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Abstract

We develop and implement a method for maximum likelihood estimation of a regime-switching

stochastic volatility model. Our model uses a continuous time stochastic process for the stock dynam-

ics with the instantaneous variance driven by a Cox-Ingersoll-Ross (CIR) process and each parameter

modulated by a hidden Markov chain. We propose an extension of the EM algorithm through the

Baum-Welch implementation to estimate our model and filter the hidden state of the Markov chain

while using the VIX index to invert the latent volatility state. Using Monte Carlo simulations, we test

the convergence of our algorithm and compare it with an approximate likelihood procedure where

the volatility state is replaced by the VIX index. We found that our method is more accurate than

the approximate procedure. Then, we apply Fourier methods to derive a semi-analytical expression

of S&P 500 and VIX option prices, which we calibrate to market data. We show that the model is

sufficiently rich to encapsulate important features of the joint dynamics of the stock and the volatility

and to consistently fit option market prices.
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1 Introduction

A central research question in option pricing for academics and market practitioners is the specification
of asset returns dynamics. Under the pricing measure, this question reduces to specify the dynamics of
the volatility of the asset. Since the Black-Scholes constant volatility model does not provide a good
fit to historic price data of the underlying and does not, by definition, have the ability to explain vanilla
option prices, it cannot be reliable for pricing and hedging most of the recent exotic derivatives. Indeed,
some of these structures cannot be hedged statically and require frequent rebalancing of vanilla options
in order to hedge the vega risk. This leads to a penalizing hedging cost in the case of a mismatch between
the market and model prices of the vanilla options used for the hedge (see Bergomi [9]). Over the years,
several approaches, including local volatility and stochastic volatility models, have been proposed to
overcome the issue of fitting market-implied volatilities across strikes and maturities.

Stochastic volatility models are increasingly important because they capture a richer set of empirical
and theoretical characteristics than other volatility models. First, stochastic volatility models generate
return distributions similar to what is empirically observed: the return distribution has a fatter left tail and
kurtosis compared to normal distributions, with tail asymmetry controlled by the correlation between the
stock and the volatility process (see Musiela and Rutkowski [35]). Second, stochastic volatility models
allow reproduction of the main features of the volatility behaviour: mean reversion and volatility clus-
tering (see Durham [22]). Third, stochastic volatility with a zero correlation always produces implied
volatilities with a smile (see Renault and Touzi [37]). Fourth, Trolle and Schwartz [40] developed a
tractable and flexible stochastic volatility multifactor model of the interest rates term structure. This
model allows them to match the implied cap skews and the dynamics of implied volatilities. Moreover
Christoffersen et al. [15] investigated alternatives to the affine square root stochastic volatility model, by
comparing its empirical performance with different but equally parsimonious stochastic volatility mod-
els. They provide empirical evidence from three different sources: realized volatilities, S&P 500 returns,
and an extensive panel of option data. Finally, historic volatility shows significantly higher variability
than would be expected from local or time-dependent volatility, which could be better explained by a
stochastic process. Among stochastic volatility models, the Heston model (see Heston [31]) is an in-
dustry standard. Its parameters are known to exert clear and specific control over the implied volatility
skew/smile, and it can mimic the implied volatilities of around-the-money options with a fair degree of
accuracy.

The recent introduction of derivatives on the VIX index contributed new and valuable information
regarding S&P 500 index returns. Introduced by the CBOE in 1993, the VIX index non-parametrically
approximates the expected future realized volatility of the S&P 500 returns over the next 30 days. VIX
options started trading in 2006 and, as of today, represent almost a quarter of the vega notional of all the
derivatives written on the S&P 500. By definition, the VIX index, VIX options, and S&P 500 options
are directly linked to the S&P 500 index; therefore, the VIX option smile encodes information about the
dynamics of volatility in a stochastic volatility model. If we want to value exotic options that are sensitive
to the precise dynamics of S&P 500 implied volatilities or volatility derivatives, it seems natural to choose
a model that consistently prices both VIX and S&P 500 options. However, because it has been widely
studied in Duan and Yeh [19], Gatheral [25], Mencìa and Sentana [34], Wong and Lo [41], the Heston
model is not able to fit the information of the VIX option market because the volatility process generated
by this model remains too close to the mean level and because insufficient mass is spread in the tail of
the probability distribution of the process.

Recently, several approaches have been proposed by academics and practitioners to overcome this
shortcoming, which can be classified basically into two groups. The philosophy of the the first group
consists in enriching the volatility process with features that describe a more realistic behaviour. In
particular, a square-root process with jumps in both the underlying and the volatility was used in Sepp
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[38] to price VIX derivatives, reinforced by an increasing body of statistical evidence for jumps in price
and volatility dynamics. We can refer to Ait-Sahalia and Jacod [1], Cont and Mancini [14]) or Todorov
[39] who have demonstrated that the variance risk is manifest in two salient features of financial returns:
stochastic volatility and jumps. In Baldeaux and Badran [3], Drimus [18] a so-called 3/2 model is used
as a candidate, allowing the volatility of volatility changes to be highly sensitive to the actual level
of volatility. Another important approach that was derived recently uses additional factors to model
stochastic volatility: see Bardgett et al. [6], in which a double Heston model with jumps is applied, and
Bayer et al. [8], in which a three-factor double-mean-reverting model is calibrated to option market data.
These models offer a good flexibility to consistently model VIX and S&P 500 options while providing a
realistic representation of the path of volatility, see Gatheral [25], Mencìa and Sentana [34]. The second
main alternative is to model the forward variance swap dynamics instead of the instantaneous variance
for a discrete tenor of maturities, as originally suggested by Dupire [21] and subsequently formalized
by Bergomi [10] and Buehler [12]. This approach is quite flexible and is able to reproduce the VIX
option skew (Bao et al. [5]) and some important features of the variance swap dynamics and the term
structure of the volatilities of volatility, while allowing better control over the desired level of forward
skew of the underlying and its dependence on the level of volatility. In a recent work, Cont and Kokholm
[13] combine both approaches incorporating jumps features in the forward variance process and the
underlying process while offering more tractability than the Bergomi [11] model.

In this paper, we incorporate a regime switching feature in the stochastic volatility process in line
with the first group in the literature as described above. The original introduction of regime switching
in the econometric literature can be attributed to Hamilton [30], the relevance of regime shifts in return
GARCH models is highlighted in Dueker [20], Hillebrand [32] and a multivariate Markov-modulated
Gaussian model is calibrated to stock returns in Date and Mitra [16]. The first extension of the Heston
model with regime switching to price VIX options was recently reported by Papanicolau and Sircar [36],
in which an observed Markov chain modeling the state of volatility modulates two components of the
stock process: the intensity of jumps and an additional multiplicative factor for volatility. Although this
model overcomes the shortcoming of VIX skew, regime shifts drive the stock returns, and thus, it is
not clear how the dynamics of volatility itself can be monitored using this model. Moreover, as shown
by Gatheral [25], there is a very good consistency between forward variance swap rates estimates from
S&P 500 and VIX options, invalidating the existence of a jump premium priced in the market, since the
unique underlying assumption behind the computation of the VIX index is the continuity of the stock
price process.

The first incorporation of regime switching in the volatility process itself was achieved by Elliot et al.
[23, 24], who propose an extension of the Heston model, in which the mean-reverting level of volatility
is modulated by an observable Markov chain, and use it to derive the price of volatility derivatives, such
as variance swaps and volatility swaps.

In this paper, we generalize this approach by considering that a hidden Markov chain modulates
the speed of mean reversion, the mean-reversion level, the volatility of volatility, and the correlation
with the stock index. This model was originally studied by Goutte [27] for the pricing and hedging of
derivatives. To the best of our knowledge, this is the first time that a combination of a Cox-Ingersoll-Ross
framework with a Markov regime switching model has been used for pricing S&P 500 and VIX options.
We also provide a method to estimate this model by deriving a complete maximum likelihood procedure
to estimate the parameters of the model and the filtering of the hidden Markov chain. This model makes
two main contributions: It facilitates better capturing important features of the (joint) dynamics of the
stock and volatility and is able to consistently match the S&P 500 and the VIX option-implied volatilities.

The article is structured as follows. Section 2 provides an introductory analysis of VIX and S&P 500
time series, and we discuss the sources of motivation for the model. Section 3 focuses on describing the
model and the calculations of the VIX index. Section 4 presents our estimation and filtering method in
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detail and then tests the accuracy of the method by performing Monte Carlo simulations and comparing
it with an approximate likelihood procedure in which the latent volatility state is replaced by a proxy.
In Section 5, we derive closed-form expressions for the price of S&P 500 and VIX options using this
model, calibrate the model to market prices by assuming a small rate of regime-change, and show through
a joint calibration that the model offers sufficient flexibility to fit both smiles.

2 Motivations & Stylized Facts

We know that some important features of the behaviour of the S&P 500 and its volatility as well as their
joint dynamics can be reproduced by the Heston model. These main features are the excess skewness
and kurtosis of the distribution of stock returns, the mean reversion of the volatility process, and the so-
called leverage effect for the stock-vol joint dynamics through the negative correlation between the two
processes (see Figure 1). In this section, we will explore the main limitations of the Heston model and,
therefore, the foundation of our work according to three aspects: the dynamics of the volatility process,
the dynamics of stock returns, and their joint dynamics. We finally conclude this section by applying the
regime-switching feature to the risk management of an equity portfolio using VIX futures.
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Figure 1: The VIX and S&P 500 indices from January 2000 to January 2015

2.1 Dynamics of volatility

To test how the Heston parameters shift over time, we start by examining a maximum likelihood estima-
tion of the volatility process in the Heston model over a rolling window using the squared VIX index as
a proxy for the instantaneous variance. We also estimate the correlation parameter between the instanta-
neous variance and the S&P 500 over the same rolling window. The results reported in Figure 2 not only
demonstrate that these parameters are not constant over time but also highlight sharp level changes, such
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as regime shifts, especially for the θ mean-reversion level, the volatility of volatility ξ and the correlation
ρ. Moreover, by superposing in Figure 4 the graphs of instantaneous volatility ( through its proxy) and
the estimated volatility of volatility, these results reveal an important correlation between the two quan-
tities, which is a crucial feature of the statistical behaviour of volatility. This feature cannot be captured
by the Heston model, for which the instantaneous variance is modeled by a CIR process:

dVt = κ(θ − Vt)dt+ ξ
√
VtdWt (2.1)

Assuming that 2κθ > ξ2 and applying the Itô’s lemma to the log-volatility process ln(σt), where
σt =

√
Vt, we can see that the volatility of volatility is equal to ξ

2σt in the Heston model:

d ln(σt) = 1
2σ2

t

(
κ(θ − σ2

t )−
ξ2

2

)
dt+ ξ

2σt
dWt (2.2)

Thus, the Heston model implies that the volatility and the volatility of volatility will move in opposite
directions. This suggests the use of an exogenous factor in the volatility process to drive both the mean
level of volatility and the volatility of volatility (which has never been reported in the literature and
motivates extending the work of Elliot et al. [23, 24]). The same motivation was previously inspired
by the work of Bergomi [9], in which, after calibrating the Heston parameters to the option market
using a large sample of time, he found that the daily variations of the calibrated instantaneous variance
and the volatility of volatility showed an impressive correlation of almost 60 %. Thus, the market was
already pricing a feature of the behaviour of volatility that Heston’s model misprices by construction,
thereby leading to the mispricing of derivatives that are highly sensitive to the dynamics of implied
volatility. However, what was previously hidden became more transparent with the development of
volatility products, allowing more insight regarding how the market prices the behaviour of volatility and,
therefore, how it should be modeled. The correlation between volatility and the volatility of volatility
can indeed be illustrated using the VVIX index as a proxy for the vol-of-vol. The VVIX index, which
is also called the VIX of VIX, is calculated from the price of a portfolio of liquid VIX options and
gives a model-free measure of the 1-month volatility of the VIX as implied by the market. The daily
log-variations of the two series in in Figure 4 exhibit a high correlation level of 60 %.

The information encapsulated in the positive skew of VIX (see Bao et al. [5]) implied volatilities
demands the same improvement: the market implies that a higher VIX will be concomitant with a high
level of volatility of the VIX, which is in good agreement with the historical behaviour but cannot be
fulfilled by the Heston model (see Figure 3). The positive slope of the VIX implied volatilities also
provides the market’s perspectives regarding the distribution of log(V IXt) conditional upon V0, which
is closely linked to the conditional distribution of log(

√
Vt) (here again, we proxy

√
Vt with V IXt).

It is clear that the conditional moments and higher moments of a log-chi-squared distribution (as given
for log(Vt) by the Heston model) are not compatible with the market-implied positive skewness and fat
tails of the distribution of log(V IXt). We would like to mention that recently, Bayer et al. [7], resolved
this problematic of Heston model (i.e. cover typical short term maturity features of observed data (e.g.
volatility smiles)) via a completely different approach.

To show how the regime-switching feature can fill this gap, we compare model-implied conditional
skewness and kurtosis for log V IXt generated by the Heston model and its regime-switching extension.
The results are presented in Table 1 and show how the fits are improved for the conditional higher
moments because of regime switching. Table 1 also provides the model-implied unconditional higher
moments for the VIX index compared with their sample data values, resulting in a better fit and the
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model’s ability to generate more realistic implied volatility paths for the pricing of forward implied
volatility surface-dependent derivatives.
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Figure 2: Outputs of the 100 days rolling maximum likelihood for κ, θ and ξ. The correlation parameter is
estimated over the same period. Estimates are displayed with the 95% confidence bounds

2.2 Conditional moments of stock returns

It is well known that the Heston model has the ability to generate realistic higher moments in the un-
conditional distribution of stock returns. However, the model-implied conditional higher moments may
be too close to normality, especially for short-term horizons, which explains why the model falls short
of explaining the implied volatility smile for short-dated options. In fact, an analysis of conditional mo-
ments of stock returns shows near-Gaussian behaviour for all the stochastic variance models, particularly
at short horizons, as argued by Jones [33]. Here, we show how adding regime switching to the Heston
stochastic volatility model allows overcoming this shortcoming. Considering 5- and 21-day time hori-
zons, we use a Monte Carlo simulation to compute the skewness and kurtosis of the distribution of stock
returns conditional upon the level of the instantaneous variance (V0 = 0.02) and the level of the volatility
regime (Z0 = 1). The results are presented in Table 2 and show how the regime-switching feature allows
the non-Gaussianity of the conditional stock returns to significantly increase at short time horizons. As
a benchmarking model, we use the CEV class model studied by Jones [33] (which generalizes the ’3/2’
model) and manages, similar to our model, to address some important features, such as the correlation of
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Figure 3: The VIX option-implied volatilities versus the skew implied by the Heston Model

Heston model RSSV

skewness kurtosis skewness kurtosis

Conditional moments (t=21 days, V0 = 0.02)
-0.11 3.31 0.68 4.28

Unconditional moments - Model implied
-0.46 3.25 0.78 8.23

Unconditional moments - Sample data
0.63 7.07 0.63 7.07

Table 1: Conditional and unconditional higher moments for the VIX index log returns
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Figure 4: Daily closes of the VIX index and the VVIX index from March 2006 to January 2015
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Heston model CEV RSSV

skewness kurtosis skewness kurtosis skewness kurtosis

Conditional moments (t=5 days, V0 = 0.02)
-0.09 3.03 -0.095 3.05 -0.15 3.13

Conditional moments (t=21 days, V0 = 0.02)
-0.20 3.12 -0.22 3.13 -0.38 3.71

Table 2: Conditional higher moments for stock returns

volatility and the vol-of-vol, time-varying leverage effect and unconditional skewness and kurtosis of the
VIX and stock distributions. However, it fails to reproduce the conditional higher moments. Although
the typically suggested way to tackle this issue is to add a jump component to the stock process, here,
we show that this stylized fact can be embedded in a regime-switching stochastic volatility process.

2.3 Joint dynamics of the stock and the volatility process

The empirical study shown in Figure 2 reveals sharp level changes in the correlation between the volatility
and the stock process. Most importantly, this correlation tends to increase when volatility increases, in-
dicating that the leverage effect becomes substantially stronger, as noted by Bandi and Reno [4]. Adding
a regime-switching feature to the stock-vol correlation allows capturing this stylized fact and produces
a far more realistic distribution of stock returns by allowing more extreme events at short and long hori-
zons. From a pricing perspective, this feature prices the fact that when the spot moves down, the implied
volatility and the implied volatility skew increase even more, which is particularly crucial for barrier
option valuation.

To summarize, we have demonstrated that the following features are better reproduced by the regime-
switching Heston model:

• the correlation between the volatility and the volatility of volatility;

• the conditional and unconditional higher moments of the volatility distribution;

• the short-term conditional higher moments of stock returns; and

• the time-varying leverage effect

All of these points justify the use of a new extension of the standard Heston model with regime-
switching parameters in both all the parameters of the volatility process and the correlation factor be-
tween the stock and the volatility processes.

3 The stochastic model

3.1 Regime-switching Heston model

Below, we work in a filtered probability space (Ω,F := (Ft)[0,T ],P), where P denotes a risk neutral or
equivalent martingale measure. We introduce (Zt), a homogeneous continuous time Markov chain on a
finite space E := {1, ..., S}, with an initial value of µ. This Markov chain represents the regime-state of
volatility. We denote by Π the generator matrix of Z, which is given for all i, j ∈ E by Πij ≥ 0 if i 6= j
and Πii = −

∑
i 6=j Πij . We assume that the transition probabilities from a state i ∈ E at time t towards a
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state j ∈ E at time t+h are stationary. This leads to an infinitesimal generator Π independent of time. Let
us denote now by T (h) the matrix of transition probabilities defined by Tij(h) = P(Zh = j | Z0 = i),
for all i, j ∈ E. Then, the following relation holds:

dTij(h)
dh

= Πij for all i, j ∈ E

Note that this relation implies that Tij(h) = (eΠh)ij . Finally, let us denote by P the matrix of transition
probabilities of the embedded DTMC of Z (discrete time Markov chain). P is given by:

Pij =


Πij∑
i 6=j Πij

if i 6= j

0 otherwise

Now, we can introduce the model that we will use to model the S&P500 index. Let S = (St)
be a stochastic process in our probability space that models the spot value of the S&P500 index. Let
V = (Vt) be another stochastic process that models the instantaneous variance of S. We assume that the
dynamic of our model is given by the following system of stochastic differential equations:

{
dSt = St(rdt+

√
VtdW

1
t ), S0 = s

dVt = κ(Zt)(θ(Zt)− Vt)dt+ ξ(Zt)
√
VtdW

2
t , V0 = v0.

(3.3)

where r ≥ 0 is the risk-free rate of return and W 1 and W 2 are two P-Brownian motions such that
EP[dW 1

t dW
2
t ] = ρ(Zt)dt with ρ ∈ [−1, 1] .

Assumption 3.1. We assume that Z and the pair of processes W 1,W 2 are independent. Therefore, the

Markov process Z is considered to be an exogenous factor of the market information.

Remark 3.1. It is important to note that all the parameters of the volatility process V and that the corre-

lation factor between the S&P500 index and its instantaneous variance V depend on the homogeneous

continuous time Markov chain Z.

Now, we define some filtrations. Let FWt be the filtration generated by the two Brownian motions
W 1 and W 2. Thus, FWt := σ((W 1,W 2)s, s 6 t). Then, let FZt be the one generated by the process Z,
FZt := σ(Zs, s 6 t). Finally, we denote by F the global filtration that is given by Ft := FWt ∨ FZt .

3.2 The VIX Index

Definition 3.1. The VIX index is calculated as the strike of the one-month variance swap contract on

the S&P500 index. Let τvix be the duration corresponding to one month. Because St has no jumps, the

following relationship holds:

V IX2
t = EP

[ 1
τvix

∫ t+τvix

t
Vsds | Ft

]
(3.4)
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We can now give two decomposition results based on the VIX process.

Lemma 3.1. Let M be a discrete random variable in N∗ := N \ {0}, such that M − 1 is the random

number of jumps of the Markov chain Z between 0 and τvix. Let (τ1, . . . , τM−1) be a sequence of M −1

random jump times, and let us denote by ∆tk := τk+1− τk for each k ∈ {0, . . . ,M −1} with τM = τvix

and τ0 = 0. For each k ∈ {0, . . . ,M − 1}, there are two families of functions {fk}0≤k≤M−1 and

{gk}0≤k≤M−1 defined from Ek to R, such that:

EP
[∫ τvix

0
Vsds | V0 = v0,FZτvix

]
=

(
M−1∑
k=0

a(Zτk)fk(Z0, . . . , Zτk−1)
)
v0

+
M−1∑
k=0

(
b(Zτk) + a(Zτk)gk(Z0, . . . , Zτk−1)

)

where the functions {gk}0≤k≤M−1 and {fk}0≤k≤M−1 are determined as follows:

gk(Zτ0 , . . . , Zτk−1) =



gk−1(Zτ0 , . . . , Zτk−2)(1− κ(Zτk−2)a(Zτk−2)) if k ∈ {2, . . . ,M − 1}

+κ(Zτk−2)(θ(Zτk−2)∆tk−2 − b(Zτk−2))

κ(Zτ0)(θ(Zτ0)∆t0 − b(Zτ0)) if k = 1

0 if k = 0

fk(Zτ0 , . . . , Zτk−1) =


∏k−1
j=0 (1− κ(Zτj ))a(Zτj ) if k ∈ {1, . . . ,M − 1}

1 if k = 0

Additionally, a(Zτk) and b(Zτk) are given by:

a(Zτk) = 1− exp(−κ(Zτk)∆tk)
κ(Zτk)

b(Zτk) = θ(Zτk)(∆tk − a(Zτk))

Proof The proof of this lemma can be found in the appendix.

Now, we can report an important result that describes the relationship between the process V IXt and
the couple (Vt, Zt). This result will subsequently be crucial.

Proposition 3.1. For each integer M ∈ N∗ and each z0 ∈ E, let us denote by Sτvixz0,M
the set of all
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possible sequences of states through a path of the continuous time Markov Chain Z containing M − 1

jumps between t = 0 and τvix and starting at the state z0,i.e.

Sτvixz0,M
= {(si)0≤i≤M |si ∈ E, s0 = z0, si+1 6= si if i ∈ {0, . . . ,M − 2}, sM = sM−1}

Now, with each set of M dwell times (∆t0 , . . . ,∆tM−1) of the continuous time Markov chain Z and each

sequence s ∈ Sτvixz0,M
, we can associate a unique path of Z containing M − 1 jumps between t = 0 and

t = τvix. For each of these paths, we define the following functions:

AM (s, (∆tk)0≤k≤M−1) =
M−1∑
k=0

a(Zτk)fk(Z0, . . . , Zτk−1)

BM (s, (∆tk)0≤k≤M−1) =
M−1∑
k=0

(
b(Zτk) + a(Zτk)gk(Z0, . . . , Zτk−1)

)

Thus, the probability of this path, which is given by the function:

LτvixM (s, (∆tk)0≤k≤M−1) =


(∏M−1

i=0 qsie
−qsi∆tiPsisi+1

)
e−qsM (τvix−

∑M−1
k=0 ∆tk

) if
∑M−1
k=0 ∆tk < τvix

0 otherwise

where qsi = Π(si, si).

If the variance process Vt follows the described dynamic, then there is a linear relationship between the

squared V IX2
0 and v0 with switching coefficients depending on the state of the Markov chain z0. This

relationship is given by:

V IX2
t = α(z0)Vt + β(z0)

where α and β are two functions from the set E to R given by:

α(z0) = 1
τvix

∞∑
M=1

∑
s∈Sτvixz0,M

∫
· · ·
∫

︸ ︷︷ ︸∑M−1
k=0 ∆tk

<τvix

AM (s, (∆tk)0≤k≤M−1)LτvixM (s, (∆tk)0≤k≤M−1) d∆t0 . . . d∆tM−1

β(z0) = 1
τvix

∞∑
M=1

∑
s∈Sτvixz0,M

∫
· · ·
∫

︸ ︷︷ ︸∑M−1
k=0 ∆tk

<τvix

BM (s, (∆tk)0≤k≤M−1)LτvixM (s, (∆tk)0≤k≤M−1) d∆t0 . . . d∆tM−1

Proof
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We can write

V IX2
0 = EP

[ 1
τvix

∫ τvix

0
Vsds | F0

]
= EP

[ 1
τvix

EP
[∫ τvix

0
Vsds | FZτvix , V0 = v

]
| F0

]

Finally, by denoting:

α(z0) = 1
τvix

EP[
M−1∑
k=0

a(Zτk)fk(Z0, . . . , Zτk−1) | Z0 = z0]

β(z0) = 1
τvix

EP[
M−1∑
k=0

b(Zτk) + a(Zτk)gk(Z0, . . . , Zτk−1) | Z0 = z0]

we obtain the expected result.
The expression of the functions α and β can be derived explicitly because each multidimensional

integral in the expression of α and β is a linear combination of integrals of the form
∫

Ω exp(x.a)dx
or
∫

Ω (x.b) exp(x.a)dx where a and b are constant vectors and Ω is a triangular domain. However,
practically, these expressions are derived up to a fixed dimension M̄ , which represents the maximum
number of jumps considered for the Markov chain during a month. In the following simulations, we will
choose M̄ = 5, which is coherent with the assumption that the jump intensity of the Markov chain is
moderate.

4 Maximum Likelihood Estimation

In this section, we explore a maximum likelihood procedure to estimate the set of parameters appearing
in the dynamic of V , Θ := {(θi)i∈E , (κi)i∈E , (ξi)i∈E ,Π}. The main goal is to use the Expectation-
Maximization (EM) algorithm initiated in Dempster, Laird and Rubin [17], which consists of completing
the vector of the observed data with the unobserved data and iteratively maximizing a pseudo-likelihood
function of the complete data. When the unobserved data is a hidden Markov chain driving the pa-
rameters of a continuous time-observed process, a well-known application of the EM principle is the
Baum-Welch algorithm. This algorithm is used by Goutte and Zou [29] to estimate the parameters of a
continuous time regime-switching model, in which the observed data are the foreign exchange rates and
the unobserved data consist of a hidden Markov chain. The main difference and main difficulty in this
work relate to the fact that, in this case, the process V = (Vt) is not observable, unlike the spot foreign
exchange rate. An interesting discussion can be found in Papanicolau and Sircar [36] on risk-neutral
filtering and smile effects caused by volatility uncertainty. Thus, we are confronted with the problem of
the the maximum likelihood estimation for a set of latent data driven by a hidden Markov chain. To solve
the problem of the latent variance, Ait-Sahalia and Kimmel [2] proposed two different approaches: a full
likelihood procedure, in which a quoted security (an option, for example) is inverted into the unobserv-
able volatility state, and an approximate likelihood procedure, in which the volatility process is replaced
by a good proxy, such as the implied volatility of a short dated at the money option. In our paper, we use
the Baum-Welch algorithm to address the problem of the unobservable Markov chain in the model, and
we adapt it by proposing using the relationship established between the observable VIX Index and the
couple (Vt, Zt) to overcome the issue of the unobservable variable Vt.
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4.1 Algorithm estimation

Let us suppose that we observe the value of the V IX Index daily. Let the size of the historical data be
H + 1 and Γ be the corresponding increasing sequence of time in which these data are collected:

Γ = {tj ; 0 = t0 ≤ t1 ≤ ...tH−1 ≤ tH = H ∗ δ}, with δ = tj − tj−1.

Here, the time step δ is constant. Let us denote Yt = V IX2
t , and by (yk, zk), realize the random variables

(Ytk , Ztk) for every k ∈ {0, . . . ,H}. Finally, we denote a realization of the full history Y := (Ytk)0≤k≤H
and Z := (Ztk)0≤k≤H by y and z. Using this algorithm, we deduce the transition density function
of the observed variable V IX2

tk
from the transition density function of the unobserved variable Vtk ,

conditional upon the state of the Markov chain at time tk and tk−1. This approach is used in Ait-Sahalia
and Kimmel’s work, as mentioned above, where the transition density function of the observed asset
prices (the stock and one or more options written on that stock) is derived from the transition function
of the state vector (the stock and the variance processes). However, our work is based on two aspects.
First, we assume that the information embedded in the V IX is sufficient to reflect all of the empirical
features in the variance behaviour and that we do not need the information contained in the stock process
St, thereby simplifying the computation of the state vector transition function. Second, we must take
into account the unobservable state of the Markov chain in our maximum likelihood procedure because
the hidden Markov chain is needed to complete the observed data.
Let {εtk}0≤k≤H be a sequence of i.i.d random variables such that εtk ∼ N (0, 1). We can write thus the
following discretization of the process V :

Vtk − Vtk−1 = κ(Ztk)(θ(Ztk)− Vtk−1)δ + ξ(Ztk)
√
δ
√
Vtk−1εtk

Vtk = κ(Ztk)θ(Ztk)δ + (1− κ(Ztk)δ)Vtk−1 + ξ(Ztk)
√
δ
√
Vtk−1εtk

Using the relationship established in Proposition 1.1, we get:

Ytk − β(Ztk)
α(Ztk) = κ(Ztk)θ(Ztk))δ + (1− κ(Ztk)δ)

Ytk−1 − β(Ztk−1)
α(Ztk−1) + ξ(Ztk)

√
δ

√
Ytk−1 − β(Ztk−1)

α(Ztk−1) εtk

In what follows, we well denote α(Zt,Θ) := α(Zt) and β(Zt,Θ) := β(Zt). Thus, for each (i, j) ∈
E2, we have the following expression for the density function of Ytk evaluated in yk conditional upon
(Ytk−1 = yk−1, Ztk = j, Ztk−1 = i) :

fY (yk | Ztk = j, Ztk−1 = i, yk−1,Θ) = 1

| α(j,Θ) |
√

2πδ yk−1−β(i,Θ)
α(i,Θ) ξj

× exp

−
(
yk−β(j,Θ)
α(j,Θ) − θjκjδ − (1− κjδ)yk−1−β(i,Θ)

α(i,Θ)

)2

2δξ2
j
yk−1−β(i,Θ)

α(i,Θ)


Our objective is to maximize the likelihood of the observed data. Thus, we aim to find the values of
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Θ that maximize the probability:

J := L(Θ | Y ) := P(Y0 = y0, ..., YtH = yH | Θ)

Clearly, it is not easy to compute the function L(Θ | Y ). Therefore, it is useful to complete the observed
data Y with the hidden data Z and then compute the probability of the joint events:

P(Y0 = y0, ..., YtH = yH , Z0 = z0, ..., ZtH = zH | Θ)

By successively applying the Bayes formula to this collection of events, we can write:

J = P(Z0 = z0)
H∏
k=1

P(Ztk = zk | Z0 = z0, . . . , Ztk−1 = zk−1,Θ)

∗
H∏
k=1

P(Ytk = yk | Z0 = z0, . . . , ZtH = zH , Y0 = y0, . . . , Ytk−1 = yk−1,Θ)

We can simplify the first product term because of the Markovity of Z and the second product term
because the conditional probability of Ytk depends only on (Ytk−1 , Ztk , Ztk−1). Then, the expression of
J reduces to

J = P(Z0 = z0)
H∏
k=1

P(Ztk = zk | Ztk−1 = zk−1,Θ)

×
H∏
k=1

P(Ytk = yk | Ztk = zk, Ztk−1 = zk−1, Ytk−1 = yk−1,Θ)

Finally:

J = P(Z0 = z0)
H∏
k=1

Tzk−1,zk(δ) ∗ fY (yk | Ztk = zk, Ztk−1 = zk−1, Ytk−1 = yk−1,Θ)

We recall that the aim of the Expectation-Maximization algorithm is to iteratively maximize the
following function over Θ, assuming that we know the set of parameters Θ(n) after step n of the iteration:

Q(Θ,Θ(n)) := EP[lnP(Y = y,Z | Θ) | Y = y,Θ(n)]
=

∑
z∈Z

ln (P(Y = y,Z = z | Θ))P(Z = z | Y = y,Θ(n))

where Z is the set of possible values that can be taken by Z.

Proposition 4.2. The pseudo-likelihood function Q(Θ,Θ(n)) is given by

Q(Θ,Θ(n)) = Q1(Θ(n)) +Q2(Θ,Θ(n)) +Q3(Θ,Θ(n)), (4.5)
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where

Q1(Θ(n)) :=
∑
j∈E

ln (P(Z0 = j))P(Z0 = j | Y = y,Θ(n)),

Q2(Θ,Θ(n)) :=
∑

(i,j)∈E2

H∑
k=1

ln (Tij(δ))P(Ztk−1 = i, Ztk = j | Y = y,Θ(n)),

Q3(Θ,Θ(n)) :=
∑

(i,j)∈E2

H∑
k=1

ln
(
fY (yk | Ztk = j, Ztk−1 = i, yk−1,Θ)

)
P(Ztk−1 = i, Ztk = j | Y = y,Θ(n)).

Moreover, we can obtain more specific formulas for

P(Ztk−1 = i, Ztk = j | Y = y,Θ(n)) =
wi(tk−1)vj(tk)T

(n)
ij (δ)fY (yk | Ztk = j, Ztk−1 = i, yk−1,Θ(n))∑H

k=1wi(tk)
,

Additionally, we can recursively evaluate the quantities w and v for k ∈ {0, . . . ,H}:

wi(tk) =


∑
j∈E wj(tk−1) ∗ fY (yk | Ztk = i, Ztk−1 = j, yk−1,Θ(n))T (n)

ji (δ) if k ∈ {1, . . . ,H}

P(Z0 = j) if k = 0

vi(tk) =


∑
j∈E vj(tk+1) ∗ fY (yk+1 | Ztk+1 = j, Ztk = i, yk,Θ(n))T (n)

ij (δ) if k ∈ {0, . . . ,H − 1}

1 if k = H

Proof
We have

Q(Θ,Θ(n)) = E[ln(P(Y = y,Z | Θ)) | Y = y,Θ(n)]
=

∑
z∈Z

ln(P(Y = y,Z = z | Θ))P(Z = z | Y = y,Θ(n))

=
∑
z∈Z

ln(P(Z0 = z0))P(Z = z | Y = y,Θ(n))︸ ︷︷ ︸
Q1(Θ(n))

+
∑
z∈Z

H∑
k=1

ln(Tzk−1,zk(δ))P(Z = z | Y = y,Θ(n))︸ ︷︷ ︸
Q2(Θ,Θ(n))

+
∑
z∈Z

H∑
k=1

ln (fY (yk | zk, zk−1, yk−1,Θ))P(Z = z | Y = y,Θ(n))︸ ︷︷ ︸
Q3(Θ,Θ(n))
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Because Zt is a continuous time Markov chain, we can obtain the expression of Q1, Q2 and Q3 shown in
the proposition. Regarding wi(tk) and vi(tk), the recursive relations are derived according what follows:

wi(tk) = P(Ztk = i, Y0 = y0, . . . , Ytk = yk)
=

∑
j∈E

P(Ztk = i, Ztk−1 = j, Y0 = y0, . . . , Ytk = yk)

=
∑
j∈E

P(Ztk−1 = j, Y0 = y0, . . . , Ytk−1 = yk−1)

×P(Ztk = i, Ytk = yk | Ztk−1 = j, Y0 = y0, . . . , Ytk−1 = yk−1)
=

∑
j∈E

wj(tk−1)P(Ztk = i, Ytk = yk | Ztk−1 = j, Y0 = y0, . . . , Ytk−1 = yk−1)

=
∑
j∈E

wj(tk−1)fY (yk | Ztk = i, Ztk−1 = j, yk−1,Θ(n))× T (n)
ji (δ)

for k ∈ [1, H] and with wi(0) = µi.

vi(tk) = P(Ytk+1 = yk+1, . . . , YT = yH | Ztk = i, Ytk = yk)
=

∑
j∈E

P(Ztk+1 = j, Ytk+1 = yk+1, . . . , YT = yH | Ztk = i, Ytk = yk)

=
∑
j∈E

P(Ytk+2 , . . . , YT = yH | Ztk+1 = j, Ztk = i, Ytk+1 = yk+1, Ytk = yk)

×P(Ytk+1 = yk+1, Ztk+1 = j | Ztk = i, Ytk = yk)
=

∑
j∈E

P(Ytk+2 , . . . , YT = yH | Ztk+1 = j, Ztk = i, Ytk+1 = yk+1)

×P(Ytk+1 = yk+1 | Ztk+1 = j, Ztk = i, Ytk = yk)P(Ztk+1 = j | Ztk = i)

=
∑
j∈E

vj(tk+1)fY (yk+1 | Ztk+1 = j, Ztk = i, yk,Θ(n))× T (n)
ij (δ)

for k ∈ [0, H − 1] and with vi(tH) = 1.

Algorithm

1. Start with an initial vector set Θ(0) := {(θ(0)
i , κ

(0)
i , ξ

(0)
i )i∈E ,Π(0)}. Let us fix N the maximum

number of iterations authorized of the algorithm and a positive constant ε for the estimated pseudo
log-likelihood function.

2. Assume that we are at the n + 1 < N step and that the n step yielded to the vector set Θ(n) :=
{(θ(n)

i , κ
(n)
i , ξ

(n)
i )i∈E ,Π(n)}.

– E-Step:
This step consists of computing the function Q(Θ,Θ(n)) following Proposition 4.2.

– M-Step:
The computation of θ(n+1)

i , κ(n+1)
i , ξ(n+1)

i and Π(n+1)
ij is achieved by maximizing the function
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Q(Θ,Θ(n)):

Θ(n+1) = arg max
Θ

(Q(Θ,Θ(n)))

4.2 Numerical results and interpretations

To estimate our model, we use daily data (δ = 1/252) provided by the CBOE for the V IX index
between January 2000 and January 2015. The maximum number of iterations of the EM algorithm is
set at N = 100, and we use the Matlab function fmincon to maximize the pseudo likelihood function
Q(Θ,Θ(n)) at each iteration n. The results of the maximum likelihood estimation at the last iteration of
the algorithm are given below:

Regimes κML θML ξML

state 1 9.44 0.0172 0.18
state 2 13.72 0.0525 0.48
state 3 14.04 0.24 1.49

QML =

−13.6762 13.5095 0.1667
15.1125 −18.9127 3.8002
0.4061 35.5938 −35.9999


This generator indicates that from one day to the next, the state of the Markov chain may switch (or
not) to another state according to the transition probability matrix for one day given by TML = eQ

MLδ

in 4.6, which reveals an important inertia for each regime, giving a true economic sense to each: state
1 corresponds to a low-volatility regime, state 2 is a transition regime, and state 3 represents a high-
volatility regime. The transition regime discriminates quite effectively between short-term spikes, which
are quite frequent in the market (but also revert frequently), and highly stressed situations (see 2001,
2008, 2010 and 2011 in Figure 5).

Therefore, the model is sufficiently flexible to reproduce both short-term and long-term features of
volatility.

TML =

0.9487 0.0503 0.0010
0.0563 0.9302 0.0136
0.0053 0.1268 0.8678

 (4.6)

The results of the maximum likelihood estimation clearly exhibit three different levels, especially for
the mean level of volatility and the volatility of volatility. The filtering function for the hidden Markov
chain is deduced from the estimation procedure and is given by:

Ẑt = arg max
i

P(Zt = i | Y,ΘML)

where ΘML is the set of parameters given by the maximum likelihood. The result of the filtering proce-
dure is shown in Figure 5.
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Figure 5: The VIX index and the filtered regimes between January 2000 and January 2015

4.3 Convergence of the algorithm

In this section, we show that the convergence of the developed algorithm can be attributed to the general
theory of the EM method. The paper of Fort and Moulines [26] deals with the convergence of the EM
algorithm using Monte Carlo method. This is s a specific case of the EM algorithm when we use Monte
Carlo method at the step Expectation of this algorithm. However, in our case, we derive at the E step, an
analytical procedure based on the Baum-Welch Algorithm instead of using Monte Carlo method. This
allows us to have better results both in term of estimations error and in term of speed of the algorithm
calculus.

4.3.1 Theoretical convergence

Let n and L be positive integers and Θ be a subset of Rn. Let Zt be a continuous time Markov Chain with
a transition probability matrix A = (aij) and initial probability distribution a = (ai), and let µ(z) be
the probability distribution of (Zt0 , . . . , ZtL). Let Vt be a Markovian stochastic process with a transition
probability function fi(t, v, s, u) := P(Vt = v | Vs = u, Zs = i). Let M be a function defined from
R×E to R such that for each i ∈ E, the function mi(v, θ) := M(v, i, θ) is a diffeomorphism of R. Let
Yt := M(Vt, Zt, θ) be a stochastic process, and let Ψij(t, x, s, y) be a family of transition probability
functions defined as follows:

Ψij(t, x, s, y) : = P(Yt = x | Ys = y, Zs = i, Zt = j)

= 1
m
′
j(m

−1
j (x))

fj(t,m−1
j (x), s,m−1

i (y))
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For the triple A, a,Ψ = {Ψij}, we define the density of the stochastic process (Yt0 , . . . , YtL) for which
we have the set of observations y := (y0, y1, . . . , yL):

P (A, a,Ψ){Yt0 = y0, Yt1 = y1, . . . , YtL = yL}

=
∑

zt0 ,...,zL

azt0azt0zt1 Ψzt0zt1
(t1, y1, t0, y0)azt1zt2 Ψzt1zt2

(t2, y2, t1, y1) . . . azT−1zTΨztL−1ztL
(tL, yL, tL−1, yL−1)

Assuming that for each θ ∈ Θ there is a smooth assignment θ → (A(θ), a(θ),Ψ(θ)), we will denote this
expression P (θ). We observe that P (θ) is of the form P (θ) =

∑
z∈EL+1 p(z, y, θ) with:

p(z, y, θ) = azt0 (θ)
L∏
k=1

aztk−1ztk
(θ)Ψztk−1ztk

(tk, yk, tk−1, yk−1, θ)

= azt0 (θ)
L∏
k=1

aztk−1ztk
(θ) 1

m′ztk
(m−1

ztk
(yk, θ), θ)

fztk (tk,m−1
ztk

(yk, θ), tk−1,m
−1
ztk−1

(yk−1, θ), θ)

Now, for each couple (θ, θ′) ∈ Θ, we define the following function:

Q(θ, θ′) : = Ez
[
log (p(z, y, θ)) | Y = y, θ

′]
=

∑
z

νy(z, θ
′) log (p(z, y, θ))

where νy(z, θ
′) := p(z,y,θ′ )

P (θ′ ) is the probability distribution of Z conditional upon Y . Finally, let pz(y, θ)
be the probability distribution of Y conditional upon Z. We thus have

∆(θ, θ′) : = log (P (θ))− log
(
P (θ′)

)
= log

(∑
z

pz(y, θ)µ(z, θ)
)
−
∑
z

νy(z, θ
′) log

(
P (θ′)

)
= log

(∑
z

pz(y, θ)µ(z, θ)
νy(z, θ′)

νy(z, θ
′)
)
−
∑
z

νy(z, θ
′) log

(
P (θ′)

)

Given that
∑
z νy(z, θ

′) = 1, we apply Jensen’s inequality and obtain

∆(θ, θ′) ≥
∑
z

νy(z, θ
′) log

(
pz(y, θ)µ(z, θ)
νy(z, θ′)

)
−
∑
z

νy(z, θ
′) log

(
P (θ′)

)
=

∑
z

νy(z, θ
′) log

(
pz(y, θ)µ(z, θ)
νy(z, θ′)P (θ′)

)

=
∑
z

νy(z, θ
′) log

(
p(z, y, θ)
p(z, y, θ′)

)
=: δ(θ, θ′)
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Finally, denoting:

θ
′′ := arg max

Θ
δ(θ, θ′) = arg max

Θ
Q(θ, θ′)

We have:

log
(
P (θ′′)

)
− log

(
P (θ′)

)
= ∆(θ′′ , θ′)

≥ δ(θ′′ , θ′)
≥ δ(θ′ , θ′)
≥ 0

Now, we have shown the monotone increase in the likelihood at each step of the proposed algorithm.
The convergence toward a local maximum is a classical result related to the EM theory.

4.3.2 Empirical test of convergence

Now, we aim to empirically test the convergence of the algorithm. To do so, we perform several batches
of Monte Carlo simulations, increasing the number of simulations at each batch from N = 100 to
N = 10000 simulations. We use sample lengths of 1000 daily observations. Following the approach
of Ait-Sahalia and Kimmel [2], we compare the accuracy of the developed method with an approximate
likelihood procedure in which the unobservable volatility state is replaced by a proxy: the VIX index.
As a result, we gain in tractability because the update of Θn at each step of the EM algorithm is obtained
explicitly.

As shown in Figures 6 and 7, we find that both of the procedures converge to a biased value because
of the sampling error. Comparing the bias of the estimators for a sufficiently large number of N to
annihilate the variance resulting from the Monte Carlo simulations, we deduce that the exact likelihood
procedure gives a more accurate result (a smaller bias) and that this additional bias is small compared to
the bias resulting from the sampling error. Indeed, the resulting error is augmented by a factor of 10%
to 15% for each parameter in our observations, except for the parameters ξ, for which the approximation
procedure does not produce an additional error because the functions α and β do not depend on ξ.
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Figure 6: Outputs of the Monte Carlo simulations for κ,θ and ξ for the complete maximum likelihood (solid
line) versus the approximate maximum likelihood (dashed line). For each batch of simulations, we compute the
estimated absolute bias of the estimator.
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Figure 7: Outputs of the Monte Carlo simulations for Q for the complete maximum likelihood (solid line) versus
the approximate maximum likelihood (dashed line). For each batch of simulations, we compute the estimated
absolute bias of the estimator.
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5 Consistent Pricing of VIX and S&P500 European Options

Given the ability of the proposed model to capture some important features of volatility dynamics for the
variance process of the S&P500, we aim to explore whether this model can be used as a pricing model.
It is widely known that the commonly used and industry-standard Heston stochastic volatility model
is not able to fit VIX option prices because the positive smile implies a much wider support for the
probability distribution of the variance process than implied by the square-root process. This issue has
recently and successfully been addressed in Papanicolau and Sircar [36], where a Heston-type volatility
process is multiplied by a regime-switching factor. The main difference here is that a joint calibration of
both S&P500 and VIX options, enabled by the fact that our regime-switching stochastic volatility model
offers more degrees of freedom, is proposed. Below, we take advantage of the piecewise affine property
of the volatility process to derive analytical formulas for S&P500 and VIX options up to the numerical
integration of multidimensional integrals, which are computed using a Monte Carlo method. The small
regime shift rate exhibited in the maximum likelihood estimation through 15 years of sample data makes
these numerical integrations feasible.

5.1 Pricing VIX European options

In this section, we derive a semi-analytical pricing formula for a European option written on the VIX
Index with a maturity T and a strikeK. For this purpose, we use a semi-analytical expression of the char-
acteristic function of VT conditional upon the state of the Markov chain at time T to obtain the pricing
formula by Fourier inversion. First, let us introduce a preliminary lemma that provides a useful function
to compute the price of the V IX option. This lemma is closely related to derivations of the charac-
teristic function of processes whose volatility is driven by a Cox-Ingersoll-Ross process with piecewise
constant parameters, as considered in Wu and Zhang [42] for the pricing of interest rate derivatives. Our
approach derives the characteristic function of such a CIR process relying on previous results in Goutte
and Ngoupeyou [28], where is derived the characteristic function of the integral of a regime switching
CIR process.

Lemma 5.2. Let M be a discrete random variable in N∗, such that M − 1 is the random number of

jumps of the Markov chain Z between 0 and T . Let (τ1, . . . , τM−1) be a sequence of M − 1 random

jump times, and let us denote by ∆tk := τk+1 − τk for each k ∈ {0, . . . ,M − 1} with τM = T and

τ0 = 0. For every x ∈ R, there exist two families of functions: {Bj}0≤j≤M−1 and {Aj}0≤j≤M−1, such

that:

EP
[
eixVT | V0 = v0,FZT

]
= exp

(ix−A0(∆t0 , Zτ0)v0 +
M−1∑
j=0

(−Bj(∆tj , Zτj ) + ix∆tjθ(Zτj )κ(Zτj ))


The functions {Bj}0≤j≤M−1 and {Aj}0≤j≤M−1 are determined recursively following the resolution of
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successive systems of Ricatti equations, such that for each ∆t ∈ [0, T ] and z ∈ E:

Aj(∆t, z) = a1,z
1− a2,z

a1,z
Cj,ze

−
√
κ(z)∆t

1− Cj,ze−
√
κ(z)∆t

Bj(∆t, z) = a1,zκ̃(z)θ̃(z)(∆t + 1√
κ(z)

(1− a2,z
a1,z

) ln Cj,ze
−
√
κ(z)∆t − 1

Cj,z − 1 )

where for each j ∈ {0, . . . ,M − 1}:

a1,z = − κ̃(z)−
√
κ

2ξ(z)2 γ(z) = −κ(z)ix− 1
2x

2ξ(z)2

a2,z = − κ̃(z) +
√
κ

2ξ(z)2 θ̃(z) = κ(z)θ(z)
κ̃(z)

κ̃(z) = κ(z)− ixξ(z)2 Cj,z =


a1,z−Aj+1(∆tj+1 ,Zτj+1 )
a2,z−Aj+1(∆tj+1 ,Zτj+1 ) if j ∈ {0, . . . ,M − 2}

0 if j = M − 1

Proof
The proof of this lemma can be found in the appendices.

Thus, we can give the expression of the characteristic function of VT conditional upon the state of
the Markov chain at time T .

Proposition 5.3. Let M be an integer in N∗ and z0 an element of E. With each set of M dwell times

(∆t0 , . . . ,∆tM−1) of the continuous time Markov chain Z and each sequence s ∈ STz0,M , we can as-

sociate a unique path of Z containing M − 1 jumps. For each of these paths and for each j ∈ E and

x ∈ R, we define the following functions:

ΞjM (v0, x, s, (∆tk)0≤k≤M−1) =

I{sM=j} × exp
(

(ix−A0(∆t0 , s0)v0 +
M−1∑
k=0

(−Bk(∆tk , sk) + ix∆tkθ(sk)κ(sk))
)

Finally, for each j ∈ E, let us denote by Φj the characteristic function of VT conditional upon ZT = j

and (V0 = v0, Z0 = z0). For every x ∈ R, φj(x, v0, z0) is given by:

Φj(x, v0, z0) := EP
v0,z0 [eixVT | ZT = j]

= 1
Tz0,j(T )

∞∑
M=1

∑
s∈Sz0,M

∫
· · ·
∫

︸ ︷︷ ︸∑M−1
k=0 ∆tk

<T

ΞjM (v, x, s, (∆tk)0≤k≤M−1)LTM (s, (∆tk)0≤k≤M−1) d∆t0 . . . d∆tM−1
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Proof
According to Bayes, the following holds:

Φj(x, v0, z0) = EP
[
eixVT | ZT = j, V0 = v0, Z0 = z0

]
=

EP
[
eixVT I{ZT=j} | V0 = v0, Z0 = z0

]
P(ZT = j | V0 = v0, Z0 = z0)

=
EP
v0,z0

[
I{ZT=j}EP[eixVT | FZT , V0 = v0]

]
P(ZT = j | Z0 = z0)

=
EP
v0,z0

[
I{ZT=j}EP[eixVT | FZT , V0 = v0]

]
Tz0,j(T )

By using the lemma, we have the expression of EP[eixVT | FZT , V0 = v], which we multiply by I{sM=j}
to obtain the expression of the function ΞjM . Finally, the function LM for the likelihood of a given path
of a continuous time Markov Chain with M − 1 jumps is well known.

With an expression of the characteristic function of VT conditional upon (ZT = j, V0 = v0, Z0 =
z0), we can obtain the density function of VT conditional upon (ZT = j, V0 = v0, Z0 = z0) by Fourier
inversion:

P
VT |(ZT=j,V0=v0,Z0=z0)(v) = 1

2π

∫
R

Φj(x, v0, z0)e−ixvdx

Proposition 5.4. The price at t = 0 of a call option written on the V IX Index with maturity T and

strike K is given by

Call0(v0, z0,K, T ) = e−rT
∑
j∈E

Tz0,j(T )
∫
R+
h(v, j)P

VT |(ZT=j,V0=v0,Z0=z0)(v)dv

where h is a function defined by:

h(v, j) =
(√

α(j)v + β(j)−K
)

+

Proof

Call0(v0, z0,K, T ) = e−rTEP[(V IXT −K)+ | V0 = v0, Z0 = z0]

= e−rTEP[(
√
α(ZT )VT + β(ZT )−K)+ | V0 = v0, Z0 = z0]

= e−rT
∑
j∈E

P(ZT = j | Z0 = z)
∫
R+
h(v, j)P

VT |(ZT=j,V0=v0,Z0=z0)(v)dv

= e−rT
∑
j∈E

Tz0,j(T )
∫
R+
h(v, j)P

VT |(ZT=j,V0=v0,Z0=z0)(v)dv
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where h is a function defined by:

h(v, j) =
(√

α(j)v + β(j)−K
)

+

5.2 Pricing S&P500 European options

In this section, we derive a semi-analytical pricing formula for a European option written on the S&P500
Index with a maturity T and a strike K. For this purpose, we use a semi-analytical expression of the
characteristic function of XT := ln( StS0

) − rT to obtain the pricing formula by Fourier inversion. The
key element in the subsequent lemma is defining a new probability measure retaining the affine structure
of the variance diffusion.

Lemma 5.3. Let Φ(u, v, z0, x) be the characteristic function of XT . The following expression holds:

Φ(u, v, z, x) := EP
[
eiuXT | X0 = x, V0 = v, Z0 = z

]

= eiux
∞∑

M=1

∑
s∈Sz0,M

∫
· · ·
∫

︸ ︷︷ ︸∑M−1
k=0 ∆tk

<T

ΞM (v, u, s, (∆tk)0≤k≤M−1)LTM (s, (∆tk)0≤k≤M−1) d∆t0 . . . d∆tM−1

where ΞM (v, u, s, (∆tk)0≤k≤M−1) is a function defined by:

ΞM (v, u, s, (∆tk)0≤k≤M−1) := exp
(
−As0(∆t0 , s0)v0 +

M−1∑
k=0

(−Bs
k(∆tk , sk)

)

where the functions As and Bs have the same expression as A and B in Lemma 5.2 with γ = −u2+iu
2

and κ̃ = κ− iuρξ.

Proposition 5.5. Let P (s0, z0, v0,K, T ) be the price of a call option on the S&P500 Index with a

maturity T and a strike K at time t = 0.

P (s0, z0, v0,K, T ) = e−rTEP[(ST −K)+ | V0 = v0, Z0 = z0, S0 = s0]

= s0

∫
R+
g(x)P

XT |(V0=v0,Z0=z0,X0=x0)(x)dx
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where g and P
XT |(V0=v0,Z0=z0,X0=x0) are functions defined by:

g(x) =
(
ex − Ke−rT

S0

)
+

P
XT |(V0=v0,Z0=z0,X0=x0)(x) = 1

2π

∫
R

Φ(u, v0, z0, x0)e−iuxdu

5.3 Numerical results & calibration

To numerically compute the analytical expression for VIX option prices, we must derive an approxima-
tion for the infinite sum in the expression of Φj . This approximation, denoted by Φ̂j , is obtained by
truncating the infinite sum up to a positive integer M̄ , which represents the maximum number of jumps
considered when we integrate over all the possible paths of the continuous time Markov Chain between
0 and T . For each x ∈ R, v0 ∈ R+ and z0 ∈ E, Φ̂j(x, v0, z0) is given by:

Φ̂j(x, v0, z0)

:= 1
Tz0,j(T )

M̂∑
M=1

∑
s∈Sz0,M

∫
· · ·
∫

︸ ︷︷ ︸∑M−1
k=0 ∆tk

<T

ΞjM (v, x, s, (∆tk)0≤k≤M−1)LTM (s, (∆tk)0≤k≤M−1) d∆t0 . . . d∆tM−1

The following technical lemma will allow us to derive a bound for the error incurred by truncating the
infinite sum.

Lemma 5.4. Let MZ be the random number of jumps of the continuous time Markov Chain Z between

0 and T , and let M̄ be a positive integer. Let Λ := max(Q) be the highest transition rate of Z; then, the

following inequality holds:

P(MZ ≥ M̄ + 1) ≤ e−ΛT
∞∑

M=M̄+1

(ΛT )M

M !

Now, we can derive a bound for the error between Φj and Φ̂j :

Lemma 5.5. For each x ∈ R, v0 ∈ R+ and (z0, j) ∈ E2, the following inequality holds:

|Φ̂j(x, v0, z0)− Φj(x, v0, z0)| ≤ 1
Tz0,j(T )e

−ΛT
∞∑

M=M̄+1

(ΛT )M

M !

27



Proof We have for each x ∈ R, v0 ∈ R+ and (z0, j) ∈ E2:

|Φ̂j(x, v0, z0)− Φj(x, v0, z0)|

= | 1
Tz0,j(T )

∞∑
M=M̄+1

∑
s∈Sz0,M

∫
· · ·
∫

︸ ︷︷ ︸∑M−1
k=0 ∆tk

<T

ΞjM (v0, x, s, (∆tk)0≤k≤M−1)LTM (s, (∆tk)0≤k≤M−1) d∆t0 . . . d∆tM−1 |

≤ 1
Tz0,j(T )

∞∑
M=M̄+1

∑
s∈Sz0,M

∫
· · ·
∫

︸ ︷︷ ︸∑M−1
k=0 ∆tk

<T

|ΞjM (v0, x, s, (∆tk)0≤k≤M−1)|LTM (s, (∆tk)0≤k≤M−1) d∆t0 . . . d∆tM−1

≤ 1
Tz0,j(T )

∞∑
M=M̄+1

∑
s∈Sz0,M

∫
· · ·
∫

︸ ︷︷ ︸∑M−1
k=0 ∆tk

<T

LTM (s, (∆tk)0≤k≤M−1) d∆t0 . . . d∆tM−1

≤ 1
Tz0,j(T )e

−ΛT
∞∑

M=M̄+1

P(MZ = M)

≤ 1
Tz0,j(T )e

−ΛTP(MZ ≥ M̄ + 1)

Thus, using Lemma 5.4, we obtained the announced result.
Now, let us define the approximation for the VIX option price that we will use in the calibration proce-
dure. This approximation also requires truncating the infinite integrals and is given by:

ˆCall0(v0, z0,K, T ) := e−rT
∑
j∈E

Tz0,j(T )
∫ vm

0
h(v, j)P̂

VT |(ZT=j,V0=v0,Z0=z0)(v)dv

where P̂
VT |(ZT=j,V0=v0,Z0=z0) is defined by:

P̂
VT |(ZT=j,V0=v0,Z0=z0)(v) = 1

2π

∫ xm

−xm
Φ̂j(x, v0, z0)e−ixvdx

We can thus write the following inequalities:

| ˆCall0(v0, z0,K, T )− Call0(v0, z0,K, T )|

≤ e−rT
∑
j∈E

Tz0,j(T )
∫ vm

0
h(v, j)|P

VT |(ZT=j,V0=v0,Z0=z0) − P̂VT |(ZT=j,V0=v0,Z0=z0) |(v)dv

≤ e−rT
∑
j∈E

Tz0,j(T )
∫ vm

0
h(v, j) 1

2π

∫ xm

−xm
|Φ̂j(x, v0, z0)− Φj(x, v0, z0)|dxdv

≤ Ce−ΛT
∞∑

M=M̄+1

(ΛT )M

M !
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where C is a constant defined by:

C = xm
π

∑
j∈E

∫ vm

0
h(v, j)dv

Using similar arguments, we define an approximation for the expression of S&P 500 option prices by
truncating up to M̄ the characteristic function of XT . Now, we can use these analytical pricing formulas
in the calibration procedure using options data to determine whether the proposed model has the potential
to capture market dynamics. To conduct a joint calibration of both markets and following the approach
of Gatheral [25], we proceed as follows:

1. Initially, the parameters {Q, κi, θi} and the instantaneous variance Vt are taken from the historical
estimation detailed below;

2. Second, the parameters {ξi} are calibrated to VIX options across a range of strikes for four matu-
rities.

3. Then, the parameters {ρi} are calibrated to S&P 500 options across a range of strikes for four
maturities.

4. Finally, the parameters {κi, θi} and the instantaneous variance Vt are refined through a joint cali-
bration of S&P 500 and VIX options.
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Figure 8: Implied volatilities of February 13, 2015, for VIX call options and the calibrated smile.

The figures of fitted smiles 8 and 9 show good fits for both option markets because of the flex-
ibility offered by our regime-switching stochastic volatility model and the joint calibration procedure.
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Figure 9: Implied volatilities of February 13, 2015, for S&P 500 call options and the calibrated smile.

This result is in contrast with the conclusions of Papanicolau and Sircar [36], who state that there is a
systematic discrepancy between the two markets. Although they do not test a joint calibration procedure
in their work, here, we can argue that our extension of the Heston model is able to consistently match
both option markets with the same model, showing that rather than being inconsistent, both markets are
actually providing complementary information: the VIX option market allows calibration of the volatil-
ity of volatility, while the S&P 500 implied skew captures the stock-vol correlation. This improved fit
of the option markets must be directly linked to the improved matching of various stylized facts that the
model is able to reproduce. As a remark, a good simultaneous fit has also been achieved during crisis
time as shown in Gatheral [25], which goes in contradiction with the recent results of Bardgett et al. [6]
that VIX and SPX markets have different information during times of crisis. As a conclusion, the seek
of a model for pricing equity and volatility derivatives should be driven by the imperative of insuring
consistency between VIX and SPX markets in any conditions.

This achieved consistency has two practical implications. First, we see an increasing demand for
hybrid equity-volatility products, especially from hedge funds. These products are replicated using com-
binations of S&P 500 and VIX options, and thus, they require models that consistently jointly price both
markets. Second, by more realistically modeling the implied volatility dynamics, this model provides
more robust pricing of equity exotic products, which are highly sensitive to the dynamics of implied
volatility.

6 Conclusion

In this paper, we propose an extension of the Heston model to consistently price both S&P 500 and VIX
options while reproducing some important features of the joint dynamics of the stock and its volatility.
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We derive analytical expressions for the prices of both options, allowing for efficient calibration and
taking advantage of the piecewise affine structure of the volatility process and the good inertia of each
volatility regime (or, equivalently, the small regime shift rate). We also provide an extension of the
Baum-Welch algorithm to filter the hidden state of the Markov Chain driving the instantaneous variance
process, although it is unobservable, and show how this problem falls into the EM setting.

There are several possible extensions that could be pursued in future research. First, we can explore
the implications of the model regarding the pricing of volatility derivatives, such as variance options
and VIX exotic derivatives; hybrid equity-volatility products; and forward skew and forward volatility-
dependent equity exotic derivatives, such as cliquet or ratchet-related options. For all of these products,
the choice of the volatility model has critical implications regarding valuation, and evidence shows that
our model is reliable. However, it remains challenging to explore whether this model can be used ef-
ficiently as a hedging model because incompleteness matters. It could be also interesting to explore
applications of the filtered state of the Markov Chain as a trading signal for several investment and hedg-
ing opportunities: the hedging of the downside risk of an equity portfolio or the harvesting of volatility
risk premia by trading S&P 500 and VIX options .
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Appendices

Proof of Lemma 3.1

The following relationship holds:

EP
v,Z

[∫ τvix

0
Vsds

]
=

∫ τvix

0
Ev,Z [Vs]ds

=
M−1∑
k=0

EP
v,Z

[∫ τk+1

τk

Vsds

]

=
M−1∑
k=0

EP
v,Z

[
EP
[∫ τk+1

τk

Vsds | FZτk
]]

It is well known that we have:

EP[
∫ τk+1

τk

Vsds | FZτk] = a(Zτk)Vτk + b(Zτk)

with

a(Zτk) = 1− exp(−κ(Zτk)∆tk)
κ(Zτk)∆tk

b(Zτk) = θ(Zτk)(1− a(Zτk))

Thus,

EP
v,Z

[∫ τvix

0
Vsds

]
=

M−1∑
k=0

EP
v,Z [a(Zτk)Vτk + b(Zτk)]

=
M−1∑
k=0

(
a(Zτk)EP

v,Z [Vτk ] + b(Zτk)
)

Now, we need to calculate EP
v,Z [Vτk ]. If we integrate the SDE of the process Vt between τk−1 and τk, we

get

EP
v,Z [Vτk ] = EP

v,Z [Vτk−1 ] + ∆tk−1θ(Zτk−1)κ(Zτk−1)− κ(Zτk−1)(a(Zτk−1)Vτk−1 + b(Zτk−1))

Hence, we can recursively calculate the quantity EP
v,Z [Vτk ] starting with Ev,Z[Vτ0 ] = v0, and we can

obtain a family of functions (fk(Z0, . . . , Zτk−1), gk(Z0, . . . , Zτk−1)), such that:

EP
v,Z[Vτk ] = fk(Z0, . . . , Zτk−1)v0 + gk(Z0, . . . , Zτk−1)
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Thus, we have:

EP
v,Z

[∫ τvix

0
Vsds

]
=

M−1∑
k=0

(
a(Zτk)(fk(Z0, . . . , Zτk−1)v0 + gk(Z0, . . . , Zτk−1)) + b(Zτk)

)
=

(
M−1∑
k=0

a(Zτk)fk(Z0, . . . , Zτk−1)
)
v0 +

M−1∑
k=0

b(Zτk) + a(Zτk)gk(Z0, . . . , Zτk−1)

Proof of Lemma 5.2

By integrating the SDE of the process (Vt) between 0 and T , we have:

ixVT = ixv + ix

∫ T

0
κ(Zs)(θ(Zs)− Vs)ds+

∫ T

0
ixξ(Zs)

√
Vsds

eixVT = exp(ixv) exp
(
ix

∫ T

0
κ(Zs)(θ(Zs)− Vs)ds

)
exp

(∫ T

0
ixξ(Zs)

√
Vsds

)

Let us define P∗ as a measure of probability in the space Ω by its Radon-Nikodym derivative with respect
to P:

dP∗

dP
= exp

(∫ T

0
ixξ(Zs)

√
(Vs)dWs −

∫ T

0

1
2(ixξ(Zs)

√
(Vs))2ds

)

Thus, we have:

EP[eixVT | V0 = v,FZT ] = exp(ixv) exp
(
ix

∫ T

0
κ(Zs)θ(Zs)ds

)
EP∗

[
exp

(∫ T

0
γ(Zs)Vsds

)
| V0 = v,FZT

]

where γ(Zs) := −κ(Zs)ix− 1
2x

2ξ(Zs)2.

The next part of the proof will be dedicated to the calculation of EP∗ [exp
(∫ T

0 γ(Zs)Vsds
)
| V0 =

v,FZT ] := E∗v,Z [exp
(∫ T

0 γ(Zs)Vsds
)
]

Recall that we have a sequence of increasing times 0 = τ0 < τ1 < · · · < τM−1 < τM = T in which the
Markov chain Z changes its value. Hence,

E∗v,Z

[
exp

(∫ T

0
γ(Zs)Vsds

)]
= E∗v,Z

[
exp

(
M−1∑
k=0

∫ τk+1

τk

γ(Zs)Vsds
)]

= E∗v,Z

[
M−1∏
k=0

exp
(∫ τk+1

τk

γ(Zs)Vsds
)]
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Hypothetically, Z is independent of W ; then, by conditioning with respect to FM−1 := FWτM−1 ∨F
Z
τM−1 ,

we obtain:

E∗v,Z

[
exp

(∫ T

0
γ(Zs)Vsds

)]
= E∗v,Z

[
E∗
[
M−1∏
k=0

exp
(∫ τk+1

τk

γ(Zs)Vsds
)
| FM−1

]]

= E∗v,Z

[
M−2∏
k=0

exp
(∫ τk+1

τk

γ(Zs)Vsds
)
E∗
[
exp

(∫ τM

τM−1
γ(Zs)Vsds

)
| FM−1

]]

Now, we define two families of functions {Bj}0≤j≤M−1 and {Aj}0≤j≤M−1 that are determined recur-
sively following the resolution of successive systems of Ricatti equations, such that for each ∆t ∈ [0, T ]
and z ∈ E :

Aj(∆t, z) = a1,z
1− a2,z

a1,z
Cj,ze

−
√
κ(z)∆t

1− Cj,ze−
√
κ(z)∆t

Bj(∆t, z) = a1,zκ̃(z)θ̃(z)(∆t + 1√
κ(z)

(1− a2,z
a1,z

) ln Cj,ze
−
√
κ(z)∆t − 1

Cj,z − 1 )

where for each j ∈ {0, . . . ,M − 1}:

a1,z = − κ̃(z)−
√
κ

2ξ(z)2 γ(z) = −κ(z)ix− 1
2x

2ξ(z)2

a2,z = − κ̃(z) +
√
κ

2ξ(z)2 θ̃(z) = κ(z)θ(z)
κ̃(z)

κ̃(z) = κ(z)− ixξ(z)2 Cj,z =


a1,z−Aj+1(∆tj+1 ,Zτj+1 )
a2,z−Aj+1(∆tj+1 ,Zτj+1 ) if j ∈ {0, . . . ,M − 2}
0 if j = M − 1

We have the following proposition:

Proposition 6.6. For each integer k ∈ {1, . . . ,M − 1}, let us define:

φτM−k,∆tM−k
:= E∗

[
exp

(∫ τM−k+1

τM−k

γ(Zs)Vsds−AM−k+1(∆tM−k+1 , ZτM−k+1)VτM−k+1

)
| FM−k

]

We have the following equality:

φτM−k,∆tM−k
= exp

(
−AM−k(∆tM−k , ZτM−k)VτM−k −BM−k(∆tM−k , ZτM−k)

)
Proof

We will use the following notation:

φτM−k,∆tM−k
:= E∗M−k

[
exp

(∫ τM−k+1

τM−k

γ(Zs)Vsds−AM−k+1(∆tM−k+1 , ZτM−k+1)VτM−k+∆tM−k

)]
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Taking a small time interval dt� ∆tM−k , we obtain:

E∗M−k

[
exp

(∫ τM−k+1

τM−k

γ(Zs)Vsds
)
−AM−k+1(∆tM−k+1 , ZτM−k+1)VτM−k+∆tM−k

]

=E∗M−k

[
E∗M−k+dt

[
exp

(∫ τM−k+1

τM−k

γ(Zs)Vsds
)
−AM−k+1(∆tM−k+1 , ZτM−k+1)VτM−k+∆tM−k

]]

=E∗M−k

[
E

(∫ τM−k+dt
τM−k

γ(Zs)Vsds
)

× E∗M−k+dt

[
exp

(∫ τM−k+1

τM−k+dt
γ(Zs)Vsds

)
−AM−k+1(∆tM−k+1 , ZτM−k+1)VτM−k+∆tM−k

]]

=E∗M−k

[
φ
τM−k+dt,∆tM−k−dt

exp
(∫ τM−k+dt

τM−k

γ(Zs)Vsds
)]

We now use the hypothesis is the form of φ to obtain:

= E∗M−k
[
exp

(
−AM−k(∆tM−k − dt, ZτM−k)VτM−k+dt −BM−k(∆tM−k − dt, ZτM−k)

)
× exp

(∫ τM−k+dt
τM−k

γ(Zs)Vsds
)]

Because dt is small, we can use the stochastic differential equation of V to obtain:

= E∗M−k
[
exp

(
−AM−k(∆tM−k − dt, ZτM−k)(VτM−k + κ̃M−k(θ̃M−k − VτM−k)dt+ ξM−k

√
VτM−kdWt)

)
× exp

(
−BM−k(∆tM−k − dt, ZτM−k)− γM−kVτM−kdt

)]
= exp

(
−AM−k(∆tM−k − dt, ZτM−k)VτM−k −AM−k(∆tM−k − dt, ZτM−k)κ̃M−k(θ̃M−k − VτM−k)dt

)
× exp

(
−BM−k(∆tM−k − dt, ZτM−k)− γM−kVτM−kdt

)
E∗M−k

[
exp

(
−AM−k(∆tM−k , ZτM−k)ξM−k

√
VτM−kdWt

)]
= exp

(
−AM−k(∆tM−k − dt, ZτM−k)VτM−k −AM−k(∆tM−k − dt, ZτM−k)κ̃M−k(θ̃M−k − VτM−k)dt

)
× exp

(
−BM−k(∆tM−k − dt, ZτM−k)− γM−kVτM−kdt

)
exp

(1
2A

2
M−k(∆tM−k − dt, ZτM−k)(ξM−k)2VτM−kdt

)

where κ̃M−k = κ̃(ZτM−k), θ̃M−k = θ̃(ZτM−k), ξM−k = ξ(ZτM−k), and γM−k = γ(ZτM−k). By
identifying the assumed expression of φ, we obtain:

AM−k(∆tM−k , ZτM−k) = AM−k(∆tM−k − dt, ZτM−k)−AM−k(∆tM−k − dt, ZτM−k)κ̃M−kdt

−1
2A

2
M−k(∆tM−k − dt, ZτM−k)(ξM−k)2dt− γM−kdt

BM−k(∆tM−k , ZτM−k) = BM−k(∆tM−k − dt, ZτM−k) +AM−k(∆tM−k − dt, ZτM−k)κ̃M−kθ̃M−kdt
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Taking dt close to zero, we obtain:


∂AM−k(∆tM−k ,ZτM−k )

∂∆tM−k
= −AM−k(∆tM−k , ZτM−k)κM−k − 1

2A
2
M−k(∆tM−k , ZτM−k)(ξM−k)2 − γM−k

∂BM−k(∆tM−k ,ZτM−k )
∂∆tM−k

= AM−k(∆tM−k , ZτM−k)κ̃M−kθ̃M−k

with the initial conditions set to:

 AM−k(0, ZτM−k) =
{
AM−k+1(∆tM−k+1 , ZτM−k+1) if k ∈ {0, . . . ,M − 2}
0 if k = M − 1

BM−k(0, ZτM−k) = 0

Thus, it is possible to obtain an explicit solution for the family of functions {Bk}0≤k≤M−1 and {Ak}0≤k≤M−1
by solving successive systems of Ricatti equations.

We can now continue the proof of Lemma 5.2.
In what remains of the proof, we will use the simplified notationAM−k(∆tM−k) := AM−k(∆tM−k , ZτM−k)
and BM−k(∆tM−k) := BM−k(∆tM−k , ZτM−k). Hence:

E∗
[
exp

(∫ τM

τM−1
γ(Zs)Vsds

)
| FM−1

]
= exp

(
−AM−1(∆tM−1)VτM−1 −BM−1(∆tM−1)

)
By reconditioning with respect to FM−2, we obtain:

E∗v,Z

[
exp

(∫ T

0
γ(Zs)Vsds

)]

=e−BM−1(∆tM−1 )E∗v,Z

[
E∗
[
M−2∏
k=0

exp
∫ τk+1

τk

γ(Zs)Vsds−AM−1(∆tM−1)VτM−1 | FM−2

]]

=e−BM−1(∆tM−1 )E∗v,Z

[
M−3∏
k=0

exp
(∫ τk+1

τk

γ(Zs)Vsds
)
×

E∗
[
exp

(∫ τM−1

τM−2
γ(Zs)Vsds−AM−1(∆tM−1)VτM−1

)
| FM−2

]]

=e−BM−1(∆tM−1 )E∗v,Z

[
M−3∏
k=0

exp
(∫ τk+1

τk

γ(Zs)Vsds
)

exp
(
−AM−2(∆tM−2)VτM−2 −BM−2(∆tM−2)

)]

= exp
(
−BM−1(∆tM−1)−BM−2(∆tM−2)

)
E∗v,Z

[
M−3∏
k=0

exp
(∫ τk+1

τk

γ(Zs)Vsds−AM−2(∆tM−2)VτM−2

)]
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By iterating the conditioning with respect to FM−k, where k ranges from 3 to M , we finally obtain:

E∗v,Z

[
exp

(∫ T

0
γ(Zs)Vsds

)]
= exp

(
−A0(∆t0)v −

M∑
k=1

BM−k(∆tM−k)
)

39


	Introduction
	Motivations & Stylized Facts
	Dynamics of volatility
	Conditional moments of stock returns
	Joint dynamics of the stock and the volatility process

	The stochastic model
	Regime-switching Heston model
	The VIX Index

	Maximum Likelihood Estimation 
	Algorithm estimation
	Numerical results and interpretations
	Convergence of the algorithm
	Theoretical convergence
	Empirical test of convergence


	Consistent Pricing of VIX and S&P500 European Options
	Pricing VIX European options
	Pricing S&P500 European options
	Numerical results & calibration 

	Conclusion

