal distribution scale, the probabilities for this example are quite 

inaccurate. This exercise is analogous to an extrapolation from 200 - 1000 days of data to 1 million 

years (i.e., annual probability of failure of 10
-6

). While the variability in the results is hardly 

surprising, it has significant implications for any Reliability Theory calculation. 

As before, for inference using POT, GEV and Box-Cox, the exact value falls within the error bars. On 

a scale, the mean error from 1000 days of data is less than about 0.5 from the exact value. Errors in 

individual results are considerably worse, being as high as 2.1 in the case of one outlier for GEV. The 

Rice formula is again relatively good, perhaps benefiting from not having an inferred daily maximum 

distribution raised to the power of 250. 

Predictive Likelihood is relatively good and, while results from the Normal distribution do not include 

the exact value in the error bars, all results are reasonably close to the exact. Bayesian Updating is 

similar to the results for characteristic value. The error bars are again small and the mean is not near 

the exact value.   

 

4. Traffic Load Effect Problem 

As part of the European 7
th
 Framework ARCHES project [1], extensive WIM measurements were 

collected at five European sites: in the Netherlands, Slovakia, the Czech Republic, Slovenia and 
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Poland. The ARCHES site in Slovakia is used as the basis for the simulation model presented here.  

Measurements were collected at this site for 750 000 trucks over 19 months in 2005 and 2006. The 

traffic is bidirectional, with average daily truck traffic (ADTT) of 1100 in each direction. Very heavy 

trucks were recorded at all sites, with a maximum gross vehicle weight (GVW) of 117 t being 

recorded in Slovakia.  

A detailed description of the methodology adopted is given by Enright & OBrien  (2012), and is 

summarised here. For Monte Carlo simulation, it is necessary to use a set of statistical distributions 

based on observed data for each of the random variables being modelled. For gross vehicle weight and 

vehicle class (defined here simply by the number of axles), a semi-parametric approach is used as 

described by OBrien et al.  (2010). This involves using a bivariate empirical frequency distribution in 

the regions where there are sufficient data points. Above a certain GVW threshold value, the tail of a 

bivariate Normal distribution is fitted to the observed frequencies which allows vehicles to be 

simulated that may be heavier than, and have more axles than, any measured vehicle. Results for 

lifetime maximum loading vary to some degree based on decisions made about extrapolation of 

GVW, and about axle configurations for these extremely heavy vehicles, and these decisions are, of 

necessity, based on relatively sparse observed data. 

Bridge load effects for the spans considered here (Table 1) are very sensitive to wheelbase and axle 

layout. Within each vehicle class, empirical distributions are used for the maximum axle spacing for 

each GVW range. Axle spacings other than the maximum are less critical and trimodal Normal 

distributions are used to select representative values. The proportion of the GVW carried by each 

individual axle is also simulated in this work using bimodal Normal distributions fitted to the 

observed data for each axle in each vehicle class. The correlation matrix is calculated for the 

proportions of the load carried by adjacent and non-adjacent axles for each vehicle class, and this 

matrix is used in the simulation using the technique described by Iman & Conover  (1982).  

Traffic flows measured at the site are reproduced in the simulation by fitting Weibull distributions to 

the daily truck traffic volumes in each direction, and by using hourly flow variations based on the 

average weekday traffic patterns in each direction. A year’s traffic is assumed to consist of 250 

weekdays, with the very much lighter weekend and holiday traffic being ignored. This is similar to the 

approach used by Caprani et al.  (2008) and Cooper  (1995). For same-lane multi-truck bridge loading 

events, it is important to accurately model the gaps between trucks, and the method used here is based 

on that presented by OBrien & Caprani  (2005). The observed gap distributions up to 4 seconds are 

modelled using quadratic curves for different flow rates, and a negative exponential distribution is 

used for larger gaps. 

The modelled traffic is bidirectional, with one lane in each direction, and independent streams of 

traffic are generated for each direction. In simulation, many millions of loading events are analysed, 

and for efficiency of computation, it is necessary to use a reasonably simple model for transverse load 

distribution on two-lane bridges. For bending moment the maximum LE is assumed to occur at the 

centre of the bridge, with equal contribution laterally from each lane. In the case of shear force at the 

supports of a simply supported bridge, the maximum occurs when each truck is close to the support, 

and the lateral distribution is very much less than for mid-span bending moment. In this case a 

reduction factor of 0.45 is applied to the axle weights in the second lane. This factor is based on finite 

element analyses performed for different types of bridge (OBrien & Enright, 2012). The load effects 

and bridge lengths examined in the simulation runs are summarized in Table 1.  
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Table 1 – Load effects and bridge lengths 

 Load Effect Bridge Lengths (m) 

LE1 Mid-span bending moment, simply supported bridge 15, 35 

LE2 Shear force at start/end of a simply supported bridge 15, 35 

LE3 Central support hogging moment, 2-span continuous 

bridge 

35 

 

Two series of simulation runs are performed – one to represent possible measurements over 1000 

days, repeated 20 times, and another to represent the benchmark (‘exact’) results, consisting of 5000 

years of traffic. For the benchmark run, the outputs consist of annual maximum LE’s, and these can 

be used to calculate the characteristic values and annual maximum distributions to a high degree of 

accuracy.  

Sample results are plotted on Gumbel probability paper in Figure 8 for the 5000-year simulation run. 

Two load effects are shown – shear force (LE2) on a simply supported 15 m bridge, and hogging 

moment (LE3) over the central support of a two-span bridge of total length 35 m. Due to the 

randomness inherent in the process, there is some variability in the results, particularly in the upper 

tail region (top 1% of data approximately). Weibull fits to the upper 30% tail are used to smooth this 

variability (as shown in figure), and these are used to calculate the characteristic values. This long-run 

simulation process is considered to be highly accurate, subject to the assumptions inherent in the 

model and is used as the benchmark against which the accuracy of all other methods is measured. 
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Figure 8 – Annual maximum LE’s from 5000 years of simulation 

 

 

4.1   Results of Inference Based on Long-run Simulation Data  



18 

 

The assumed measurements consisting of 1000 simulated daily maxima are used as the basis for 

extrapolation using each method to estimate the ‘true’ results calculated from the long-run simulation. 

For the five tail fitting methods, the distributions are fitted to the top 30% of data. For some load 

effects and spans, the distribution of the data is multi-modal (see Figure 9), i.e., there is a change in 

slope – around 400 kN in this case – implying data from a different parent distribution. In the case 

illustrated, there is a change around this point from (i) daily maxima arising from regular trucks and 

cranes to (ii) maxima arising from extremely heavy and rare low-loader vehicles.    
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Figure 9 – Daily Maximum LE2 - 15 m span Data and Inferred Distributions 

The 75-year characteristic maximum LE’s are inferred from the assumed measurements. This process 

is carried out for the 5 load effects and repeated 20 times to determine the variability in results. The 

results are illustrated in Figure 10 which shows, in each case (i) the median value, (ii) the 25% to 75% 

range (boxed), (iii) the 0.7% to 99.3% range (median ± 2.7 standard for normally distributed data) 

(dashed lines) and (iv) individual outliers beyond that range.  

Figure 10 shows that the first three tail fitting methods are reasonably good, with modest range and 

median value close to the benchmark result from the 5000 year run. As for the simple example, fitting 

to a Normal distribution gives a lesser range of results which, in this case, are all reasonably close to 

the benchmark. The Rice method is generally better than all the others.  

Predictive Likelihood gives poor results for these traffic loading problems. Characteristic values are 

sometimes under-estimated and other times over-estimated, with no clear trend. Sensitivity studies of 

these results show that there is significant influence of the Fréchet (unlimited) tail of the GEV 

distribution that is used to jointly maximize the likelihood of observing the data and the predictand. If 

the fit is limited so that Fréchet tails are not permitted (admitting only Weibull or Gumbel tails), as 

could be argued from the physical bounds of the traffic loading phenomenon, then the fits improve. 

Bayesian Updating is surprisingly poor for this class of problem. As for the simpler example, the 20 

results are consistent but deviate significantly from the benchmark results. Several variations were 
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tested in attempts to find a Bayesian approach that is consistently good. The GEV distribution was 

fitted to the top 30% of data, as an alternative to fitting it to all the data. Different numbers of 

parameters of the GEV distribution were updated: two ( and ) and three (,  and ). Different 

prior distributions were assumed for these parameters – Normal and Uniform. For the latter, different 

ranges were tested for the parameter values. None of these variations produced consistently better 

results for the five LE’s and spans. The results shown are based on use of all the data; updating just 

two parameters ( and ) with a Uniform prior distribution and a limit on the range of  to be non-

positive. 
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(a) Legend  

 

(b) LE1 – Mid-span Moment, 15 m Span 
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(c) LE2 – Support Shear, 15 m Span  

 

(d) LE1 – Mid-span Moment, 35 m Span 
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(e) LE2 – Support Shear, 35 m Span (f) LE3 – Support Moment, 2×17.5 m Spans 

 

Figure 10 – Range of Inferred 75-year Characteristic Values from 1000 Days of Data 
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Annual probabilities of failure are also inferred for the five combinations of load effect and span. As 

before, the probability of failure for the benchmark example is set at 10
-6

 in each case and the 

resistance distribution is taken to be a mirrored version of the benchmark LE distribution.  

The results are illustrated in Figure 11. As for the simple example, the errors in the probabilities, even 

when plotted on a Normal scale, are much higher than for characteristic values. Most of the tail fitting 

methods – POT, GEV, Box-Cox and Rice formula – give relatively good results, with the Rice 

formula generally beating the others. As before, when fitting to a Normal distribution, the benchmark 

result is sometimes outside the 25%-75% range, but not by a great deal. As for the characteristic 

values, Bayesian Updating and Predictive Likelihood are less accurate than the other methods. 
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(a) LE1- Mid-span Moment, 15 m Span 
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(b) LE2 – Support Shear, 15 m Span  

 

(c) LE1 – Mid-span Moment, 35 m Span 
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(d) LE2 – Support Shear, 35 m Span (e) LE3 – Support Moment, 2×17.5 m Spans 

 

Figure 11 – Probabilities of Failure Inferred from Sets of 1000 Daily Maximum LE’s 

 

5. Conclusions 

In this paper, seven methods of statistical inference are critically reviewed. Each method is also tested 

using two examples. The first example is derived from a Normal distribution and the exact solution is 

known. A total of 3000 normally distributed values (e.g., vehicle weights) are considered per day and 

the daily maxima are used to infer the characteristic maximum and the probability of failure in a year. 

In the second example, a sophisticated algorithm is used to generate a train of vehicles with weights 

and axle configurations consistent with measured Weigh-in-Motion data. Five different combinations 

of load effect and span are considered and, in each case, characteristic values and probabilities of 

failure are again calculated. In these cases, the exact solutions are not known but the simulation is run 

for 5000 years to obtain accurate benchmark references against which inferences based on 1000 days 

of data can be compared.   

Of the seven methods considered, five are tail-fitting approaches, i.e., a distribution is fitted to the tail 

of the data. Peaks-Over-Threshold (POT) is popular in some sectors but is not time-referenced and 

selecting the threshold is a subjective process. Fitting the tail of block-maximum data to a Generalized 

Extreme Value (GEV) is perhaps the most popular used for bridge traffic loading, with a typical block 

size of a day. Box-Cox could be considered to be a hybrid between POT and GEV. These three 

methods are generally good for inferring the characteristic values, both for the simple and the more 

complex examples. There is no theoretical justification for fitting block maximum data to the tail of a 

Normal distribution but it is sometimes done. It is found here to give reasonably accurate results, with 

a small standard deviation. Finally, the Rice formula is an indirect approach as it is the upcrossing 

frequencies that are fitted to the formula, rather than the data itself. Nevertheless, it performs well in 

these tests, generally better than POT and GEV. 

Bayesian Updating is used here to fit the block maximum data to a family of GEV distributions. The 

parameters of the GEV are allowed to vary, their associated probabilities being updated as the data is 

considered. The results from the Bayesian approach are found to be generally poor and several 

variations in the approach did not produce consistently good results. Finally, Predictive Likelihood is 

considered, a method where the likelihood of each inferred characteristic value is considered, given 

the available data. This is also found to give poor results. 
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All seven methods are used to infer the annual probabilities of failure as well as the characteristic 

values. To avoid the need for any assumption on the distributions for resistance, the benchmark load 

effect distribution is mirrored and this mirrored version is used in the calculation of probability of 

failure.  

The inferred failure probabilities are considerably less accurate than the inferred characteristic values, 

perhaps not surprising given that such a small failure probability was being considered (10
-6

 in a 

year). As for characteristic values, the tail fitting methods are better than the others but none of the 

methods gives an accurate inference with 1000 days of data.  
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