Cytokine Regulation of Periportal Fibrosis in Humans Infected with Schistosoma mansoni: IFN-γ is Associated with Protection Against Fibrosis and TNF-α with Aggravation of Disease

To cite this version:

Sandrine Henri, Christophe Chevillard, Adil Mergani, Patricia Paris, Jean Gaudart, et al.. Cytokine Regulation of Periportal Fibrosis in Humans Infected with Schistosoma mansoni: IFN-γ is Associated with Protection Against Fibrosis and TNF-α with Aggravation of Disease. Journal of Immunology, Publisher : Baltimore : Williams Wilkins, c1950-. Latest Publisher : Bethesda, MD : American Association of Immunologists, 2002, 169 (2), pp.929-936. <http://www.jimmunol.org/content/169/2/929.full.pdf+html>. <10.4049/jimmunol.169.2.929>. <hal-01211587>

HAL Id: hal-01211587
https://hal.archives-ouvertes.fr/hal-01211587
Submitted on 26 Apr 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License
Cytokine Regulation of Periportal Fibrosis in Humans Infected with *Schistosoma mansoni*: IFN-γ Is Associated with Protection Against Fibrosis and TNF-α with Aggravation of Disease¹

Sandrine Henri,* Christophe Chevillard,* Adil Mergani,† Patricia Paris,* Jean Gaudart,* Christophe Camilla,§ Hélia Dessein,* Felix Montero,§ Nasr-Eldin M. A. Elwali,† Osman K. Saeed,§ Mubarak Magzoub,† and Alain J. Dessein*²

Hepatic periportal fibrosis, which affects 5–10% of subjects infected by *Schistosoma mansoni*, is caused by the T cell-dependent granuloma that develop around schistosome eggs. Experimental models of infection have shown that granuloma and fibrosis are tightly regulated by cytokines. However, it is unknown why advanced periportal fibrosis occurs only in certain subjects. The goal of the present study was to evaluate the cytokine response of *S. mansoni*-infected subjects with advanced liver disease in an attempt to relate susceptibility to periportal fibrosis with an abnormal production of cytokines that regulate granuloma and fibrosis.

Fibrosis was evaluated by ultrasound on 795 inhabitants of a Sudanese village in which *S. mansoni* is endemic: advanced periportal fibrosis was observed in 12% of the population; 35% of the affected subjects exhibited signs of portal hypertension. Age (odds ratio (OR), 11.5), gender (OR, 4.2), and infection levels (OR, 2.2) were significantly (p < 0.01) associated with hepatic fibrosis. Cytokines produced by egg-stimulated blood mononuclear cells from 99 subjects were measured (75 with no or mild fibrosis; 24 subjects with advanced fibrosis). Multivariate analysis of cytokine levels showed that high IFN-γ levels were associated with a marked reduction of the risk of fibrosis (p = 0.01; OR, 0.1); in contrast, high TNF-α levels were associated with an increased risk (p = 0.05; OR, 4.6) of periportal fibrosis. Moreover, infection levels were negatively associated with IFN-γ production. These results with observations in experimental models strongly suggest that IFN-γ plays a key role in the protection of *S. mansoni*-infected patients against periportal fibrosis, whereas TNF-α may aggravate the disease. *The Journal of Immunology*, 2002, 169: 929–936.

*Abbreviations used in this paper: ECMP, extracellular matrix protein; MP, metalloproteinase; OR, odds ratio; PPB, peripheral portal vein branch; PPF, periportal fibrosis; PV, portal vein diameter; SEA, soluble egg Ag; TIMP, tissue inhibitor of MP; US, ultrasound.

¹Inmunologie et Génétique des Maladies Parasitaires, Institut National de la Santé et de la Recherche Médicale, Unité 399, Marseille, France; ²Institute of Nuclear Medicine and Molecular Biology, University of Gezira, Wad Medani, Sudan; ³Immunotech, Marseille, France; and ⁴Blue Nile Research Institute, Wad Medani, Sudan

Received for publication November 26, 2001. Accepted for publication May 2, 2002.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

This work received financial assistance from Institut National de la Santé et de la Recherche Médicale, World Health Organization (ID096546), European Economic Community (TS3CT940296, IC18CT970212), Scientific and Technical Cooperation with Developing Countries (IC18CT980373), the French Ministere de la Recherche et des Techniques (PRFMMIP), Conseil General Provence Alpes Cote d’Azur, and Conseil Regional Provence Alpes Cote d’Azur. S.H. and C.C. are supported by fellowships from the French Ministère de la Recherche et des Techniques and from the Conseil General PACA, respectively.

²Address correspondence and reprint requests to Dr. Alain J. Dessein, Institut National de la Santé et de la Recherche Médicale, Unité 399, Faculté de Médecine, Université de la Méditerranée, 27, bd J. Moulin 13385 Marseille Cédex 5, France. E-mail address: alain.dessein@medecine.univ-mrs.fr

© 2002 by The American Association of Immunologists, Inc.
Our group has recently demonstrated in a Sudanese population in a region endemic for *S. mansoni* that severe PPF was under the control of a major genetic locus that is closely linked to *IFNGR1* (27), the gene that encodes the γ-chain of the IFN-γ receptor. This finding together with the results of various studies that have shown the key role of certain cytokines in regulating hepatic fibrosis in experimental schistosomiasis led us to test whether an imbalance in the production of the above mentioned cytokines was associated with advanced PPF in humans. The data strongly support a critical role of IFN-γ in protection against PPF, whereas TNF-α is shown to be associated with disease.

Materials and Methods

Study area and study subjects

Study subjects were from Al Taweel, a Sudanese village (900 individuals) in the Gezira irrigated scheme region that is highly endemic for *S. mansoni*. The villagers are migrants who settled 15–20 years ago in the village. They all came from the same region of west Sudan in which schistosomiasis is not endemic. The only source of water for the villagers is the canal water, which is used for drinking, domestic use (baths, washing), and irrigating the fields. The canal is densely populated by infected snails, and all study subjects had frequent contacts with contaminated waters for the past 15–20 years. A total of 795 subjects was studied by ultrasound (US).

Selection of subjects for the cytokine study

All subjects with FII or FIII fibrosis were invited to participate in the study. Only, one case, chosen randomly, was included per nuclear family. A list of 150 subjects with no fibrosis (F0) or mild fibrosis (F1) was prepared using the following criteria: 1) 50% of the subjects should be ≥25 years to assure that these unaffected subjects were unlikely to develop FII or FIII fibrosis years later. FII peaks sharply in that population at ≥25–29 years of age; 2) only one case per nuclear family (chosen randomly).

A total of 78 subjects with F0-FI and 25 with FII-FIII accepted to donate blood. The others either refused or were absent, working in the field, or could not spend a day in the city in which the laboratory work was performed.

Among these 103 subjects, 45 were 10–20 years, 30 were 21–35 years, and 28 were ≥35 years; 52% of the subjects were males. The proportion of subjects with advanced fibrosis was 8.8, 40, and 46% in the 10- to 20-year, 21- to 35-year, and ≥35-year age groups, respectively.

Of these 103 blood samples, complete cytokine data were obtained on 99 samples (75 FO-FI and 24 FII-FIII).

US evaluation

PPF was evaluated by US using an Aloka SSD 500 Echo camera and a 3.5 MHz convex probe according to World Health Organization guidelines (28). These guidelines were used rather than more recent ones because they allowed us to demonstrate that a discrete step in FPP was controlled by a major genetic locus (27). One objective of this study was to find out whether differences in cytokine production were associated with these genetically controlled phenotypes. Liver size, peripheral portal vein branches (PPB), the degree of PPB, thickness of the walls of PPB, spleen size, and splenic vein diameter were assessed. Portal vein diameter (PV) was measured at its entrance to the porta hepatis at the lower end of the caudate lobe, on subjects who had fasted for 8–10 h. Thickening of secondary portal branches was observed for all subjects with FII to FIII, and the thickness tended to increase with fibrosis grade. PPF was graded 0-III. Grade 0 (F0) corresponds to normal liver with no thickening of the wall of PPB. PPB diameter (outer to outer) is 2–3 mm. Grade I (F1) corresponds to a pattern of small stretches of fibrosis around portal branches. This patchy fibrosis usually yields a “fishes in the pond” appearance. PPB diameter is ≥4 mm. Grade II (FII) corresponds to continuous in addition to patchy thickening of PPB. Most second order branches appear as long segment of fibrosis; PPB diameter is ≥5–6 mm. Gallbladder wall thickness may be >4 mm. Grade III (FIII) corresponds to wall thickening of almost all PPB. Fibrosis reaches the surface of the liver; in some branches, the lumen is occluded. Gallbladder wall thickness is usually above normal (2–4 mm).

Parasitological procedures and treatment

Egg counts were performed by Kato’s method on at least four stools collected on different days. All subjects were treated with Praziquantel. This treatment was repeated once to improve the cure, as assessed by three stool exams 3 mo after treatment. This second treatment was sufficient to cure all study subjects, as assessed by egg excretion in the feces. *Plasmodium falciparum* infections monitored by blood smears showed that malaria was endemic in that village. Treatment of malaria was given by local doctors at the local outpatient clinic. Transmission was seasonal. The study was conducted during the dry season outside the transmission period. At the time of examination (clinical and US), none of the patients showed signs of malaria. Note: 1) in these subjects, splenomegaly correlated with PPF (29); 2) neither splenomegaly nor hepatomegaly entered in the definition of the clinical phenotype that was studied in the present study.

Ag preparation

Frozen pellets of *S. mansoni* eggs were suspended in PBS and sonicated twice for 10 min in PBS, on ice. Insoluble material was removed by ultracentrifugation at 10^4 × g for 1 h at 4°C. Supernatants (soluble egg Ags (SEA)) containing 1–1.5 mg/ml protein were stored at −70°C until use.

Cytokine production and titration

PPBM were isolated from heparinized venous blood by Ficoll-Hypaque gradient sedimentation (400 × g, 30 min, 18°C). PPBM were washed twice in RPMI medium containing 10 μg/ml gentamycin, and then suspended in the same medium supplemented with 50 μM 2-ME, 2 mM L-glutamine, 10% PBS, 10 mM HEPES, and 100 μg/ml sodium pyruvate and distributed at 4 × 10^6 cells/well in 24-well cell culture plates. After the addition of Ag (2.5 μg/ml SEA), cells were incubated at 37°C in a 5% CO2 atmosphere in a humidified incubator. Supernatants were collected on days 2 and 5, and cytokines were titrated by ELISA (IFN-α, IFN-γ, IL-5, TNF-α or by the Simultaneous Multianalyte Reagent Technology method (IL-1β, IL-4, IL-6, IL-10, and IL-12p40). For ELISA, titration plates were coated overnight at 4°C with 4 μg/ml anti-human IFN-γ mAb (Maibach, Nucka, Sweden), 2 μg/ml anti-human IL-5 mAb (BD Pharmingen, San Diego, CA), 2 μg/ml anti-human TNF-α mAb (R&D Systems, Abingdon, U.K.) diluted in carbonate buffer 0.1 M, pH 9.6. Then plates were incubated for 2 h with PBS-3% BSA, and washed twice with PBS-0.05% Tween 20. Culture supernatants were added and incubated overnight at 4°C. After three washes, plates were incubated for 2 h at room temperature with 0.5 μg/ml biotinylated anti-human IFN-γ mAb (R&D Systems, Abingdon, U.K.) and 0.5 μg/ml anti-human IL-5 Ab (BD Pharmingen), or 100 ng/mL biotinylated anti-human TNF-α Ab (R&D Systems) diluted with PBS-3% BSA. After three washes, plates were incubated for 2 h at room temperature with 1 μg/ml streptavidin-alkaline phosphatase (Jackson ImmunoResearch Laboratories, West Grove, PA) diluted with PBS-3% BSA. After four washes, 200 μl 1 mg/ml p-nitrophenyl solution was added. OD was read at 405 nm. Standards were reconstituent proteins. IFN-α was titrated using a kit (Immunotech, Marseille, France).

The Simultaneous Multianalyte Reagent Technology method is a flow cytometric immunoassay performed on fluorescent and Ab-coated microspheres (30), allowing the simultaneous titration of IL-1β, IL-4, IL-6, IL-10, and IL-12p40, with a sensitivity of 0.5–1.5 pg/ml. It has been described elsewhere previously (31). The low cytometric microsphere-based assay uses green fluorescence intensity measurement to discriminate between microspheres. Microspheres in each category are coated with a specific anticytokine mAb. The red fluorescent intensity allows the sensitive quantitation of the immune complexes formed at the surface of each microsphere. The reliability of the assay has been improved with an internal standard for the adjustment of the fluorescent signal from anticytokine microspheres in each sample. The analytical performance of the assay has been described in an investigation on the cytokine profiles (IL-4, IL-6, IL-10, IL-12, IFN-γ, and TNF-α) of in vitro activated whole blood from atopic and nonatopic patients (31). A total of 50 μl sample was incubated for 2 h with 10 μl mixture of coated microspheres (100 μg/ml) and 50 μl mixture of biotinylated Abs (1 μg/ml) at room temperature with shaking. After two washes, 100 μl (0.5 μg/ml) of streptavidin-PE-Cy5 conjugate was incubated with the microspheres for 30 min at room temperature with shaking, and washed twice. The microspheres were then analyzed on a Coulter EPICS XL/MCL flow cytometer (Beckman Coulter, Miami, FL). The instrument was carefully set to provide optimal discrimination for FL1-coded microspheres and the optimal range for FL4 binding. FCS file processing and subsequent calculation of the immunoassay data were performed automatically with a postanalysis software package developed in-house.

Statistical analysis

The phenotypes under study (advanced PPF and advanced PFP + enlarged PV) depend on several covariates; some of these covariates could be confounder for the effect of others, and their effect on the phenotype must be
tested simultaneously (multivariate analysis). We therefore first tested independently (nonparametric Wilcoxon ranking test) the association of the various covariates that may influence the phenotype. The results are presented (see Table II) that shows p values < 0.02 because p values between 0.05 and 0.2 may indicate a trend for association that may be suggestive for other studies. In the multivariate analysis, we tested simultaneously all covariates. The multivariate method used in this study is logistic regression that specifies that a regression relationship between the probability of an individual to develop advanced fibrosis and various covariates, as follows:

\[P(M^i/X_1X_2...X_p) = (1 + exp(-\alpha - \sum \beta X_i))^{-1} \]

where \(P(M^i/X_1X_2...X_p) \) is the probability of being affected knowing \(X_i \) to \(X_p \) covariates; \(\alpha \) and \(\beta \) are constants and estimated in the analysis. The analysis tests whether \(\beta_i \) is significantly different from zero. Note that \(\exp[\beta_i] \) is the odds ratio (OR) associated with the covariate \(X_i \) which measures the strength of the association between \(X_i \) and the phenotype, taking into account (adjusted to) the other covariates. With the stepwise procedure, one can select the covariates significantly (\(p < 0.05 \)) associated with the risk of being affected.

Univariate analysis of the data, performed by the Wilcoxon test, is shown (see Table II). Data analysis in other tables was performed by ascendant stepwise (likelihood ratio procedure) logistic regression on the probability of being affected by PPF. The affected phenotypes were FII-III or FII-III associated with signs of portal hypertension (PV > 13 mm in females and PV > 14 mm in males). The nonaffected phenotype was F0-I with normal PV.

The regression analysis classes were defined as follows: gender (female, male), ethnic group (Tama-Messeria; Rawashda), and infection levels: three classes that were defined to include all negative subjects in the same groups (<6 eggs/g) and to have an equal number of subjects in the two other groups (7–48 eggs/g and 48–500 eggs/g) (see Table II). Cytokine classes were defined with the median value of the cytokine titer to have two classes (low and high) of equal size. Age classes were based on the U.S. evaluation of this population, which showed a marked difference in fibrosis prevalence between the classes of age: 10–20, 21–35, and >35 years (29). The same classes were used throughout this work in tables and figures. The statistical SPSS software (version 10.0; Chicago, IL.) was used for this analysis.

Results

Pathological manifestations in study subjects

Previous studies have shown that PPF in human schistosomiasis can be accurately evaluated by US, and guidelines have been edited by World Health Organization to increase consistency of observations between observers (28, 32). PPF (FII or FIII) was observed in 12% of the 795 subjects; the other subjects had normal liver or mild hepatic fibrosis. Signs of portal hypertension were observed in 35% of FII and in all FIII subjects. Splenomegaly was observed in all groups (F0, I, II, III), but it was more frequent in subjects with PPF. FII and FIII were associated with a smaller left lobe of the liver, as determined by US (29).

Table I. Stepwise regression analysis of the effects of gender, age, and infection levels on the probability of a given individual to be affected by advanced PPF (FII-III) or advanced PPF and portal hypertension

<table>
<thead>
<tr>
<th>Gender</th>
<th>Age</th>
<th>Infection levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibrosis II or III*</td>
<td>(p < 10^{-4})</td>
<td>(p < 10^{-4})</td>
</tr>
<tr>
<td>OR =</td>
<td>4</td>
<td>14.06</td>
</tr>
<tr>
<td>CI =</td>
<td>2.1–7.4</td>
<td>6.7–29.4</td>
</tr>
<tr>
<td>Fibrosis II or III and portal hypertension</td>
<td>(p < 10^{-4})</td>
<td>(p < 10^{-4})</td>
</tr>
<tr>
<td>OR =</td>
<td>12.5</td>
<td>21.7</td>
</tr>
<tr>
<td>CI =</td>
<td>2.1–72</td>
<td>2–239</td>
</tr>
</tbody>
</table>

* A total of 702 subjects had no or mild fibrosis; 61 had advanced (FII or FIII) fibrosis; and 39 had advanced fibrosis with enlarged portal vein.

* OR compare males with females and the >35-year with the 10- to 20-year age group.

During the relative risk associated with the covariates. Thus, the relative risk of PPF was 4 times higher in males than in females, 14 times higher in the >35 years of age than in the 10–20 years of age, and higher in subjects with the highest infections than in subjects with the lowest infections. Contrary to infection levels, age and gender were important explicative variables for a phenotype combining PPF and portal hypertension (Table I). There was no significant association between either one of the two phenotypes and ethnic groups.

Cytokine production by PBMCs

The levels of cytokine produced by SEA-stimulated PBMC of FII-III subjects and F0-I subjects are shown in Table II. IL-12 and IFN-α levels were under detection levels in most cultures and are not presented. At the time this study was performed, there was no evidence that IL-13 had a fibrogenic effect in schistosomiasis; for this reason, IL-13 was not evaluated in this study. Table II gives the cytokine titers in 48- and 120-h cultures of cells stimulated with SEA and in 48-h cultures of unstimulated cells. Data are shown by age classes for both clinical groups. Differences between the two clinical groups were analyzed by the Wilcoxon ranking test that included either all age groups (p1 value) or subjects older than 20 years (p2 value). The 75% values are given only when the statistical test gave a significant (p1 or p2 < 0.05) or a suggestive (p1 or p2 <0.2) p value. In SEA-stimulated cultures, only IFN-γ levels were different between the two clinical groups; this difference was greater when the analysis was performed on data from adults >20 years. Subjects with advanced fibrosis produced less IFN-γ than subjects with mild disease. TNF-α, IL-1β, IL-4, IL-5, IL-6, and IL-10 levels were not significantly different in the two study groups; there was, however, a trend for an association of fibrosis with higher levels of IL-1β (\(p = 0.1 \)) and lower levels of IL-10 (\(p = 0.13 \) in SEA-stimulated cultures. In unstimulated cultures, low levels of IFN-γ (\(p = 0.05 \)) and high levels of IL-1β (\(p = 0.013 \)) were significantly associated with fibrosis. Note that there was also a trend for association of high IL-6 levels in unstimulated cultures of PBMC from subjects with disease; however, this observation was not duplicated in the SEA-stimulated cultures. Note that TNF-α showed no association with fibrosis in the univariate analysis, but it did so with logistic regression analysis (see below). IFN-γ levels in individual cultures of subjects of the two clinical groups are shown in Fig. 1.

Association of IFN-γ and TNF-α production with PPF

Because various cytokines could be confounders for the effects of other covariates, the association of the covariates with the phenotype had to be tested simultaneously for all covariates that showed a significant association with the clinical phenotype (age, gender, infection levels, IFN-γ) or a trend for an association (IL-1β, IL-4, IL-10, IL-6). Moreover, covariates (IL-4, IL-5, TNF-α) reported by others to be associated with the disease phenotype or a related phenotype were also tested in the analysis, although they showed no evidence for an association in the univariate analysis. Of all cytokines tested, only IFN-γ and TNF-α showed a significant association with fibrosis: the best model included IFN-γ, TNF-α,
Table II. Cytokines produced in cultures of SEA-stimulated blood mononuclear cells from subjects with no or mild fibrosis (F0-I, n = 75) and subjects with advanced periportal fibrosis (FII–FIII, n = 24)

<table>
<thead>
<tr>
<th>Cytokines</th>
<th>Culture Condition</th>
<th>Hours</th>
<th>No or Mild Fibrosis</th>
<th>Fibrosis FII or FIII</th>
<th>p1</th>
<th>p2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10-20 years</td>
<td>21-35 years</td>
<td>>35 years</td>
<td>10-20 years</td>
<td>21-35 years</td>
</tr>
<tr>
<td>IL-1β</td>
<td></td>
<td>48</td>
<td>46.5</td>
<td>1.6</td>
<td>1.6</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>144</td>
<td>24</td>
<td>36</td>
<td>50</td>
<td>8.3</td>
</tr>
<tr>
<td>SEA</td>
<td></td>
<td>48</td>
<td>7.0</td>
<td>9.0</td>
<td>5.0</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>135</td>
<td>102</td>
<td>127</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>IL-4</td>
<td></td>
<td>48</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>SEA</td>
<td></td>
<td>48</td>
<td>29.0</td>
<td>34.0</td>
<td>52</td>
<td>28.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120</td>
<td>1.5</td>
<td>1.5</td>
<td>3.0</td>
<td>1.5</td>
</tr>
<tr>
<td>IL-5</td>
<td>SEA</td>
<td>120</td>
<td>3719.3</td>
<td>4501.1</td>
<td>6695.1</td>
<td>4057.1</td>
</tr>
<tr>
<td>IL-6</td>
<td></td>
<td>48</td>
<td>933.0</td>
<td>414.0</td>
<td>381.0</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2059</td>
<td>958</td>
<td>1030</td>
<td>739.0</td>
<td>396.5</td>
</tr>
<tr>
<td>SEA</td>
<td></td>
<td>48</td>
<td>905.0</td>
<td>765.5</td>
<td>739.0</td>
<td>396.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120</td>
<td>1214.0</td>
<td>777.5</td>
<td>791.0</td>
<td>409.0</td>
</tr>
<tr>
<td>IL-10</td>
<td></td>
<td>48</td>
<td>54.0</td>
<td>55.0</td>
<td>26.0</td>
<td>—</td>
</tr>
<tr>
<td>SEA</td>
<td></td>
<td>48</td>
<td>298.0</td>
<td>373.5</td>
<td>331.0</td>
<td>96.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>548</td>
<td>663</td>
<td>399</td>
<td>399</td>
<td>366</td>
</tr>
<tr>
<td>SEA</td>
<td></td>
<td>120</td>
<td>705.0</td>
<td>557.0</td>
<td>570.0</td>
<td>406.0</td>
</tr>
<tr>
<td>IL-10</td>
<td></td>
<td>1994</td>
<td>813</td>
<td>909</td>
<td>5753</td>
<td>5753</td>
</tr>
<tr>
<td>TNF-α</td>
<td></td>
<td>48</td>
<td>93.5</td>
<td>97.0</td>
<td>52.0</td>
<td>ND</td>
</tr>
<tr>
<td>SEA</td>
<td></td>
<td>48</td>
<td>134.0</td>
<td>171.5</td>
<td>175.0</td>
<td>200.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120</td>
<td>290.5</td>
<td>414.5</td>
<td>382.0</td>
<td>273.5</td>
</tr>
<tr>
<td>IFN-γ</td>
<td></td>
<td>48</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.4</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>7.6</td>
</tr>
<tr>
<td>SEA</td>
<td></td>
<td>48</td>
<td>0.8</td>
<td>14.3</td>
<td>21.0</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>322</td>
<td>919</td>
<td>1129</td>
<td>337</td>
<td>78</td>
</tr>
</tbody>
</table>

a Cytokines were measured in 48- and 120-h supernatants of single cultures of SEA-stimulated cells and in 48-h cultures of unstimulated cells. Cytokine production is the total production (production in unstimulated cultures was not subtracted). Cytokine levels in cultures of cells from both study groups were compared by the nonparametric Wilcoxon test. The test was performed either on data from all three age groups and yield p1 values or on data from the 21- to 35-year and >35-year age groups and yield p2 values. p1 and p2 values are indicated when they are ≤0.2. Cytokine levels are median values.

b Culture conditions. Cells were cultured in medium without (−) additional stimulus or in the presence of SEA. Unstimulated culture supernatants were collected at 48 h only.

c The 75% upper percentile values are indicated in smaller italic numbers when p ≤ 0.2.

FIGURE 1. IFN-γ production in SEA-stimulated cultures of PBMC from subjects with no or mild fibrosis or with advanced fibrosis. Squares represent individual data. The figure are the data from the 99 subjects (studied in Tables II and III).
IL-10 and IL-1 were combined with signs of portal hypertension probably because TNF-α was positively associated with PPF (Table III): high TNF-α levels were associated with a risk of FII-III on average 4 times higher in the high TNF-α producers than in low TNF-α producers (\(p = 0.05; \) OR = 4.6; confidence interval, 1–22). As for other covariates in the analysis, the OR for TNF-α was adjusted on age, gender, and IFN-γ levels to take into account other covariates significantly associated with advanced fibrosis. The association of TNF-α with disease was not significant (\(p = 0.065 \)) when fibrosis was combined with signs of portal hypertension probably because of the smaller size of the PPF group. No other cytokines, including IL-10 and IL-1β, showed a significant association with disease in the regression analysis.

The association of PPF with low IFN-γ production is illustrated on Fig. 2, which shows the percentage of subjects with FII-III in high and low IFN-γ classes, for the three classes of age used in the multivariate analysis. Fig. 3 shows the percentage of subjects with FII-III in low and high TNF-α classes for the different high and low IFN-γ classes.

Table III. Stepwise regression analysis of the effects of cytokine levels on the probability of a given individual to be affected by advanced PPF (FII–III) or advanced PPF and portal hypertension

<table>
<thead>
<tr>
<th>Fibrosis II or III (^a)</th>
<th>Gender</th>
<th>Age</th>
<th>IFN-γ</th>
<th>TNF-α</th>
</tr>
</thead>
<tbody>
<tr>
<td>(OR^b =) 6.7 (p = 0.003)</td>
<td>(p < 0.01)</td>
<td>(p = 0.01)</td>
<td>(p = 0.05)</td>
<td></td>
</tr>
<tr>
<td>CI: 2–40 (0.01)</td>
<td>12.5</td>
<td>0.11</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>(< 0.001–0.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibrosis II or III, and PV > 14mm (OR^b =) 0.015</td>
<td>(p = 0.004)</td>
<td>(p = 0.003)</td>
<td>(p > 0.1)</td>
<td></td>
</tr>
<tr>
<td>CI: 10.5</td>
<td>79</td>
<td>0.01</td>
<td>(< 0.001–0.4)</td>
<td></td>
</tr>
</tbody>
</table>

\(^a \) Number of subjects in the study: 73 subjects with mild or no fibrosis, 24 subjects with FII or FIII, and 13 subjects with FII, FIII and PV > 14 mm.

\(^b \) OR males with females, the 21–35-year age group with the 10–20-year age group, and the high with the low TNF-α, and IFN-γ levels.

High infections that are associated with PPF are associated with a reduction of IFN-γ production

Because IFN-γ was strongly associated with protection against PPF, we evaluated which factors could modulate IFN-γ levels. IFN-γ levels were negatively correlated with infection intensities (\(p = 0.01; \) OR = 0.15). This result is illustrated in Fig. 4. Introducing infection levels as one of the covariates tested in Table III did not yield a better model, as discussed above, and IFN-γ was still strongly associated with fibrosis. There were also statistically significant differences in IFN-γ levels between Tama-Messeria and Rawashda (\(p = 0.05; \) OR = 0.15); this result is to be related to our previous report of a trend for more severe disease in the Rawashda (which produced on average less IFN-γ) than in the Tama-Messeria (29).

Discussion

In 5–10% of infected subjects, \(S. \) \textit{mansoni} causes a severe and often lethal hepatic disease characterized by massive PPF that leads to portal hypertension, esophageal varices, and ascites. In some subjects, the liver and spleen are much enlarged. How hepatosplenomegaly and PPF are related is ill defined. Hepatospleno- megaly is not always associated with PPF, and conversely PPF can occur in subjects without hepatosplenomegaly. This was shown by...
This work showed that production of IFN-γ in cultures of leukocytes from subjects with FII-III is much lower than levels in cultures from subjects with mild or no fibrosis. This association between low IFN-γ levels and PPF was also confirmed after taking into account the effects of important covariates such as gender and age. Because both study groups have been living in similar conditions for many years, including 15–20 years of frequent exposure to schistosome infections, it is unlikely that differences in unidentified environmental factors could explain these differences in IFN-γ production. This result on the association between low IFN-γ production and susceptibility to PPF must be analyzed in light of the large body of evidence showing that IFN-γ is certainly the most powerful and most active antiﬁbrogenic cytokine in the experimental schistosome egg granuloma (13–16, 37) and in many injury-induced hepatic fibrosis (5–9, 12). IFN-γ acts at various levels of ﬁbrogenesis to limit accumulation of ECMp; it inhibits the differentiation/activation of stellate cells, it inhibits production of ECMp by stellate cells, it increases ECMp degradation by inducing MPs, and it inhibits TIMPs. The association of low IFN-γ production with ﬁbrosis, added to observations in experimental schistosomiasis and in studies on the regulation of ECMp production, accumulation, and degradation, strongly suggests that PPF is related to a decreased production of IFN-γ. In addition, the observations that IFN-γ levels are inversely related to infection and account for the association of infection with PPF (Table III) also suggest that high infections may contribute to PPF by down-modulating IFN-γ. Several studies (29, 38) including this one have shown that high infection levels are associated with advanced ﬁbrosis, especially in adolescents. High infections could contribute in several ways to PPF, i.e., a higher number of eggs could increase tissue inﬂammation or modulate cytokines that regulate ﬁbrosis. An interesting ﬁnding is this effect is not dependent on patient age because age was taken into account in the multivariate analysis that tested the association between IFN-γ and infection levels. The key role of IFN-γ in PPF was also suggested by the existence of a major susceptibility locus for PPF closely linked to IFNγR1 (27). A study in progress by our group has uncovered various polymorphisms in IFNγR1 of these subjects. These polymorphisms are being tested for their association with PPF. It is, however, too early to speculate more on the identity of the susceptibility alleles. Finally, the existence of a major gene does not rule out other gene(s) in the genetic control of ﬁbrosis; the relative importance of these different genes in ﬁbrosis will depend on the study population. The present study suggests that susceptibility alleles might also be found in the IFN-γ and TNF-α pathways, including in IFN-γ and TNF-α genes.

A previous study in subjects with acute and chronic schistosomiasis (39) has suggested that IFN-γ and IL-10 cross-regulate each other and that IL-10 is beneﬁcial in patients with acute infections or with hepatosplenomegaly. The present study did not detect an association of IL-10 with ﬁbrosis in the presence or in the absence of either IFN-γ or TNF-α. It should be noted, however, that there was a trend (p = 0.13) for lower IL-10 production in both unstimulated and SEA-stimulated cultures of subjects with FII-FIII. The study also failed to detect, in the regression analysis, a regulatory inﬂuence of IL-10 on IFN-γ production in culture of blood mononuclear cells. This question, however, would be better addressed by inhibiting IL-10 production in cultures with mAb, as done by others (39). This was not an objective of our study.

The association of TNF-α with disease was detected in the presence of IFN-γ in the regression analysis; TNF-α alone showed no association with ﬁbrosis. This and experimental results discussed above suggest that TNF-α could act on ﬁbrosis by balancing the protective effect of IFN-γ. TNF-α has pleiotropic effects on the...
IL-4 showed a trend (0.2/H11349ever, as in various pathologies, an imbalance between TNF-1/H9251related to our previous work showing the existence of a strong effector subjects.

References
We are indebted to N. Hunt and L. Reininger for their helpful suggestions on the manuscript. We are indebted to N. Hunt and L. Reininger for their helpful suggestions on the manuscript.

Acknowledgments
We are indebted to N. Hunt and L. Reininger for their helpful suggestions on the manuscript.

References
5. Duncan, M. R., and B. Berman. 1985. γ Interferon is the lymphokine and β interferon the monokine responsible for inhibition of fibroblast collagen produc-

5. Duncan, M. R., and B. Berman. 1985. γ Interferon is the lymphokine and β interferon the monokine responsible for inhibition of fibroblast collagen produc-

dation and late but not early fibroblast proliferation. J. Exp. Med. 162:516.

9. Tamai, K., H. Ishikawa, A. Mauviel, and J. Uitto. 1995. Interferon-γ coordinately up-regulates matrix metalloproteinase (MMP)-1 and MMP-3, but not tissue inhib-

some egg granuloma formation: in vivo regulation of Th activity and inflamma-

16. Cheever, A. W., M. E. Williams, T. A. Wynn, F. D. Finkelman, R. A. Seder, T. M. Cox, S. Hieny, P. Caspar, and A. Sher. 1994. Anti-IL-4 treatment of Schistosoma mansoni-infected mice inhibits development of T cells and non-B, non-T cells expressing Th2 cytokines while decreasing egg-induced hepatic fi-

trolled by a major locus that is closely linked to the interferon-γ receptor gene. Am. J. Hum. Genet. 65:799.

