Determination of the elastic properties in CFRP composites: comparison of different approaches based on tensile tests and ultrasonic characterization
Victor Munoz Cuartas, Marianne Perrin, Marie-Laetitia Pastor, Hélène Welemane, Arthur Cantarel, Moussa Karama

To cite this version:

HAL Id: hal-01212100
https://hal.archives-ouvertes.fr/hal-01212100
Submitted on 6 Oct 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Open Archive Toulouse Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 14144

To link to this article: DOI:10.12989/aas.2015.2.3.249
http://dx.doi.org/10.12989/aas.2015.2.3.249

To cite this version:

Munoz Cuartas, Victor and Perrin, Marianne and Pastor, Marie-Laetitia and Welemane, Hélène and Cantarel, Arthur and Karama, Moussa
Determination of the elastic properties in CFRP composites: comparison of different approaches based on tensile tests and ultrasonic characterization. (2015) Advances in Aircraft and Spacecraft Science, vol. 2 (n° 3). pp. 249-260. ISSN 2287-528X (Print), 2287-5271 (Online)

Any correspondence concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
Determination of the elastic properties in CFRP composites: comparison of different approaches based on tensile tests and ultrasonic characterization

Victor Munoz¹, Marianne Perrin², Marie-Laetitia Pastor², Hélène Welemane*¹, Arthur Cantarel² and Moussa Karama¹

¹Université de Toulouse, INP-ENIT, LGP, 47 avenue d’Azereix, 65016 Tarbes, France
²Université de Toulouse, IUT, ICA, 1 rue Lautréamont, BP 1624, 65016 Tarbes, France

Abstract. The mechanical characterization of composite materials is nowadays a major interest due to their increasing use in the aeronautic industry. The design of most of these materials is based on their stiffness, which is mainly obtained by means of tensile tests with strain gauge measurement. For thin laminated composites, this classical method requires adequate samples with specific orientation and does not provide all the independent elastic constants. Regarding ultrasonic characterization, especially immersion technique, only one specimen is needed and the entire determination of the stiffness tensor is possible. This paper presents a study of different methods to determine the mechanical properties of transversely isotropic carbon fibre composite materials (gauge and correlation strain measurement during tensile tests, ultrasonic immersion technique). Results are compared to ISO standards and manufacturer data to evaluate the accuracy of these techniques.

Keywords: carbon fibre composite; elastic constants; immersion ultrasonic characterization; tensile test; stiffness tensor

1. Introduction

Fibre-reinforced composites are widely used for many structural applications. The primary benefits of the composite components are the reduction of weight and the simplification of assembly (Soutsis 2005). The determination of the mechanical properties, specially the stiffness, is essential for ensuring performance to the composite structures. In addition, the knowledge of complete elastic stiffness matrix is important for modeling and evaluating the mechanical behavior of composite materials under loading conditions (El Bouazzaoui et al. 1996).

For now, tensile test with strain gauge measurements is the technique normalized by ISO standards to identify composites elastic properties. Such conventional method is destructive and provides only a part of elastic constants when thin plates like laminated composite structures are considered. Accordingly, ultrasonic techniques based on the measurement of ultrasonic wave

*Corresponding author, Ph.D., E-mail: helene.welemane@enit.fr
velocities provide an interesting and non-destructive way to address such issue. First experimental studies based on ultrasonic technique were done by Zimmer and Cost (1970). They have used transmission contact technique to obtain dynamic elastic stiffness necessary to derive the unidirectional composite elastic behavior. Several ultrasonic bulk wave methods have also been developed to obtain phase velocities in anisotropic plates, especially when only one or two sides of the sample are accessible (Chu et al. 1994, Vishnuvardhan et al. 2007).

Immersion ultrasonic technique represents a particularly suitable method in the case of composite materials with small thickness (Munoz et al. 2014, Reddy et al. 2005). For a transversely isotropic composite, measurements in symmetry planes are sufficient to entirely determine the stiffness tensor (that is the five independent constants) (Baste and Hosten 1990). Various numerical methods and/or technical devices have then been implemented to interpret experimental results (Balasubramaniam and Whitney 1996, Kawashima et al. 1998).

Generally speaking, two experimental protocols can be used for such immersion technique to get velocities measurements, namely through-transmission and back-reflection techniques (Reddy et al. 2005). Through-transmission method requires two transducers, one to send the wave through the sample and the second one to receive the transmitted wave (Margueres 2000, Franco et al. 2010). As the ultrasonic wave travels through the test sample, the wave is reflected in part as it encounters a medium of different acoustic impedance. Then the transmitted wave is received by the transducer and displayed or stored for analyses. The difficulty of this method is that it requires a tracking of the arrival wave and therefore difficult to implement in the case of immersion.

In the back-reflection technique, a transducer working in pulse/echo mode is associated to a large flat reflector which is positioned parallel to the transmitter. The back-reflected wave travels exactly along the same path as the incident wave in the opposite direction (Rokhlin and Wang 1992). When the sample angle is changed, the position of the incident wave on the back reflector is modified. Compared to through-transmission, such method appears then much relevant in the immersion case since it is not necessary to move the reflector or the transmitter/receiver transducer due to the large dimensions of the reflector.

The aim of this paper is to compare the back-reflection immersion ultrasonic method with classical mechanical characterizations based on tensile tests. Strain gauges are used to measure the axial and lateral strains and stiffness constants are then estimated from the elastic parts of the stress-strain response. At the same time, a digital image correlation system is also implemented to corroborate the gauge data. Regarding immersion technique, a specific device including a rotation system has been set up to study the response of the material under various incident waves. These three results of stiffness tensor measurement (strain gauges, digital image correlation during tensile tests and ultrasonic characterization) are finally compared and discussed.

2. Specimen and experimental procedure

2.1 Specimen

In view of its increasing use in aeronautics, a carbon fibre reinforced laminate is considered for this study. The M10R/38%/UD150/CHS composite is made of 14 unidirectional plies of prepreg leading to a thickness \(h=2 \) mm. Sample fabrication is carried out using the manual lay up technique. Then the sample is cured at 125°C during 90 minutes at a pressure of 2 bars as recommended by the material manufacturer Hexcel®. The plate was checked using ultrasonic C-
Samples for tensile test. Plane 1-2 is the laminate plane and was found to be homogeneous and defect free. The dimensions of the single sample used for the ultrasonic characterization are 150×100×2 mm. The density of this composite is measured experimentally, namely $\rho = 1449 \text{ kg/m}^3$. This material is representative of a transversely isotropic composite.

2.2 Experimental procedure for the tensile test method

The elastic behavior determination based on mechanical tests requires to apply axial tensile load with different orientation regarding the symmetry axis of the material. In this way, laminated samples with three axis fibre directions (0°, 90° and 45°), (see Fig. 1) have been cut according to the standard ISO 527-5 for unidirectional composites (Standard NF EN ISO 527-5 2009) leading to sample dimensions of 250×20×2 mm for 0° specimens and 250×25×2 mm for 45° and 90° specimens. It is important to note here that samples were obtained from the same cured plate in order to limit data scattering. With those tests, only 4 elastic constants can then be determined since loading in the direction of axis 3 (orthogonal to the laminate plane) cannot be done for thin composite plates.

Mechanical tests are carried out at ambient temperature in a room thermoregulated at 25°C. Uniaxial tensile tests are performed by an electromechanical testing machine INSTRON 5500. According to the standard, the displacement rate is 2 mm/min for 0° samples, 1.5 mm/min for 45° samples and 1 mm/min for 90° samples. To check the reproducibility of the response, three specimens are considered for each loading direction.

Strain gauges of 350 Ohm (HBM K-LY41-6/350-3-2M, length of 6 mm) are connected to a data acquisition system HBM Spider 8.30 and the data processing is made with Catman Easy software. Digital Image Correlation (DIC) is also performed during tensile tests. Such technique aims at matching two digital images of a surface observed at two different states of load, generally in the reference state (unloaded) and in a deformed state (Sutton et al. 2000). The markers used for matching the images with the DIC system are done by painting white points on the sample surface (see Figs. 2-3); they form a rhombus of 23×20 mm. The processed image with four markers allows then to obtain the strain during the load for each direction (axial and lateral). The DIC uses an Aramis sensor made of two CCD cameras 1392×1040 pixels definition (displacement resolution of 5 µm). However for plane structures, only one camera is needed for measuring the
Set-up for tensile characterization method

The markers (see Figs. 2-3). The markers quality has been checked in order to ensure recognition by the CCD sensor of different gray levels and to allow an accurate tracking of each pixel during the calibration of the system is easily done by taking images of a 35 mm focal length has been chosen, moreover, 35 mm focal length has been chosen, Images are acquired from the x=t=0 s) to the end of the test; according to the important data involved and related...
According to standards, elastic constants are calculated for strain states between $P_R/10$ and $P_R/2$ where P_R is the yield strength of the specimen. With the 0° tensile test, Young modulus E_1 and Poisson ratio v_{12} are classically deduced from the ratios of axial stress and axial and lateral strains. Young modulus $E_2=E_3$ is calculated in the same way from 90° tensile test. Finally, Eq. (1) provides the shear modulus G_{12} by calculating Young modulus E_{45} obtained with the 45° tensile test

$$\frac{1}{G_{12}} = \frac{4}{E_{45}} - \frac{1}{E_1} - \frac{1}{E_2} + 2\frac{v_{12}}{E_1}$$

(1)

As said before, this procedure does not allow to obtain the last elastic property, namely the Poisson ratio v_{23}, that would entirely determine the elastic behavior of the laminated composite.

2.3 Experimental procedure for ultrasonic characterization

2.3.1 General principle

The elastic stiffness matrix for a transversely isotropic material is given by the following tensor written in the coordinate axes described in Fig. 1

$$\begin{bmatrix}
C_{1111} & C_{1122} & C_{1122} & 0 & 0 & 0 \\
C_{1122} & C_{2222} & C_{2233} & 0 & 0 & 0 \\
C_{1122} & C_{2233} & C_{2222} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{2323} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{1212} & 0 \\
0 & 0 & 0 & 0 & 0 & C_{1212}
\end{bmatrix}$$

(2)

Ultrasonic characterization aims at providing five components representative of the elastic behavior of such material, namely C_{1111}, C_{2222}, C_{1122}, C_{2233} and C_{1212} (C_{2233} can be derived from C_{2222} and C_{2323} based on the elastic relations). This determination relies on the resolution of the Christoffel equation (Rose 1999)

$$|\mathbf{n} \cdot \mathbf{C} \cdot \mathbf{n} - \rho V(n) I| = 0$$

(3)

where $V(n)$ is the wave velocity related to the propagation direction of unit vector n, ρ is the material density and I is identity second-order tensor. Accordingly, this requires the measurement of ultrasonic velocities for different orientations of wave propagation in the sample. For a transversely isotropic composite, measurements in planes of symmetry are sufficient to determine all five independent elastic constants (Aristégui and Baste 1997, Chu et al. 1994).

For the immersion ultrasonic technique, water acts as a couplant that transfers the wave from the transducer to the sample under inspection (Castagnède et al. 1990, Rokhlin and Wang 1992). The transducer is not directly connected with the sample and hence consistent coupling is ensured. In this way, it is possible to measure the wave velocities at different angles of propagation either by adjusting transducer orientation or by rotating the sample (Reddy et al. 2005). Here the sample is held and moved using a rotation system (see Fig. 4). As ultrasonic generator, an Omniscan 32:128 PR is used with a mono-element transducer connected to it. The transducer acts at the same time as ultrasonic source and receiver (reflection mode). Classical value of frequency is used, namely 5 MHz, which allows mainly to avoid inside reflection; back-reflector and specimen were checked for alignment at normal incidence.

The measurements are performed for different angles Φ between plane 2-3 and incident plane (see Fig. 5). For a given Φ, the sample is then rotated in the incident plane for different incident angles θ_i between the transducer and axis 3 of the sample. The wave passes through the sample in
2.3.2 Procedure for the elastic constants estimation

The determination of the velocity of propagation in a medium requires the exact time of flight (TOF) in the specimen for the given angle of propagation. Such time is determined using the cross-correlation technique (Rao et al. 1993). It requires a reference signal, which corresponds here to the signal recorded without the sample (only water). The time to cross the material is obtained by subtracting the TOF along the reference path in the coupling medium (water) to the overall TOF along the path in the sample at a given incident angle. This time difference Δt gives then the ultrasonic velocity $V(\theta_r)$ [m/s] in the specimen for the refracted angle θ_r by the following relation (Vishnuvardhan et al. 2007)

$$V(\theta_r) = V(\Phi, \theta_i) = \frac{1}{2} \theta + \theta \sin(\theta)$$

where V_0 is the velocity in water (without sample) and θ_i the incidence angle (radians). V_0 depends on the water temperature; this velocity has been measured for each test to account for

\[\text{Equation (4)} \]
Reference velocity V for the different samples and angles Φ.

Determination of times of flight τ_0 and τ_1 from which $\Delta t = t_1 - t_0$ is derived.

The transducer senses both longitudinal and quasi-shear waves. Yet, the longitudinal velocity V_L of the first one is always more important than the quasi-shear velocity V_{QS} of the latter; this allows to distinguish their own contribution in the velocity signal (Reddy et al. 2005). These both waves are generated when the incident wave encounters the sample.

In the present case, only two configurations of the incident plane are necessary to derive the elastic constants, namely $\Phi = 0^\circ$ and $\Phi = 90^\circ$. Fig. 8 shows the ultrasonic velocities obtained in...
F Ultrasonic velocity vs. incident angle in plane 2-3 ($\Phi = 0^\circ$)

F Ultrasonic velocity vs. incident angle in plane 1-3 ($\Phi = 90^\circ$)

The longitudinal velocity V_L and quasi-shear velocity V_{QS} are almost constant for all angles of propagation, which stands in agreement with the transverse isotropy of the material around axis 1. The slight deviation of velocity V_L (only 8% for a range of 28° of incident angle) can be explained by some misalignment of plies during the manufacturing process.

In contrast, regarding the ultrasonic velocities in plane 1-3 (that is for $\Phi = 90^\circ$, Fig. 9), both longitudinal and shear velocities are clearly affected by the incident angle. This confirms the anisotropic character of the material in this plane (Vishnuvardhan et al. 2007). Note finally that, for incident angles bigger than 60°, no signal can be detected.

Ultrasonic measurements in plane 2-3 are directly related to the constants C_{2222} and C_{2323}.

Component C_{2222} is determined from normal incidence longitudinal velocity, that is for $\theta_i = 0^\circ$ (point G in Fig. 8):

$$V_{L} = \rho \times \frac{1}{\sin \theta}$$

On the other hand, C_{2323} is determined from the average shear velocity measured in 2-3 plane (part J in Fig. 8):
\[C_{2233} = \rho \left(V_{QS}^{\text{mean}}(\Phi = 0^\circ) \right)^2 \]

(Eq. 6)

\[C_{1111}, C_{1122} \text{ and } C_{1212} \text{ are obtained from both longitudinal and shear velocity data measured in 1-3 plane. Experimental velocity data is fitted in the following two relations obtained from the Christoffel equation’s solution (Eq. (3)). This allows then to determine the three unknown parameters.} \]

\[V_L(\Phi = 90^\circ, \theta_i) = \frac{A + \sqrt{A^2 - 4B}}{2\rho} \]

(Eq. 7)

\[V_{QS}(\Phi = 90^\circ, \theta_i) = \frac{A - \sqrt{A^2 - 4B}}{2\rho} \]

(Eq. 8)

where

\[A = (C_{1122} \cos^2 \theta_i + C_{1111} \sin^2 \theta_i + C_{1212}) \]

(Eq. 9)

\[B = C_{2222} C_{1212} \cos^4 \theta_i + C_{1111} C_{1212} \sin^4 \theta_i + \frac{\sin^2 2\theta_i}{4} [C_{2222} C_{1111} + C_{1212}^2 - (C_{1122} + C_{1212})^2] \]

(Eq. 10)

To solve undetermined Eqs. (7)-(8), one can use the nonlinear least-square optimization technique which minimizes the deviations between the experimental and theoretical velocities for the considered angles of propagation (Reddy et al. 2005)

\[\min_{C_{ijk} \in R^n} \frac{1}{2} \sum_{i=1}^{m} \left(V_i^e - V_i^t \right)^2 \]

(Eq. 11)

In Eq. (11), \(n \) is the number of independent parameters to be extracted (here 5 elastic constants) and \(m \) is the number of measurements of velocities in different directions (here 137 experimental data). \(V^e \) and \(V^t \) are the experimental and theoretical phase velocities, respectively.

In a last step, component \(C_{2233} \) is calculated using this relation between elastic stiffness components

\[C_{2233} = C_{2222} - 2C_{2323} \]

(Eq. 12)

Engineering moduli in the coordinate system \((E_1, E_2=E_3, \nu_{12}, \nu_{23} \text{ and } G_{12})\) can be deduced by inverting the stiffness tensor.

3. Results and discussions

Fig. 10 summarizes the elastic constants estimation obtained by means of the three different methods used to characterize the carbon fibre/epoxy composite. The arithmetic mean \(\bar{x} \) is calculated as the sum of the sampled values divided by the number \(N \) of tests (\(N=3 \) for each method)

\[\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \]

(Eq. 13)

The standard deviation \(\sigma \) is found by taking the square root of the average of the squared differences of the values \(x_i \) from their average value

\[\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2} \]

(Eq. 14)
The error on an elastic property relative to its reference value is defined as follows:

\[\Psi = \left[\frac{\varepsilon - \varepsilon_0}{\varepsilon_0} \right] \]

Indeed, we can see a good accuracy between the 0° tensile test with strain gauges and the only data provided by the manufacturer, namely the axial Young modulus \(E_1 \). Even if UD composites usually exhibit a good reproducibility, especially on \(E_1 \), dispersion obtained in our case in the stress-strain response can be linked to the manufacturing process (since the manual lay-up cannot warrant a perfect alignment of the fibres) and also to the misalignment of gauges.

Regarding DIC technique, we can note a very accurate determination of Young moduli \(E_1 \) (error of 5% on the mean) and \(E_2 \) (error of 2% on the mean). It should be noted that the deviation on these moduli is smaller than the one obtained with gauges. Since DIC method ensures the measurement of the strain along the vertical axis, this tends to confirm the influence of the sensors position in the reproducibility problem observed with gauges. Results are less precise for Poisson ratio \(v_{12} \) (error of 15% on the mean) and shear modulus \(G_{12} \) (error of 8% on the mean). Latter modulii are determined from lateral strains measurement. For carbon fibre composite subjected to axial tension, these strains exhibit low amplitude and are then more affected by measurement inaccuracies. It is also important to note here that calculus of \(G_{12} \) accumulates the errors derived...
Determination of the elastic properties in CFRP composites: comparison of different approaches

![Graph showing signal amplitude and noise with time](image1)

Graph 1:
- Amplitude (dB) vs. Time (μs)
- Signal amplitude and noise with time

Graph 2:
- Signal-to-noise ratio for different conditions

Fig. 11:
- Spatial distribution of the wave amplitude

Conclusions
This paper intended to compare different methodologies to establish the elastic behavior of composite materials. Transversely isotropic composites were considered here through the study of the elastic properties. The results obtained are in agreement with previous works on graphite-epoxy plates, indicating that the deviations found are linked to the estimation of the TOF of the wave inside the material. The device and measurement protocol have been optimized to ensure the best reproducibility. For increasing angles, the wave amplitude becomes weaker, affecting the signal-to-noise ratio. Different definitions of TOF may be employed in such cases.
unidirectional carbon fibre/epoxy laminates. Two strain measurement techniques (gauge as standard, Digital Image Correlation) during tensile tests and the immersion ultrasonic method were analyzed.

Results highlight first the interest of DIC to determine the strain response and its good accuracy on the final determination of elastic constants. Yet, tensile tests do not allow to entirely provide the elastic stiffness and some indetermination remains for structures calculation.

This study has shown also the ability of the immersion ultrasonic technique to derive all elastic constants of a UD laminated composite through the measurement of time of flight inside a sample. The main advantage of this technique is that only one specimen is needed instead of cutting many samples with desired size and shape for a classical characterization tensile test. If elastic properties estimations are quite encouraging, some limitations on the precision have been noted that would require further investigations on the influence of the time of flight. This could be improved by adjusting the experimental set-up in such a way that the distance between transducer and reflector is fixed during all the acquisition or by using two transducers (through-transmission). Also, several signal data processing will be tested for weak amplitude signals in order to estimate the influence of the definition of the TOF on the elastic properties.

Given that, this immersion ultrasonic method could then be extended with the same principle to more complex anisotropic materials including orthotropic symmetry. This would need another degree of freedom to rotate the sample that will provide the possibility to propagate ultrasonic waves along more azimuthal angles/planes with respect to the fibre axis.

References

de Compiègne, Compiègne.

