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Résumé. We introduce a goal-oriented procedure for the updating of mechanical models. It
exploits as usual information coming from experimental data, but these are post-processed in
a specific way in order to firstly update model parameters which are the most influent for the
prediction of a given quantity of interest. The objective is thus to perform a partial model
updating that enables to obtain an approximate value of the quantity of interest with sufficient
accuracy and minimal model identification effort. The updating method uses the constitutive
relation error framework, as well as duality and adjoint techniques, and defines dedicated cost
functions. It leads to a convenient strategy that automatically selects the relevant parameter
set to be updated. Performances of the approach are analyzed on examples involving linear
elasticity and transient thermal models with possible noisy measurements.

1. Introduction

A major concern with mathematical models is their capability to represent a faithful abs-
traction of the real world. To address this issue and control the error between physical and
mathematical models, model validation methods have been used for a long time [13]. In such me-
thods, model parameters are identified or updated in order to minimize the discrepancy between
numerical predictions and experimental measurements. The process leads to inverse problems
which are usually ill-posed and require special care and regularization techniques in order to
ensure solvability [3].
We focus here on the updating of Computational Mechanics models, in which a major component
is the constitutive equation that describes the local behavior of the material [6]. We consider that
only few localized measurements are available. Several procedures exist in this framework to iden-
tify parameters, both in a deterministic setting (minimization of cost functions associated with
regularization techniques [3]) and in a stochastic setting (Bayesian inference [14]). The concept
of Constitutive Relation Error (CRE) defines another model updating we use here. First introdu-
ced for dynamics models [10, 2, 7], this method was latter successfully used in many calibration
applications with defects [5], uncertain measurements and behaviors [12], or corrupted measure-
ments [1]. Recent applications of the method dealt with the updating of models used in bolted
assemblies [8], or association with PGD reduced models to deal with real-time calibration of
machining models [4]. The use of the CRE presents various advantages, such as the capacity to
localize structural defects spatially, the robustness with respect to noisy measurements, and good
convexity properties. In the CRE framework, reliable theoretical and experimental information
(equilibrium, sensor position) are favored compared to other information (material behavior,
sensor measures), and the hierarchical updating which is employed (only most erroneous zones
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are corrected) directly provides for a regularization process.

In this work, we consider that the prediction target is only the value of a given output of
the model (quantity of interest) that implicitly depends on model parameters and is relevant
for design (local stress, maximal displacement,. . .). Therefore, if the quantity of interest is not
very sensitive with respect to some parameters, there is probably no need to estimate these
parameters with high accuracy. This would lead to a partial calibration of the model so as to
ensure the quality of predicted quantities of interest with a minimal calibration effort. We thus
define a goal-oriented version of updating methods performed using the CRE, focusing on the
sensitivity of the considered quantity of interest with respect to parameters and measurements.
We define new dedicated cost functions that lead to a convenient goal-oriented updating process,
selecting automatically the relevant model parameters that need to be updated for the prediction
of the quantity of interest. For the sake of simplicity, we present the new method and tools in
the framework of linear elasticity models, whereas numerical experiments will also involve time-
dependent problems.

2. Classical updating method based on the constitutive relation error

We consider a linear elastic body whose undeformed configuration occupies domain Ω ⊂ R
d,

with boundary ∂Ω. It is subjected to a given displacement field ud on ∂1Ω ⊂ ∂Ω, whereas a
body force field d and a traction force field Fd are imposed in Ω and on ∂2Ω, respectively, with
∂1Ω ∪ ∂2Ω = ∂Ω and ∂1Ω ∩ ∂2Ω = ∅. The corresponding model is governed by compatibility,
equilibrium and constitutive equations which respectively read :"(u) = 1

2
(∇u +∇Tu) in Ω ; u = ud on ∂1Ω (1)

div�+d = 0 in Ω ; �n = Fd on ∂2Ω (2)� = K"(u) in Ω (3)

u is the displacement vector, " the linearized strain tensor, � the Cauchy stress tensor, and
n the outward unit normal vector. K denotes the Hooke tensor, possibly heterogeneous, and
we suppose it is described by a set p of parameters. We introduce classical sets U = {v ∈
[H1(Ω)]d,v verifies (1)} and S = {� ∈ [L2(Ω)]d(d+1)/2,� = �T ,� verifies (2)}. Equations (1–3)
constitute a direct problem that can be recast in the following weak form :

Find u(p) ∈ U such that A(p,u,v) = a(p,u,v)− l(v) = 0 ∀v ∈ U0 (4)

where U0 denotes the vectorial space associated with U .

The constitutive relation error (CRE) is a concept with strong mechanical content [11]. It
defines an energy measure, denoted E , of the distance between a given stress field � and another
stress field obtained from a given displacement field v using (3) :

E2(p,v,�) = 1

2

∫

Ω
[� −K(p)"(v)] : K−1(p) [� −K(p)"(v)]dΩ (5)

Its usefulness is explained by the fact that the solution (u,�) of the well-posed direct problem
(1–3) is characterized by (u,�) = argmin(v,�)∈U×S E(p,v,�). In recent model calibration
formulations using the CRE, the cost (misfit) function F is constructed from E ; boundary
conditions coming from experimental data are relaxed and imposed by penalization in a new
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definition of the constitutive relation error called modified constitutive relation error [10, 2, 7]
and denoted Em :

E2
m(p,v,�) = E2(p,v,�) + 1

2

r

1− r
||s[v]− sobs||

2
L2 (6)

The two terms composing Em can be respectively seen as measures of modeling error and
measurement error. r is a scalar parameter that enables to modulate the influence of these terms.
The philosophy of the modified constitutive relation error is thus to favor reliable theoretical
and experimental information (equilibrium, sensor location) compared to other information
(constitutive relation, sensor measurement). The inverse problem is defined as :

psol = argmin
p∈P

F(p) ; F(p) = min
(v,�)∈U×S

E2
m(p,v,�) (7)

It leads to an iterative method, each iteration consisting of two minimizations steps :
– the first minimization step involved in (7), i.e. the computation of F(p) is called the

localization step. This is a constrained minimization problem solved by means of a
Lagrangian. Splitting the modeling error term of F(p) into contributions of each element
pi of p enables to localize the set of parameters that contribute the most to the error.
Contributions of the measurement error enable to detect erroneous sensors ;

– the second minimization step involved in (7), i.e. the computation of psol is called the
correction step. In practice, F(p) is minimized with respect to parameters pi chosen in the
previous step. This is a nonlinear process that uses an optimization algorithm, such as the
gradient method with optimal path.

The iterative process with localization and correction steps is in practice stopped when the
cost function F(p) reaches a given tolerance value, without waiting for convergence. Furthermore,
only parameters which are selected in the localization step are updated during the correction
step (hierarchical updating). This naturally regularizes the inverse formulation.

3. Goal-oriented updating with the constitutive relation error

In the previous section, the model was updated globally with respect to experiments as
a (modified) constitutive relation error, defined on the whole domain Ω and with the whole
parameter set p, was used as a cost function. Furthermore, parameters to be updated first were
selected using contributions of this global error. Here, we aim at modifying the formulation to
obtain an updating process which is dedicated to the prediction of given outputs of the model. We
consider a quantity of interest Q which is supposed to be the goal of the computation. Performing
an optimal calibration process with respect to Q means updating relevant parameters only. We
introduce in the following cost functions which are dedicated to this purpose.

3.1. Goal-oriented cost function when the quantity of interest is not measured

We assume here that the spatial region in which Q is defined is not a measurement
point. Keeping the philosophy and flexibility of the modified CRE, composed of modeling and
measurements error terms, we introduce a new cost function, denoted FQ(p), associated with
the considered quantity of interest. It reads :

FQ(p) = min
q∈R

[

1

2
|q −Qmod(p)|

2 +
1

2

r

1− r
|q −Qobs(p)|

2

]

(8)

The modeling error term 1
2 |q−Qmod(p)|

2 involves a value Qmod of the quantity of interest defined
from the model only, i.e. by means of state equation (4) :

Qmod(p) = Q(u1(p)) ; A(p,u1,v) = 0 ∀v ∈ U0 (9)
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The measurement error term 1
2 |q − Qobs(p)|

2 involves a value Qobs of the quantity of interest
defined from an interpolation of measurements sobs, i.e. :

Qobs(p) = Q(u2(p)) ; (u2,�2) = argmin
(v,�)∈U×S

E2
m(p,v,�) (10)

The definition of u2 thus involves sobs and leads to a system K(p)U2 = F after discretization.
Therefore, the first step in the iterative updating process consists in computing FQ(p). As it is
a constrained minimization problem with fixed p, we introduce the semi-discrete Lagrangian :

LQ(p, q,u1,U2,µ,Λ) =
1

2
|q −Q(u1)|

2 +
1

2

r

1− r
|q −Q(U2)|

2 −A(p,u1,µ)−Λ
T (K(p)U2 −F)

(11)
Finding the saddle-point of LQ leads to verify, in particular, the following adjoint problems for
all (δu1, δU2) ∈ U0 × Uh

0 and with β = r[Q(u1)−Q(U2)] :

A(p, δu1,µ) = β Q′(u1; δu1) ∀δu1 ∈ U0 ; Λ
T
K(p)δU2 = −β Q′(U2; δU2) ∀δU2 ∈ Uh

0

(12)
In a second step, the gradient of Fh

Q(p) is computed using the adjoint state method and from

fields (q,u1,U2,µ,Λ) obtained in the previous step :

dpF
h
Q(p; δp) = L′

Q,p(p, q,u1,U2,µ,Λ; δp) = −a′
p
(p,u1,µ; δp)−Λ

TdpK(p; δp)U2 (13)

Elements of p associated with high components for the gradient of Fh
Q(p) are then selected to

drive the nonlinear hierarchical minimization.

3.2. Goal-oriented cost function when the quantity of interest is measured

In this specific case, there is no interpolation of the data and therefore the regularization term
involved in the previous cost function is missing. We propose a new cost function based on a
local version of the modified CRE, i.e. a measure at point (or in the area) where the quantity
of interest is defined. We denote by Q∗ the dual quantity of Q (in the energy sense), and we
write the local constitutive relation linking Q∗ and Q under the form Q∗ = k(p)Q. The new cost
function thus reads :

FQ(p) = min
(v,�) ∈ U×S

E2
m,loc(p,v,�) (14)

with

E2
m,loc(p,v,�) = 1

2
|Q∗(�)− k(p)Q(v)|2 +

1

2

r

1− r
|Q(v)−Qobs|

2 (15)

The two terms in E2
m,loc correspond to local modeling and measurement errors, respectively.

Following a procedure similar to the one detailed in Section ??, we write the discrete version of
(15) :

Eh2
m,loc(p,U,V) =

1

2
|Q∗(V)− k(p)Q(U)|2 +

1

2

r

1− r
|Q(U)−Qobs|

2 (16)

with K(p)V = F (equilibrium), and the computation of Fh
Q(p) is performed by searching the

saddle-point of the following lagrangian LQ(p,U,V,Λ) = Eh2
m,loc(p,U,V) − Λ

T (K(p)V − F).

This leads to solving, in particular, the following adjoint problem for all δV ∈ Sh
0 :

Q∗′

u
(V; δV) (Q∗(V)− k(p)Q(U))−Λ

T
K(p)δV = 0 (17)

The evaluation of the gradient of Fh
Q(p) is then direct with the adjoint state method :

dpF
h(p; δp) = L′

p
(p,U,V,Λ; δp) (18)

with (U,V,Λ) solution of (17). Here again, elements of p associated with high components of
the gradient are selected in order to minimize Fh

Q(p) with respect to these parameters only.
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3.3. Remarks on the regularization process

In the goal-oriented updating method involving cost functions FQ introduced in Sections 3.1
or 3.2, it is important to notice that an iterative two-step (localization, correction) strategy
is conserved. However, the localization step is no more based on a splitting of the modeling
error term and comparison between parameter contributions (FQ is local in space) as used in
Section 2, but on the selection of parameters that bring highest components to the gradient of
FQ(p). In practice, at each iteration of the method, the parameter (or the set of parameters)
that brings the highest gradient component is corrected first. If this correction is not associated
with a significant decrease of the cost function value, the parameter (or the set of parameters)
that brings the second highest gradient component is corrected, and the process is stopped when
a significant decrease of FQ(p) is observed. This hierarchical strategy naturally regularizes the
goal-oriented inverse formulation.

4. Numerical results

We consider a 2D concrete beam with a steel bar Γ (Figure 1). We divide the steel bar (resp. the
lower concrete part Ωc) into five subdomains Γj (resp. Ωcj), j ∈ {1, .., 5} and consider piecewise
constant steel bar cross-section and concrete Young modulus. We denote by Sbj the steel bar
cross-section in Γj, Ecj the concrete Young modulus in Ωcj , and k1 (resp. k2) the rigidity of
support 1 (resp. support 2). We take L = 30 m and H = 1 m. To update beam parameters

F
d

 !
i1

 !
i2

 !
f

H/4

H

L

F
d

 !
i1

 !
i2

 !
f

"
H/4

H

L

strain sensor

Figure 1. 2D concrete beam with a horizontal steel bar, with domains of interest ω1, ω2 and
ω3 (left), and instrumentation with 14 strain sensors (right).

({Sbj}, {Ecj}, k1, k2), a static loading Fd is applied and the longitudinal strain component
ǫxx is measured at 14 points (see Figure 1). The sensor outputs are simulated numerically

considering the direct model and the following reference beam parameters : Eref
c1 = Eref

c2 =

Eref
c4 = Eref

c5 = 40.109 Pa, Eref
c3 = 30.109 Pa, Sref

b1
= Sref

b2
= Sref

b3
= Sref

b4
= Sref

b5
= 0.04 m,

kref1 = kref2 = 5.107 N/m3. The only difference between reference and initial models is the value
of the concrete Young modulus in subdomain Ωc3 .

The goal-oriented updating procedure is applied to three quantities of interest :

Q1 =

∫

ω1

ǫxxdΩ ; Q2 =

∫

ω2

uydΩ ; Q3 =

∫

ω3

uydΩ (19)

The associated zones of interest ω1, ω2 and ω3 are represented in Figure 1.

Regarding the updating strategy, the highest component of the functional gradient is searched
at each iteration and the associated parameter is updated. For each iteration of the goal-oriented
technique, the updated parameter values and associated predicted values of the quantity of
interest are represented in Figures 2 and 3. As regards quantities of interest Q1 and Q2, we
observe that two iterations are sufficient to get an error less than 1% on the determination of
the concrete Young modulus Ec3 : we also emark that only parameter Ec3 has been updated
using the goal-oriented approach. Quantity Q3 being not sensitive to Ec3 , this parameter is not
updated using the goal-oriented approach.
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Updated parameters - Q1 Updated parameters - Q2 Updated parameters - Q3

Figure 2. Updated beam parameters at each iteration of the updating goal-oriented approach
for quantities of interest Q1, Q2, and Q3.

Normalized quantity of interest

Number of iterations

Figure 3. Ratio between the updated and the reference values of the quantity of interest at
each iteration of the updating goal-oriented approach for Q1, Q2 and Q3.
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