
HAL Id: hal-01212346
https://hal.science/hal-01212346

Submitted on 6 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Timed-Automata Based Middleware for Time-Critical
Multicore Applications

Dario Socci, Peter Poplavko, Paraskevas Bourgos, Saddek Bensalem, Marius
Bozga

To cite this version:
Dario Socci, Peter Poplavko, Paraskevas Bourgos, Saddek Bensalem, Marius Bozga. A Timed-
Automata Based Middleware for Time-Critical Multicore Applications. 11th International IEEE/IFIP
Workshop on Software Technologies for Future Embedded and Ubiquitous Systems SEUS 2015, Jens
Knoop, Apr 2015, Auckland, New Zealand. pp.1–8, �10.1109/ISORCW.2015.55�. �hal-01212346�

https://hal.science/hal-01212346
https://hal.archives-ouvertes.fr

A Timed-automata based Middleware
for Time-critical Multicore Applications

Dario Socci1, Peter Poplavko1, Paraskevas Bourgos, Saddek Bensalem1 and Marius Bozga2
1Univ. Grenoble Alpes, VERIMAG, F-38000 Grenoble, France

2CNRS, VERIMAG, F-38000 Grenoble, France
{Dario.Socci | Petro.Poplavko | Saddek.Bensalem | Marius.Bozga}@imag.fr

Paraskevas.Bourgos@gmail.com

Abstract—The goal of our work is to contribute to unification
of design methodologies for multi-core time-critical systems. Var-
ious models of computation have been proposed in literature for
this kind of systems, but lack of coherency between them makes
unified coherent design methodology challenging. In addition,
there is a significant gap between the models of computation and
the real-time scheduling and analysis techniques. To overcome this
difficulty, we represent both the models of computation and the
scheduling policies by timed automata. While, traditionally, they
are only used for simulation and validation, we use the automata
for programming. We believe that using the same formal language
for different design styles and methods is an important step to
close the gap between them. Our approach is demonstrated using
a publicly available toolset, an industrial application use case and
a multi-core platform.

I. INTRODUCTION

The formal techniques help to address different challenges
in real-time system design. One of them is lack of con-
solidation in programming. Embedded software design has
in common with hardware design that it has to satisfy not
only functional, but also extra-functional requirements, first of
all, timing. However, unlike hardware languages, the software
languages have an important deficiency: they were conceived
without any concern on timing in mind [1]. The real-time
programming is a very heterogeneous area of research, as it
employs many different models of computation (MoCs), such
as synchronous languages, timed Petri nets, various extensions
of synchronous dataflow (SDF), etc. Expressing the software
design in a given MoC is difficult, but, worse still, even when
this is done, the real-time scheduling and timing analysis still
remains challenging, due to a gap between the MoCs and the
real-time scheduling policies [2].

Therefore it takes a lot of effort to compose a middleware
by combining a particular model and particular policy. This
task could be simplified if there existed a common ‘backbone’
language expressive enough to redefine and reuse different
components of middleware. Partly, this idea was implemented
in the SystemC project, offering a common way to express
scheduling policies, MoCs and functional code. However,
this language lacks a formal semantics, and it mainly offers
facilities for simulation only, but not for fully-automated
deployment of software.

Therefore, as an alternative, we propose to use com-
bined procedural and automata languages. To demonstrate

Research supported by the European ICT Collaborative Project no. 288175
(CERTAINTY) and no. 332987 (ARROWHEAD).

the concept, we offer public prototype tools [3] for multicore
timing-critical system design based on the timed-automata
language RT-BIP [4]. This paper describes the design flow
for programming and implementing timing-critical systems in
this language. Section II gives an overview of the proposed
design flow, Section III gives an introduction into RT-BIP,
then in Section IV we show how to translate an high-level
description of the software, including the middleware, into RT-
BIP. In Section V we describe implementation of an industrial
use case on Kalray MPPA256 multi-core platform and some
experimental results. Finally, Section VI concludes the paper.

II. BACKGROUND

In this section we present our proposed design flow. It is
based on a combined procedural and automata-based language,
referred to as backbone language. Examples of such languages
are IF, SDL-RT and RT-BIP. A backbone language can be used
for modeling, validation and simulation, but our main point is
to use it as a programming language. Because in many cases,
an automata-based language may be too low-level for direct
use in application programming, we can compile higher-level
models into the backbone language automatically. In the ideal
case, this is ensured by letting the user create a set of rules for
automatic translation of the functional code into the automata.
Also the user would provide a set of automata templates that
implement the primitives of the preferred MoC and scheduling
policy. Hence the backbone language would serve as a meta-
model and meta-policy used to program the desired timing-
critical systems middleware. The specified set of rules and
templates would allow to compile the functional code and
the middleware into a network of timed automata that can be
analyzed and deployed on a platform.

This idea is partly implemented in our design flow, see
Fig. 1. The design flow accepts a high-level specification of
application tasks (the MoC and the functional code) at the input
and compiles it into the backbone language, for which we use
RT-BIP [4]. Also the flow takes from the offline scheduling
tool the specification of the online scheduling policy and
the selected scheduling parameters (such as priorities) of the
tasks. The scheduler is also compiled into backbone language
and ‘plugged’ into the common RT-BIP software model. This
model is deployed on the platform on top of RT-BIP run-
time environment (RTE) for multi-cores. The software model
can also be combined with the hardware model to represent
the complete software-hardware system and to perform timing
analysis for validation of schedulability properties, but the

Model of Computation &

Functional Code
Multi-core

Platform Parameters

Hardware (BIP)

BIP Compiler

Schedulability

Validation

Compile

Model of Computation

WCET Analysis

Binary executable

Multiprocessor

Scheduling

System Model (BIP)

system level

software level

hardware
level

Translate Hardware

Architecture
Compile

Scheduling Policy

Software (BIP)

Multi-thread BIP RTE

Fig. 1. Design flow (highlighting the steps covered in this paper)

validation part of the design flow is beyond the scope of the
prototype toolset [3] and this paper.

Currently we support only one MoC – Fixed Priority
Process Networks (FPPN) [5], which combines the abilities
to model both the reactive-control and streaming applications.
As for the scheduling policies, we support a combined static-
order/time-triggered policy [6], [5]. In future we consider to
provide means to the user to specify templates for his preferred
MoC and policy. We also consider to add support for other
relevant MoCs, such as synchronous languages, as in the
Prelude [7] framework, and SDF, such as in CompSoC [8].

III. BACKBONE LANGUAGE: REAL TIME BIP

Our backbone language is RT-BIP [4]. The “RT” prefix
stands for real-time, which indicates that this language models
the physical time, which is done using the same concept of
clocks as in timed automata. In fact, the RT-BIP language can
be seen as a language to express networks of communicating
timed automata that employs a specific compositional syntax
and a specific flavor of timing constraints. The “BIP” part of
the acronym stands for behaviour-interactions-priority.

In this section, we give an overview of the particular dialect
of RT-BIP that we use in our framework for timing-critical
multi-core applications. Mainly, this dialect is a restriction of
RT-BIP. We also add to the standard RT-BIP a new concept
– the continuous transitions, which, unlike the standard RT-
BIP transitions, are non-instantaneous. Fig. 2 shows an RT-
BIP example that represents two tasks, A and B, running on
two CPUs. The model consists of four components, namely,
“PeriodicA”, “DelayableB”, “CPU1” and “CPU2”. All the
components are defined by an automaton and a set of ports.

The states of the BIP components are usually referred to as
locations. A transition is an execution step from one location
to itself or to another location. For example “(Skip)” is a
transition from “S1” to “S0” in component “DelayableB”.

Each transition has an associated enabling condition and
an associated action that is executed at this transition. In our
figures we show the conditions in blue color and in square
brackets, e.g. condition [DOUT 6= 0] for transition “StartB”
in “DelayableB”. In BIP, every component is seen as an ob-
ject in object-oriented programming sense. Every component
encapsulates some data and some methods to manipulate the
data. All actions executed by transitions can execute methods

S0

StartA(DOUT)

StartA(DOUT)

reset x
DOUT := DATA_IO(A)

when [x = TA]

PeriodicA(TA)
S0

StartB(DOUT)

StartB(DOUT)
reset y
DOUT := DATA_IO(B)

when [y ≥ TB]

DelayableB(TB)

S1

(Skip)
[DOUT = 0]

[DOUT ≠ 0]

 Start(DIN)

S0

S1

Start(DIN)

CPU1()

(Task)
Compute(DIN)

 Start(DIN)

S0

S1

CPU2()

(Task)
Compute(DIN) Start(DIN)

(Poll)

Fig. 2. RT-BIP model example

written in an imperative language (C/C++). The methods have
access only to the local variables of the component itself, the
components do not share variables. In the figures the actions
are shown as blocks of pseudo-code in dark-red color.

Multiple components run concurrently and execute inter-
actions with each other, the set of possible interactions being
defined using connectors (shown in green lines) which join
several ports (enclosed in white rectangles in our figures),
which belong to components. In our RT-BIP dialect we use
only one type of BIP connector, “rendezvous”, which obliges
all connected ports to participate in an interaction simul-
taneously. A port participating in interaction means that a
transition annotated by the given port gets executed. This
can only happen when the transition is enabled, i.e., the
automaton current state is the source location of the transition
and all conditions associated to the transition are satisfied.
For example, port “StartB” can participate in interaction only
when the automaton in the “S1” location and “DOUT 6= 0”.
A port may participate in one interaction at a time. If in our
example all four ports are enabled then four interactions can
potentially occur, but only two of them will be selected (in
non-deterministic way).

A transition can be either internal or external. Internal
transitions are not annotated by ports and do not participate
in interactions with other components. We enclose their an-
notations in parentheses to distinguish them, e.g. “(Task)”
in our example. External transitions are annotated with a
port, such as transition “StartB” in “DelayableB”. The same
port can be annotated on multiple transitions. An external
transition executes simultaneously with an interaction at the
corresponding port. Note that in our figures we sometimes
annotate a port by a circle (e.g., “Start(DIN)”) or a triangle
(e.g., “StartB(DOUT ”)). These annotations do not refer to any
construct in the BIP language but indicate one of the two roles
that the port typically plays in the interactions by construction
of the model. The triangle means a “master” port and the circle
means a “slave” port. A master joined by a connector to several

slaves indicates that the slaves are supposed to be enabled
whenever the master may get enabled. This means that it is
the master who “takes the initiative” for the interaction and at
the moment when it is ready to execute the whole interaction
can execute immediately. The master and slave notations in our
figures serve only to improve the readability of the figures.

Each component has an initial transition that is executed
at start of execution, shown as an arrow without a source
location pointing to one of the locations, which makes it the
initial location, such as location “S0” in “DelayableB”. Each
component has an associated set of private local variables: data
variables and clocks. In line with the usual conventions adopted
in timed automata, the clocks are real-valued variables that are
initialized to zero at start and whose values are continuously
increasing with the passage of physical time. In our models
we use letters x, y for the clocks, e.g. the model in Fig. 2 uses
two clocks. A clock can be reset to zero at a transition (e.g.
“reset x” in “PeriodicA”) and used in a condition, in which
case the condition is preceded by the word “when”.

We use only urgent timing conditions (eager constraints in
RT-BIP). All transitions are eager in our model, which means
that they execute at the earliest moment of time when they are
enabled for execution. For an external transition this means
the earliest moment of time when all ports participating in an
interaction with its port are enabled. For example, consider
condition “when [y ≥ TB]” in Fig. 2. Due to this condition
the interactions involving port “StartB” should wait the earliest
time when clock y reaches value at least TB .

Though the transitions start urgently, another issue is
when they finish. The instantaneous transitions take zero time
(conceptually). By default, all RT-BIP transitions are instanta-
neous, with exception of those that have continuous attribute.
The latter transitions, the so-called continuous transitions take
exactly the time required to execute the corresponding action,
which can be any timing duration not known at the moment
when the transition starts. Only internal transitions can be
given a continuous attribute. In our figures we denote con-
tinuous transitions by thick arrows, e.g., “(Task)” transitions
in our model. In modeling the real-time tasks, we use such
transitions to represent the blocks of execution where the does
not interact with the runtime environment but is performing
internal computations instead, e.g., running the “Compute()”
method in our example in Fig. 2.

As for the data variables, in our examples we most often
use three types: integer (such as DIN , DOUT in our example),
Boolean and queue, though, of course, other types can be
defined in RT-BIP using C/C++ syntax. Unless explicitly done
otherwise in the action of the initial transition, we assume that
the initial transition implicitly initializes the data variables to
zero in the case of integers, “False” in the case of Booleans,
and type-specific initial value (such as empty queue) for other
types. Next to data variables there are also compile-time
parameters, for example, period TA and minimal execution
interval TB in Fig. 2.

Some variables are used for communication between the
components at the interactions. They are sent and received via
ports, therefore they are listed as port parameters. We assume
that if a port has parameter < name >OUT then an interaction
of this port assigns the value of this variable to the variables

< name >IN with the same < name > if they are parameters
of other ports that participate in the interaction. For example,
port Start(DIN) receives the value of DIN from the DOUT

of either “PeriodicA” or “DelayableB”.

In our RT-BIP programs for time-critical systems we often
use queues. This well-known data structure can be easily
implemented using a circular buffer. We define the following
operations on the queue:

• Allocate() allocate a new cell and give reference to it
• Push() push the last allocated cell into the tail
• Pop() extract the head of the queue

IV. COMPILING THE SOFTWARE INTO RT-BIP

The time-critical software consists of functional code and
middleware, the latter providing elements for communication,
synchronization and real-time scheduling. Compiling means
translating the functional code and middleware specification
into components of RT-BIP language and connecting them
with each other. The components express the correct timing
behavior by timing constraints and transitions. A situation
where for a component automaton no transitions are possible
anymore in future is called local deadlock and is detected
as a runtime error. The RT-BIP components generated at
compilation are constructed in such a way that a deadlock
indicates that that either the hardware resources cannot handle
the workload on time or that the workload does conform to
specification. For example, in Fig. 2, component “PeriodicA”
is ready to execute an interaction at port “StartA” only when
x = TA. If at this moment of time both “CPU”components
are busy executing the previously started “(Task)”’transitions,
then component “PeriodicA” will deadlock as the clock x will
continue counting the time, never come back to TA. To avoid a
deadlock in “PeriodicA”, at least one of the “CPU” components
should be ready for interaction at periodic instances in time:
TA, 2TA, 3TA, Similar conditions hold for certain BIP
components generated at compilation.

A. The FPPN Model of Computation

In our framework, we currently work with a functionally-
deterministic MoC intended to support both the reactive control
and the streaming applications, the so-called Fixed Priority
Process Networks (FPPN) [5]. An instance of FPPN is com-
posed of three main entities: Processes, Data Channels and
Event Generators. The determinism is ensured by Functional
Priority relation between the processes.

A Process represents a software subroutine that operates
with internal variables and input/output channels connected to
it through ports. The functional code of the application is de-
fined in processes, whereas the necessary middleware elements
of FPPN are channels, event generators, and priorities.

An example of process is given in Fig. 3. This process
example performs a check on the internal variables, then (if
the check is successful) reads from the input channel, and, if
the value is valid (see channel description below) makes the
square of it. Then the write operation on an output channel is
performed. A single invocation of the subroutine that defines
the process is referred to as as a job. Like the real-time jobs,
this subroutine should have a bounded execution time and is
subject to WCET (worst-case execution time) analysis.

struct Square::internal_var {

int index = 0;

int length = 200;

}

void Square::Job(internal_var *X) {

float x,y;

if (X->index < X->length) {

read(PORT_IN, &x);

if (PORT_IN.valid) {

y = x * x;

write(PORT_OUT, &y);

}

}

X->index = X->index + 1;

}

Fig. 3. Functional Code for “Square” Process Example

Data Channels ensure non-blocking read and write opera-
tions for communication. There are inter-process and external
(environment) channels. In this paper we consider only the
inter-process channels. We define two channel types: FIFO and
blackboard. Other types can be introduced by extension of the
library of RT-BIP components. The FIFO has a semantics of
a queue. The blackboard remembers the last written value that
can be read multiple times. Reading from an empty FIFO or a
non-initialized blackboard resets an indicator of data validity.

An event generator e is defined by the set of possible
sequences of time stamps τk that it can produce. We define two
types of event generators: periodic and sporadic. Every event
generator is associated with a unique process and determines
whether the given process is periodic or sporadic one. Every
process p has a deadline dp. Interval [τk, τk + dp) determines
the time interval when the k-th process job can be executed.
At τk the job gets ‘activated’ and then it remains active until
it is scheduled. After being schedule, the job should terminate
before the deadline. Periodic processes are activated at period
Tp, for sporadic processes Tp denotes the minimal inter-arrival
time. We define the job queue length as qp = ddp/Tpe, this
quantity is the maximum number of jobs of process p that can
be active simultaneously.

An FPPN network can be described by two directed graphs.
The first graph is the default process network graph (P,C),
whose nodes are processes P and the edges are channels
C. This graph can be cyclic and defines the communicating
pairs of processes and the direction of dataflow: from writer
to reader. The second graph is the functional priority DAG:
(P, FP). No cyclic paths are allowed in this graph. The edges
define functional priority relation between the processes. It is
however, not a partial order relation, as it is not necessarily
transitive. We require that any two communicating processes
have a priority relation: if (p1, p2) ∈ C then (p1, p2) ∈ FP or
(p2, p1) ∈ FP , i.e., a functional priority should either follow
the direction of the data flow or the opposite direction.

Fig. 4 below gives an example of a process network. This
process network represents an imaginary signal processing
application with input sample period 200ms, reconfigurable
filter coefficients and a feedback loop. The filter coefficients
are reconfigured by an sporadic event (a command from the
environment) that activates the sporadic process CoefB.

relative writer / reader process priorityFIFO
sporadic process

Input Channel 1

FilterB
CoefB
700 OutputB

relative writer / reader process priorityFIFO

FilterB
200ms

700ms OutputB
100ms

Output Channel 1
Inter‐arrival interval

periodic process

Output Channel 1

Output Channel 2

InputA
200ms

FilterA
100ms

OutputA
200ms

blackboard

NormA
200ms

Input Channel 2

Fig. 4. Example of Process Network

We see several periodic processes, annotated by their peri-
ods, and a sporadic process, annotated by minimal inter-arrival
time. We also see inter-process channels – the blackboards and
a FIFO, annotated by an arc of the functional priority relation
FP . Also the environment input/output channels are shown.

The semantics FPPNs is described in [5]. The main idea is
that every pair of processes that share a channel are executed in
well-defined relative order determined by (1) their activation
times and (2) functional priorities. This order is compatible
to the total order derived from zero-execution-time simulation
of fixed-priority scheduling. Because the ordering is imposed
only between communicating processes, it is a partial order,
allowing for parallelism.

B. Compiling the processes

The BIP model of a process is automatically extracted
from its source code. When translating from a FPPN to a
BIP model, the source code is parsed, searching for primitives
that are relevant for the interactions between the process and
the other components of the system. The relevant primitives
are the reads and writes from/to the data channels. Fig. 5
shows the result of compiling the process of Fig. 3 into the
backbone language. It can be seen that the behaviour of the
resulting automaton is consistent with the behavior of the
original source code. The most important difference is how
the “reads” and “writes”’ are performed. As shown in the
figure, each I/O operation is divided into three transitions. Let
us consider the read transitions for example. First we have a
“Read Req”, which is an external transition which requests
access to the channel. After the corresponding interaction
the process receives a reference to a memory area where to
read from and a validity flag. The next transaction performs
the actual read if the validity flag is true. Then transaction
“Read Ack” communicates to the channel that the read has
finished. The writing is performed in a similar way.

C. Compiling the Scheduling Policy

Our RT-BIP run-time environment (RTE) currently does not
support the interruption of running transitions. Therefore, in
our current middleware for time-critical systems we do not yet
support preemption. It should be noted that many multi-core
platforms choose to not support preemption, instead providing
a large number of cores to ensure sufficient degree of multi-
threading concurrency without preemption.

init

Finish

Start

 y := x*x

[¬Ifc]

[Ifc]

Read_Req(RIN,VIN)

Read_Ack

Write_Ack

End

Start

End

Read_Req(RIN,VIN)

Read_Ack

Write_Req(WIN)

Write_Ack

Write_Req(WIN)

Process()
internal variables : index, len, x, y
RIN, WIN : reference (pointer) to the data
read and written
VIN : data validity flag

If (VIN) x := *RIN

*WIN := y

Ifc := index < len

[VIN][¬VIN]

index := 0
Len := 200

Index := index+1

Fig. 5. Process translated in BIP

Core 1 A

time

B C

Core 2 D E

Frame 1 Frame 2

E

F

Tf1

Beginf�
reset �

Endf�
when [� = ���]

Frame�	
Core �

StartD EndD StartE EndE

Fig. 6. Scheduling Frames

We demonstrate programming the scheduling policies in
timed automata by considering a policy that combines static-
order execution and time-triggering. We base our policy on
the policies presented in [6] and partly in [5]. We divide the
execution of the FPPN in several slices called “Frames”. To
each core and each time frame the offline scheduling tool
associates a list of jobs that must execute sequentially on the
given core in the given time frame. The online schedule is a
periodically repeating cycle, where all frames are executed in
order: f1, f2, . . . fI , on all cores in parallel, every frame having
a fixed duration Tf1, Tf2,

In the Gantt chart of Fig. 6 we can see a partial example

Activate

FalseActivate

PeriodicServer (�	, �) : periodic scheduling of a sporadic process

�	– minimal inter-arrival interval ; � – job queue size �/� ;

Q[�] – queue of (active/false) indicators

��	
��
� – sporadic activation observed for current period

����
��� – indicates whether the head job in Q is active or false

S-Start(
����
���)

Activate

when [� < � < �]

enqueue(True);

��	
��
�:=True;

reset �:= � Activate

when [� = �]

reset �

enqueue(True);

��	
��
�:=False;
FalseActivate

when [� < � < �] FalseActivate

when [� = �]

reset �

if [not ��	
��
�] enqueue(False);

��	
��
�:=False;

S-Start (
���)

[not Q.Empty()]

dequeue();

method enqueue	(is_active)

Q.Allocate ():= is_active;

Q.Push();

����
���:= Q.Head;

method dequeue	()
Q.Pop();

����
���:= Q.Head;

S-Start (
����
��)

P-Start

[
����
��]
P-End

(Skip)

[not
����
��]
S-End

S-Start(
����
��) S-End

S-Start

S-End

P-Start

P-End

P-Start

P-End

T
o

 P
e

rio
d

ic
 S

c
h

e
d

u
le

r
T
o

 E
v
e

n
t G

e
n

e
ra

to
r

T
o

 th
e

 P
ro

c
e

s
s

Fig. 7. Periodic server, consisting of two sub-components

of a schedule. The BIP implementation of the “Frame 1”
of “Core 2” is also shown. The frame components in BIP
are specific per frame i and core k. In the beginning, the
component synchronizes with other frame components for
the same frame i and other cores by interaction Beginfi.
The jobs are scheduled in a given static order and they all
should terminate before Endfi interaction, which should occur
exactly at time Tfi, otherwise the component will deadlock and
a run-time error will occur.

In Fig. 7 the periodic server is shown, which is a supple-
mentary adaptor for sporadic processes scheduled in periodic
frames. This component manages a queue of active jobs. When
a job is activated, it is inserted in the queue, and it is removed
when it is scheduled. The queue may contain “false” jobs.
This is used for scheduling purposes. We explained above that
in each frame we execute jobs in a sequential way. If a frame
contains a sporadic job, and this job does not activate, we could
have a deadlock in the frame. Thus, to avoid this problem,
whenever a sporadic process is not activated, we introduce in
the queue a “false job” with zero execution time. The bottom
sub-component of the periodic server in Fig. 7 distinguishes
between “active” and “false” jobs. In the case of an active
job, it signals the job start to the scheduler frame, then to
the process, then it waits for the job termination and finally
signals it to the frame. In case of a false job, the execution
of the process job is skipped. A more detailed explanation of
handling sporadic jobs by periodic server can be found in [5].

Fig. 8 shows how scheduler frames and a sporadic process
are connected. The Event Generator generates the activation

StartA

Frame�	
Core �

StartA

Frame�	
Core �

PeriodicServer

S-Start

P-Start

ProcessA

Start

EventGenerator

Start

Activate

FalseActivate

Fig. 8. Connection between a Sporadic Process and its Scheduler

init

Read_Req(ROUT,VOUT)

Read_Ack

Write_Req(WOUT)

Write_Ack

Read_Req(ROUT,VOUT) Write_Req(WOUT)

Write_AckRead_Ack

VOUT:=false

VOUT:=true

BlackBoard(S)

S = size of data
WOUT = ROUT - references to the
(same) variable of size S
VOUT = validity flag

Fig. 9. Blackboard

signal and sends it to the Periodic Server, which triggers the
Process in the order defined by the frames. For a periodic
process, the periodic server is not necessary and the process
can be connected directly to its scheduler and generator.

D. Compiling the Inter-process Channels

We present here the BIP components that model the data
channels, used to “read” and “write” the data communicated
between the processes. A basic notion in data channels is
the validity bit, introduced earlier. The meaning of this bit
is availability of data. In the two types of data channels, the
blackboard and the FIFO, it is managed in a slightly different
way. The blackboard represents a shared variable, for which
it holds by default that once data is written there, it remains
available (and hence valid) until it is overwritten by new data.

In the FIFO data items are read and removed in the same
order as they are written, and an attempt to read from an empty
“queue” or to read more data items than currently waiting in
the queue leads to a result whose validity bit is set to “false”.

Fig. 9 shows the model for the blackboard. Read(Write)
operation is separated into two transactions Read Req
(Write Req) and Read Ack(Write Ack), coherently to the
process model shown above. During the request the blackboard
communicates to the process the address of the memory where

init

Read_Req(ROUT,VOUT)

Read_Ack

Write_Req(WOUT)

Write_Ack

Read_Req(ROUT,VOUT) Write_Req(WOUT)

Write_AckRead_Ack

F.Init()
VOUT := false
WOUT := F.Allocate()

F.Push()
VOUT := true
WOUT := F.Allocate()
ROUT := F.Head()

FIFO(S,f)

S = size of data
f = size of queue
F(S,f) = queue
ROUT, WOUT = reference to read
 and write variable
VOUT = validity flag

if(VOUT){
 F.Pop()
 VOUT := ¬F.Empty()
 ROUT := F.Head()
}

Fig. 10. FIFO

Start Activate

Source Sink

Activate FalseActivate Meet Miss End

Latency: BurstShaper (d, q)

Activate

Throughput : BurstShaper (T, 1)

Activate Terminate

Terminate

Fig. 11. Event Generator

to read from/write to. In case of a read, the validity bit is
communicated as well.

The BIP model of a FIFO is shown in Fig. 10. We use
the queue data structure introduced in Section III. The FIFO
model is very similar to the blackboard, the main difference
is in that here the code for managing the queue is added.

E. Compiling the Event Generators

We describe here the Event Generator component, individ-
ual for each process. The main purpose of this component
is to enable the start of jobs after their activation. It also
manages the “false” activation for sporadic jobs. The idea
of the latter is that for sporadic process p at small intervals
δ = Tp/K for some integer K the environment is polled
for the need to activate the sporadic process by calling some
platform-dependent subroutine function protocol() that returns
a Boolean value indicating activation (‘true’) or false activation
(‘false’). The point is that ensure functional determinism in
FPPN MoC, at each moment of time when a sporadic process
may potentially get activated it should be always explicitly
signaled whether it is activated or not. For periodic processes
δ = T and protocol() always returns ‘true’.

Activate

Meet

Miss

Error
Miss
[jr ≥ jp]

Sink(q)
jr ∈[0..q] – running job count
jp ∈[0..q] – pending job count

Activate
jr := jr + 1
jp := jp + 1

Meet
[jr < jp]
jp := jp - 1

End

End
jr := jr - 1

Fig. 12. Sink

Start

Activate

FalseActivate

Start

False Activate

when [x=δ]
reset x
a := protocol()

Source(q,δ,protocol())
q – job queue size d/T
j ∈[0..q] – counter of active jobs
δ – activation poll period
protocol() - activation poll function
active – last poll result

active := protocol()

[j > 0]
j := j - 1

Wait

when [x = 0]
and [¬ active]

Activate
when [x = 0]
and [active]
j := j +1

Start

j := j - 1
[j > 0]

Fig. 13. Source

The event generator is shown in Fig. 11. It contains
a few subcomponents. The Source triggers periodically or
sporadically (depending on its protocol) the activation signal.
The Sink checks whether any job misses its deadline. For this
it uses “Latency - Burst Shaper” component, which can be seen
as a delay line of delay dp and capacity up to qp events, where
deadline and queue size are process parameters. At activation,
the burst shaper starts a new timer (a clock), and when the
deadline time was elapsed it enables the output. As shown
in Fig. 12, the sink checks whether before the end of the
deadline interval at least one job has terminated (pending and
not running) or not and goes into local deadlock state if not
(and this leads to runtime error).

The “Throughput – Burst Shaper” – ensures that the source
cannot activate the jobs more than once per time Tp. This
subcomponent can be omitted for periodic processes.

The implementation of Source is shown in Fig. 13. This
component polls the “protocol()” at periodic intervals δ, as
explained earlier. After activation it enables another job to be
started by incrementing the job counter.

Fig. 14 shows how a Burst Shaper is implemented. Its main
purpose is to limit the amount of burst to at most σ events per

Activate

S0

Activate

[r < σσσσ]

reset x [j]

j := (j + 1) mod σσσσ

r := r + 1

BurstShaper (P, σσσσ): at most σσσσ events per time P

σσσσ - burst size; P – time delay; r – circular buffer filling;

j – write position, i – read position; x [] – clock array : size σσσσ

Terminate

when [x [i] ≥ P]

and [r > 0]

i := (i + 1) mod σσσσ

r := r - 1

Terminate

Fig. 14. Burst Shaper

Cycle

Frame f1 Frame f1 Frame f3 Frame f3

p5 BB p6

FF FF FF FF

p1 p2 p3 p4

thread 0: RT-BIP runtime environment (RTE)

thread 1: middleware components
Cycle FrameProcess Source/Sink FF BB

thread 2..15: process-to-core mapping
p2 p4

p1 p3 p5 p6

schedule
components

application
components

thread 2:

thread 3:

Fig. 15. Distributing BIP Components between Cores

time P where σ and P are given during the definition of the
component. This component also signals when an event that
arrived P time units ago has elapsed (terminated). The main
idea of implementation is to use a queue of clock variables
implemented as circular buffer.

V. IMPLEMENTATION AND EXPERIMENTS

A. Multi-threaded RT-BIP Runtime Environment

As illustrated in Fig. 15, after compiling the application and
scheduling into BIP, the BIP design can be partitioned into
parts: the schedule components and the application compo-
nents. The components are joined by BIP connectors, through
which they can perform interactions with each other. The appli-
cation components include the components dedicated to FPPN
processes, denoted p1, p2, . . . , and data channels, denoted BB,
FF, depending on the type: blackboard and FIFO. The schedule
components include one component that models the schedule
cycle and a set of components that model frames. The schedule
components are connected to the application components to
coordinate their execution according to the schedule. The
schedule also provides the process-to-core mapping, which is
used to generate component-to-thread mapping, illustrated in
the bottom part of the figure.

We implemented our framework on Kalray MPPA multi-
core architecture inside a single shared-memory cluster. The
cluster provides 16 processor cores, each one running one
POSIX thread. In our framework, Thread 0 executes the RT-
BIP run-time environment (RTE), which coordinates the com-
ponents for the execution according to the RT-BIP semantics.
Then, on Thread 1 we run all the middleware components,

Z1 Z2Z1
50ms

Z2
50ms

SensorInput
50ms : Z

GPSConfig
1 per 50ms

HighFreqBCP
50ms :

LowFreqBCP
50ms x 25

MagnDeclin
50ms x 8 Performance

50ms x 5

Z2

50ms x 5

Core 1

SensorInCore 2 Z1

Z2GPSCnf

LoFrBCPHiFrBCP PerformMgnDecCore 3

25 ms0 50 ms time

Fig. 16. FMS Use Case and its Static Schedule

i.e. all components except the processes. Note that those
components can be seen as “instantaneous” components, as
they execute only instantaneous transitions. We thus isolate
them in a separate thread from the processes, to avoid the risk
that continuous transitions of the processes delay the instan-
taneous transitions of the middleware. Finally, Threads 2..15
are reserved to the process components, which are distributed
according to the static schedule computed by an offline
scheduling tool.

B. Experiments

In this experiment we consider a subsystem of avionics
Flight Management System (FMS). Figure 16 shows the appli-
cation process network. This FMS subsystem is responsible for
calculating the best computed position (BCP) and predicting
the performance (e.g., fuel usage) of the airplane based on
the sensor data and sporadic configuration commands from
the pilot, such as configuring the Global Positioning System
(GPS). Therefore we have a sporadic process GPSConfig that
can execute at most once per 50 ms.

After being pre-processed at “SensorInput”, the input
data is processed at “HighFrewBCP” process and arrives at
“LowFreqBCP” process, which post-processes the data at low
frequency and makes it available by other subsystems of FMS.
It also provides the results to a feedback loop that takes into
account magnetic declination in computing the airplane posi-
tion. All periodic processes are triggered by event generators
and scheduler at period 50ms, but some of them internally
skip every k-th execution to execute their true frequency in
this multi-rate design. This is not because we do not support
different process periods, but to simplify the static schedule.

To enable pipelining parallelism we use a double buffer
approach and insert at some places of the process network
processes denoted as Zk which copy input to the output.
Because of this, the buffer is split into two parts and thus
the writer can execute at the same time as the reader.

The measured Gantt chart of the execution traces is shown
in Figure 17. Studying the chart we conclude that we suc-
ceeded in correctly implementing the parallel schedule, but the
BIP RTE component synchronization actions turn out to have
a large overhead due to inter-core synchronization and cache

Core3

Core2

Core1

BIP Engine

 0 50000 100000 150000 200000 250000 300000 350000

time(µs)

G
P
S
C

o
n
f

Z
2

Z
2

Z
2

Z
2

Z
2

Z
2

G
P
S
C

o
n
f

Z
2

Z
1

S
e
n
sI

n

Z
1

S
e
n
sI

n

Z
1

S
e
n
sI

n

Z
1

S
e
n
sI

n

Z
1

S
e
n
sI

n

Z
1

S
e
n
sI

n

Z
1

H
iF

rB
C

P
Lo

Fr
B

C
P

M
a
g
n
D

e
c

Pe
rf

H
iF

rB
C

P

H
iF

rB
C

P

H
iF

rB
C

P

H
iF

rB
C

P

Fig. 17. FMS Use Case

flushing for memory consistency that occur at BIP interactions.
In future work, we see a large room for improvement to
reduce this overhead. Note that this overhead is relatively large
compared to process execution because of fine granularity of
the process computations, for more coarse-grained processes
the relative overhead of BIP interactions would be smaller.

VI. CONCLUSIONS

In this paper we proposed a common approach to program
not only application functionality, but also the middleware for
time-critical systems. We proposed to use for this purpose
combined timed-automata/procedural languages that support
deployment on multi-cores in multiple threads. We demon-
strated this approach on a concrete model of computation
and scheduling policy, and implemented it in a publically
available tool [3]. The proposed approach potentially opens
the possibility of unifying different MoCs and scheduling
policies in common frameworks. To confirm the validity of
our approach we showed the results for deploying a real-life
avionic use-case on a real multi-core platform.

REFERENCES

[1] E. A. Lee, “Absolutely positively on time: what would it take?[embedded
computing systems],” Computer, vol. 38, no. 7, pp. 85–87, 2005.

[2] H. Fuhrmann, J. Koch, J. Rennhack, and R. von Hanxleden, “Model-
based system design of time-triggered architectures—an avionics case
study,” in 25th Digital Avionics Systems Conference (DASC’06), (Port-
land, OR, USA), October 2006.

[3] P. Poplavko, P. Bourgos, D. Socci, S. Bensalem, and M. Bozga,
“Multicore code generation for time-critical applications, http://www-
verimag.imag.fr/multicore-time-critical-code,470.html.”

[4] T. Abdellatif, J. Combaz, and J. Sifakis, “Model-based implementation
of real-time applications,” in Proceedings of the tenth ACM international
conference on Embedded software, EMSOFT ’10, ACM, 2010.

[5] P. Poplavko, D. Socci, S. Paraskevas Bourgos, and M. B. Bensalem,
“Models for deterministic execution of real-time multiprocessor applica-
tions,” in DATE’15, 2015.

[6] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele, “Scheduling of
mixed-criticality applications on resource-sharing multicore systems,” in
Embedded Software (EMSOFT), 2013 Proceedings of the International
Conference on, pp. 1–15, IEEE, 2013.

[7] M. Cordovilla, F. Boniol, J. Forget, E. Noulard, and C. Pagetti, “Devel-
oping critical embedded systems on multicore architectures: the prelude-
schedmcore toolset,” in 19th International Conference on Real-Time and
Network Systems, 2011.

[8] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken, “Compsoc:
A template for composable and predictable multi-processor system on
chips,” ACM Transactions on Design Automation of Electronic Systems
(TODAES), vol. 14, no. 1, p. 2, 2009.

