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Experiments on con ned two-phase ow systems, involving air and a dense suspension, have revealed a
diverse set of ow morphologies. As the air displaces the suspension, the beads that make up the suspension can
accumulate along the interface. The dynamics can generate “frictional ngers” of air coated by densely packed
grains. We present here a simpli ed model for the dynamics together with a new numerical strategy for simulating
the frictional nger behavior. The model is based on the yield stress criterion of the interface. The discretization
scheme allows for simulating a larger range of structures than previous approaches. We further make theoretical
predictions for the characteristic width associated with the frictional ngers, based on the yield stress criterion,
and compare these to experimental results. The agreement between theory and experiments validates our model
and allows us to estimate the unknown parameter in the yield stress criterion, which we use in the simulations.

DOI: 10.1103/PhysRevE.92.032203 PACS number(s): 430.Vn, 47.56.+r

I. INTRODUCTION we study the frictional nger formation, which develops as a

Petroleum reservoirs, aquifers, and geological formationxl,ayer of granular material accumu!ates at thg uid interface:

are often highly fracturéd Flows, of gas, oil, groundwater These nger structures are distinct from viscous ngers in
' . 'sfeveral ways. First, the ngers are a result of static frictional

and magma tend to concentrate in the con ned spaces Ybrces in a local accumulated region of grains adjacent to the

these fractures, as they have a much higher permeability tha}n : .
; terface, rather than the global viscous pressure properties
the porous matrix they are embedded 1 [The permeable f the uid phases. The ?rictional ngersp developpin Fzthe

e eseo g o sac o LS M, Here we Gan negect he vcous orces
yny 9 gy?econd, unlike viscous ngers in porous media, which are

ICc:/U-m;?pn:;biﬁt rT;1e(ledrr]zcg:blcr;r(:rrizasselpv%i2:3] F:;O(;j'[l;ce::trl%gs?ste Known to display a fractal interface geometr,429,30],
W-p ity y ' . for frictional ngers we can identify a characteristic length,
high-permeability fractures pose a problem, as they contribut e nger width. While crossover behavior from frictional

to 'F‘Crease.d grgundwater contamination transport, Ieakage? viscous ngers has been observed as the driving rate is
buried radioactive wasted,f4,5], and escape of sequestered .

o ) ) increased 19], we focus here on the quasistatic limit where
carbon dioxide from geologic storage sités/]. e X
. . . static frictional forces dominate.
Flows in fractures and fractured media are dif cult to char-

acterize and predict, and this is especially so for multiphas We present a new numerical scheme to simulate the
P ’ . P y MUPNASE i tional nger structures. This scheme builds on the strategy
ows, where interactions at interfaces between gas, liquid, o

It . ; . .

X . . ) for simulating the labyrinth structures i2€] and [27] and
%rﬁgﬁliaghjﬁjezigogéfgt;nftﬁgremu'g gg:?]rgécz' ;Zg'cililg’ contains crucial improvements for simulating ngers when
. - ISP . . ! space, the width of the accumulated layer of beads is comparable
instabilities and inherent disorder in the con ning geometry

result in an emeraing patterning of the ow and a nontrivial to the radius of curvature of the interface. We also present
mixing of the twg u%dg Man gof these ow phenomena experimental results together with a theoretical model for the
9 ' y P ' _dynamics and predictions for how the characteristic nger

W'th apphcapons to ow in fracture planes, have been Stud'deidth varies with the parameters. The theoretical comparison
in the idealized geometry of a Hele-Shaw cell. Example

) ! L . Yo experimental results validates our understanding and xes
includes viscous ngering in porous medgH{L0] arising from

i o - : a parameter used in the simulation.
the Saf_fman Taylo_r |nstab|I|ty]_{1,12], dest_ab|I|_zed viscous In order to set the stage for the numerical scheme, inlSec.
ngers in suspensions1f], capillary ngering in a porous

. o . - we describe the details of the experimental system that we
matrix [14-17], and the transition to fracturlngB,lg]. S|m|la}r ._want to simulate. We present our theoretical model in 8kc.
phenomena have also been observed with a single uid dis;

: o and we describe the numerical scheme in detail in B&dn
placing deformable porous media in Hele-Shaw célfs-p4]. Sec.V, we present a derivation for the characteristic nger

We investigate here a two-phase oW phenomenon in Qyidth and compare this to both the experimental and the
Hele-Shaw cell, where granular particles are suspended in

the receding liquid phase. This system is known to display arlwmerlcal results. We, nally, sum up our ndings in Sed.
rich set of ow morphologies as an immiscible uid displaces
the liquid granular mixture 75|, for example, labyrinth

patterns £6,27] and bubble structuredl §,28]. In particular, Il. THE EXPERIMENT

A. Setup
Consider a Hele-Shaw cell, constructed as a rectangular
“jon.alm.eriksen@gmail.com channel, 20 cm wide, 30 cm long, and with a gap of

1539-3755/2015/92(3)/032203(9) 032203-1 ©2015 American Physical Society
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@) (b) air is injected into the cell through an inlet nozzle located on
20 cm . L
[y y , the sealed short side or liquid is sucked out from the same
(%LV / nozzle and the air enters the cell from the open short side. A
= ‘ / syringe pump (Aladdin WPI) is used in both cases. The driving
§ § © : ’ rate varies in the range@—Q03 mV min. In the case of air
3 L injection, the syringe pump contains an air reservoir of 15 ml
) liquid P, front < air P, at atmospheric pressure, at the start of the experiment.
sedimented beads )
35cm B. Experimental results

FIG. 1. (Color online) Experimental setup. (a) Hele-Shaw cell AS the air phase displaces the mixture, the interface
dimensions. (b) The systemis xed horizontally, lledwitha uidand bulldozes up the beads from the sedimented region, such that
sedimented beads, and driven either by air injection or by withdrawalhe beads accumulate along the air-liquid interface and |l
of the liquid through a syringe pump connected at the nozzle at théhe whole cell gap in a region adjacent to the interface. We
sealed short side channel. (c) The advancing gas phase accumulateder to the region of accumulated beads as ftbat [see
a front of grains. Fig. 1(c)). After a short transient initial period, the entire

) ) ) interface develops a well-de ned front. In the subsequent
h= 05 mm [Figs.1(a) and 1(b)], lled with a suspension  eyoytion, only a small section of the interface moves at any
composed of a uid mixture of glycerol and water along given time. The motion consists of stick-slip-like increments
with glass beads [Figl(c)]. The Hele-Shaw cell is xed g5 the ajr phase lIs an ever-increasing volume of the cell. The
horizontally. The viscous uid is a water-glycerol solution, mqtion is always directed towards the liquid phase. A moving
50% by volume. The viscosity of the liquid ensures thatsection of the interface tends to continue its motion over many
the beads are suspended during the lling of the cell, such,onsecutive stick-slip events, before it eventually stops and the
that the beads are almost uniformly distributed in the cellyotion continues at another section of the interface.
plane. The beads are polydisperse, with a mean diameter of The friction from the accumulating front renders the
75 pum [Fig. 2(a), and are characterized by low granular g4yancing interface unstable, and the air phase develops
friction [Fig. 2(b)] due to the almost-spherical shape of the ngerlike structures. The ngers have a characteristic width
grains [Fig.2(c). The densities of the glass beads and theyhich emerges as a result of a balance between the interfacial
liquid are, respectively,g = 24gcm’and | = 1.13gcm’.  tengjon and the friction of the front1$,26,27]. We refer
The density contrast, = S | = 1.27gcn?, makesthe 14 the pattern forming process as “frictional ngering,” to
beads sediment out of the liquid mixture and form a layer ofyigpjight the frictional component which distinguishes the
granular material on the bottom plate of the Hele-Shaw Ce”patterning from viscous ngers resulting from the Saffman-
with a packing fraction which corresponds'to a random '°°Seraylor instability [L1]. Figure 3 shows a series of images
packing fraction of spheres. The average thickness of this layefaien at 2-h time intervals illustrating the pattern formation.
relative to the gap of the cell, is referred to as the normalizegp,o ngers branch out and grow in an isotropic, random
II_ing fraction .The HeIe—Shaw cell is sealed along'the. loNgashion. Where two ngers meet or grow side by side, their
sides and one of the short sides. The other short side is 0pPgfynts combine, and the motion of the interfaces stagnates. The
to air at the ambient pressure. _ ngers are prevented from merging by the beads in the front,

The system is driven in one of two ways, which leads to they g the gas phase thus constitutes a loopless, simply connected
same dynamics in the range of parameters we consider. Eithgf,ster, as does the residual granular- uid phase. In the case
of air injection, the evolution continues until a nger breaks
through the outer boundary. In the case of liquid drainage, the
evolution continues until the air phase reaches the inlet of the
syringe pump. The nal pattern of branching ngers is open,
with pockets of undisturbed settled granular suspension of
varying sizes left behind. Figu#eshows a closeup showing the
————— air ngers surrounded by a dark front of accumulated grains.

(a)

©) so000000

00000000 F¢=0-35
At=2h

50 00

Diameter (um) 1

FIG. 2. (Color online) (a) Bead size distribution. (b) Cone of

granular material poured through a funnel; angle of repos2?7 C. FIG. 3. The pattern formation process is documented over a 10-h
Microscopy images of beads (Malvern; Morphology G3) show thir period, with 2-h intervals between the individual images. Air is
approximately spherical shape. injected through the inlet at the bottom side. The cell is 30 cm.
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FIG. 6. (Color online) Sketch of the menisci around the beads at
the air-liquid interface. The beads are wetting, resulting in concave
menisci in the interspace between the beads.

The front can be characterized by a thickndssat any
point along the mobile parts of the interface, i.e. the parts of
the interface which have not yet stagnated due to the presence
ofaneighboring nger. This thickness is de ned as the shortest
distance from the air-liquid interface, through the accumulated
beads, to a point where the beads no longer Il the whole cell
gap [Fig.1(c)].

The beads are wetting and the interface consists of concave
menisci between the layer of beads closest to the air phase
at the length scale of a bead diameter, as sketched ir6Fig.
The large-scale interface along the air side of the front region
appears smooth, however, and we can assign a signed, in-plane

FIG. 4. (Color online) Closeup of the frictional nger pattern o\,rvature () to every point along the interface, averaged over
where the compacted front is visible as the dark band surrounding the humber of neighboring beads. We de ne the curvature to
air ngers. Inset: The front thickneds and j[he radius of curvature be positive when the radius of curvatuR= 1/| |, can be
2Ro Vn\:rrlllchr?g;e local parameters along the interface. The scale bar Srawn into the air phase (Fig). The out-of-plane curvature

’ component of the smoothed interface ) is constant along
the interface.

As we increase , we observe a gradual decrease in the We neglect the hydrostatic pressure difference over the

characteristic nger width, as shown in Fig. height of the cell gap, and we approximate both the air pressure,
Pa, and the liquid pressurg,, as uniform in their respective
Ill. THEORETICAL MODEL phases. The capillary pressure over the menisci between the
beads is

A. Stresses at the interface
It is instructive to make an order-of-magnitude estimate P =PpaSp. (1)

of the capillary number for the system, €auV/ , where In the sticking state, the capillary pressure grows steadily.

U is the V|s<_:OSIty,V IS the typlcal_velocny and is the In the case of air injection, the air pressure increases due to
surface tension. The typical velocity of the nger growth,eg

h d tickosli | b timat e compression. In the case of uid withdrawal, the liquid
when averaged over many stick-siip Cycles, can be esimalgf o qqre decreases. We assign a capillary pressure threshold to
from the compression ratg,= 0.01-Q03 ml min. Assuming

that the widthw. of a moving section iv 1 cm, we have every point along the interface, above which the nearby front
V = g/ (hw) 1054 m/s. For the water-glycerol mixture we gets mobilized and advances a small step towards the liquid;

. i.e., a slip event occurs.
have thaty 6 mPa s, and = 60 mN m, which makes : : :
& ' = ' This threshol n n two eff .Fir h illar
Ca 10°°. The small capillary number tells us that we can s threshold depends on two effects. First, as the capillary

lect the vi d in the uids: th | gressure increases, the air-liquid menisci advances a small
neglect the viscous pressure drop in the ulds, the relevanyisiance into the interspace between the beads, and the pull
physics is con ned to the interface.

on the beads in the direction perpendicular to the smooth,
large-scale interface is increased. This induces an effective
stress, ¢, onthe bead packing normal to the averaged interface.
Once this solid stress grows above the yield threshold of
the bead packing,. > v, the static packing breaks and the
corresponding section of the front slides. This yield threshold
is a local property of the mobile parts of the front, and in
the subsequent discussion we approximate it by a linearly
increasing function of the front thickneds,

Second, when the front slips and moves a small step
towards the uid phase, the interface deforms and the surface

FIG. 5. Finger formation for increasing values of the lling energy changes. We assume that the changes in the total
fraction . Liquid is drained from the bottom side. The cell is20  air-liquid surface, as the menisci advances into the interspace
30 cm. between the beads during the sticking state, is negligible.

=0.12 =0.2 =0.43 =0.59
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The total surface energy of the air-liquid interface is, underalso discusses how the curvature of the interface affects the
this assumption, insensitive to the uctuations in the capillarybead stress. These models do, however, include extra unknown
pressure during the intermittent dynamics of the interface. Thparameters which are hard to measure experimentally. We
surface energy scales with the number of menisci along thestimate the only unknown parameter for the simulations, i.e.,
interface and, therefore, with the apparent area of the smoothed  , by experimental comparison to theoretical predictions
interface. We assign an effective surface tensionto the in Sec.V. We further show that the linear approximation is in
smoothed interface, and the effective force which opposes amgreement with the experiments for the ranges of parameters
increase in surface area can be expressed according to Youngsnsidered here.
lawas ( + ). Note that the effective surface tension may By combining Eqgs. Z) and @), we can write the slip
deviate from the value of the surface tension of the liquidcriterion as
mixture. We do not, however, need its numerical value in the D> + U 4)
simulations described in the next section. ’

The threshold criterion for a slip of a section of the interfacewhere we ignore the constant contribution of
is given by

p>  (+ )+ y(L). @) IV. SIMULATION

The next moving section of the interface is identi ed by having
local parameters andL , which minimize the right-hand side ~ We reproduce the behavior observed in the experiments
of Eq. ). Note that is constant along the interface and by numerical simulations. The numerical approach is to
plays no role in the identi cation. represent the interface by a chain of nodes. Each nide,

During a slip, new beads from the sedimented regiorfontains information about its coordinates; ¥i), and its
accumulate at the front. The interface deforms, which alters theearest neighbors,+ 1. The beads are represented by a
curvature . The interface may increase or decrease dependingvo-dimensional bead concentration efd, discretized into
on the curvature, and the combined effect of deformation ofrid cells,f,m. The frontis identi ed as all the grid cells of the
the interface and the accumulation of new beads will changfead concentration eld with unit valuém, = 1. The grid
the local value ofL. The menisci between the beads will Cells in the region which represents the sedimented layer of
retract, and the solid stress relaxes. A new static con guratiofeads take the value of the initial lling fractiofym = . All
of beads is formed and the motion stops. The interface evolve§e grid cells in the interior regions of the chain, i.e., the region
in a series of such stick-slip events. corresponding to the air phase, are ignored. The discretization

Note that the capillary pressure over the menigei,, IS illustrated in Fig.7.
at mobile regions of the interface remains well below the We need to identify a front thickness;, for every mobile
capillary pressure threshold for the interface to penetrate intgode. We do this by identifying Bink to a cell in the bead

the bead packing_ The interface drags the beads a|ong_ concentration eld with a cell value ok 1; i.e., the cells
which represent the sedimented region. This link is de ned

by the cell which has the minimum distance from the cell
center to the node coordinates. The link thereby establishes
The effective stress,e, is carried from frictional contacts g connection between the node indeand the eld indices
along the Hele-Shaw cell boundaries to the interface, prem andn, at the outer boundary of the front, and the length
dominantly via force chains in the bead packing. The exachetween the node and the cell center of the link cell delnes
yield threshold, v, of a section of the interface depends on Note that the direction towards the link cell which de nes the
the bead con guration in the front region associated with thefront thickness may deviate from the direction perpendicular
interface section. We approximate the yield stress as the Sufg the interface.
of a discrete set of consecutive force bearing arc chains, in \We also need to de ne a reasonable criterion for deciding
the direction perpendicular to the interface, each contributingyhen a node is stagnant. We do this by identifying a set
with an average tangential stress along each boundary platgf candidate cells to every node. These candidate cells
/2. The total force per unit area opposing the motion anchre limited to a circular sector centered around the node
transmitted from the two boundaries is therefore These  position, spanned symmetrically by an angle ofaround
chains have an associated lengthin the direction through the direction perpendicular to the interface [see the green
the front, and their number correspondd.fo . We have region in Fig.7(b)]. The radius of the circle sectot, max,
= U 3) serves as a cutoff length and needs to be set to a value
Y — : . .
much greater than the expected front thickness of a moving
The vyield stress is thereby approximated as an increasingegment but less than the nger width. In the following we
function of the front thickness. use the experimentally observed nger half-widthyax =
Note that the lineat. dependence of the yield stress can(see Fig.11), and = 90. If a link cannot be established
also be viewed as a linear approximation of a more complicatedithin these candidate cells, i.e., all the candidate cells take
v(L). Previous paper£p,27,31,32] have modeled y(L) by  unit values or are in the interior of the chain, the node is
use of the Janssen effe@3, i.e., that the shear stress at considered stagnant.
the plate boundaries is proportional to the normal stress in It is convenient to de ne an ideal node separation length
the direction perpendicular to the interface, which results in a, and we can use this length scale as a basis unit for the
yield stress which grows exponentially with Reference31] other length scales in the simulation. We set this length=to

A. Numerical representation

B. Approximating the yield stress
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a better resolution. To mask the direction of the underlying
grid structure, we need to modify the front thickness by an
additional random number uniformly distributed in the interval
(S grid» grid), Which corresponds to the resolution of the grid.
The front thickness is, however, ill de ned on this length scale;
the random modi cation will not alter the large-scale behavior.

The curvature, i, is estimated by calculating derivatives
of a spline approximation of the interface. We use a two-
dimensional B spline 34], which is parameterized by the
piecewise linear approximation to the arc-length parameter.
The rst derivative of the spline at the position of the central
node gives the unit tangent vector. The second derivative
gives the curvature vector, which points in the direction
perpendicular to the interface. The FITPACK libraBd] is
used to ef ciently calculate the spline and its derivatives.

The curvature and the front thickness of the theoretical
model relevant for the simulation are local to the interface, and
we can assign a threshold valye, !, to every node. By dis-
cretizing Eqg. 4), we have that this threshold value is given by

pri= i+Li—=B — +L;, %)

whereB is a multiplicative constant. The node corresponding
to the minimal value of the right-hand side will be insensitive
to B. We use the numerical value of/ = 0.0361 cm.
This value comes from the estimated by experimental
observations of the characteristic lengthwhich we discuss

in the next section (FigL1).

Before we go on describing the dynamics in the next
subsection, we spend a couple of paragraphs justifying the
discretization scheme we have described. Using a chain of
nodes, i.e., Lagrangian tracer particles, to represent a moving
interface, rather than, e.g., contours of an indicator eld,
has certain problematic aspec®b]. The accuracy and the
stability of this chain representation are dependent on the node
spacing, which will vary as some nodes moves together, while

FIG. 7. (Color online) Discretization procedure. (a) Hele-Shawothers separate. Redistribution and interpolation of nodes are
cell seen from above. The air phase is on the left-hand side. Adjacettherefore necessary to faithfully represent the interface, and
to the air interface is the front, which is an accumulated region ofiye describe this in detail in the following subsection. We
beads. We can aSSign a front thiCkndSS,at every mobile point also have to make sure that the topo'ogy of the interface
along the interface. (b) The interface is discretized as a chain of nodegamains simple, in the sense that a node is not allowed to
The beads are discretized into a two-dimensional concentration eldy,qve in between others and thereby move into the interior of
which takes the value 1 in the front, and the initial liing fraction e interface. These are issues which are absent if the interface

in the_reglons of not yet accumu_lated/sedlmented beads. The size represented as a contour. For our speci ¢ problem, however,
the grid cells and the node spacing are exaggerated for the purpos

of the illustration.L; i_s the shorte;t d_istance from notethrough Eietvsgizlﬁ Srﬁlrgzi%r\]/tg:ﬁg nrt]ii?\ : dnpurgqg)lg:n(: advantages, which
the accumulated regions, to a point in the bead eld below 1. The Only a small section of the total interface will move at
grid-cell candidates are limited to the shaded circular section of 90 . . . . s
centered around the direction perpendicular to the interface. any given tlme_. Compu'gatlon Is therefore Ilmlted toa SUbf‘%t
of easily identi able active nodes. The chain representation
permits us also to sort nodes by a lower bound for the threshold,
0.4mm (i.e., a chain corresponding to an interface which spanghich enables an ef cient identi cation of the next moving
the width of the Hele-Shaw cell is composed of approximatelynode. The stress threshold of an inactive npdenay change.
500 nodes). Note that this length scale is slightly smaller thahis can happen if the displacement of active nodes adds mass
the Hele-Shaw cell gap, which is 0.5 mm. The grid-cell spacingo the region near the inactive node, such thatincreases,
ofthe bead concentration eldgqg, is setto gig = 2/ 3 % or by the displacement of neighboring nodes which alters
0.27 mm. Note that these lengthsgnd ¢iq) are both larger the curvature ;. The stress threshold of an inactive node,
than the size of an individual grain (Fg). The grid spacing of separated from the active nodes by at least the number of
the bead concentration eld will naturally limit the resolution neighbors used to estimate the curvature, can, however, never
of the front thickness. The size ofnay be adjusted to provide decrease. We can, therefore, store a lower threshold bound
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for these nodes. The chain representation of the nodes is alsthere ~is the average curvature of the all the moving nodes.
convenient for calculating the area enclosed by the chain, aBhe positions of the new nodes are set by equidistantly
we can easily triangulate the enclosed domain. distributing the moving node coordinates along this new spline.
Note that the width of the moving section is xed: seven nodes
move at each time step. This width is smaller than the typical
) i ) ) .~ width of a slipping section event in the experiments, which
We model the motion of the interface by iteratively moving 5, correspond to the nger width. When we iterate many
a small segment of the chain. Moving multiple nodes, rathegjme steps, we recover the behavior of the experiments.
than a single one, is necessary to keep the interface, and its a¢ every time step, we also need to accumulate beads in the
curvature, smooth. A time step constitutes the motion of a S&tgncentration eld, to ensure mass conservation. We can easily
of neighboring nodes, in the direction towards the suspensioRiangulate the displaced area, by considering the coordinates
As the air ux is constant, we can infer the true time from the ¢ e moving nodes, before and after the displacement. By
displaced area. , _ calculating the area of the triangulation, we can associate an
In the following, we need to make some arbitrary choicesymount of displaced beads with every moving node. The beads
regarding the number of moving nodes, etc. The numericalorresponding to this area will be added to its link grid cell.
results seem to be insensitive to the speci ¢ rules, as long ag the total of the new beads and the existing bead mass at the
the size of the displacement of the nodes at every time step {§osest grid cell exceeds 1, the grid-cell value is set to 1 and
suf ciently small and the curvature at the boundary nodes anghe residual mass is added to the next link grid cell. This is
its neighbors (see Fi@) varies suf ciently smoothly. repeated until either all the mass is displaced or no link is found
~ The moving segment is limited to three neighbors on eachmong the node’s candidate grid cells, in which case the node
side (seven nodes in total), and all of them need to be mobilgg considered stagnant for the rest of the simulation. When two
The centernode, of the moving segmentis, atevery time step, front segments merge their nodes will naturally turn stagnant. It
identi ed by the minimum of the pressure threshold, E5). (s therefore not necessary to control for overlapping segments.
i = argmin p i ©) . Before we star.t a new time step, we use the spline to
T interpolate the chain. We calculate the total arc lengtbf the
The new position of the interface is approximated by cal-moving segment between the rst nonmoving boundary nodes
culating a spline function, as shown in F&g. This spline is  onboth sides ofthe movinginterval. We getthe ideal number of
calculated on the basis of the two nonmoving next neighborin?0desNnodges to Ilin between the boundary nodes Biqodes=
nodes on each side of the seven moving nodes and the poifundS/ ) S 1. If this number differs from 7 (the original
lying a distancemeve = 0.1 from the previous coordinates of number of moving nodes), we equidistantly redistritidtges
the central node, in the perpendicular direction outwards fronflodes along the spline, between the boundary nodes.
the chain. To calculate the spline, we also need the arc-length We can sum up the algorithm by the following procedure.
parameter for the interfacafter the movement. To estimate At each time step we:
this, we use the arc length of the segment before it moves (1) Identify the next moving node by Eq6)( and its
and modify it with a factors, corresponding to the stretch, neighbors.
or contraction, in accordance with the mean curvature along (2) Estimate the spline function for the new con guration.
the moving segment. If a circle with radifs expands, such (3) lteratively move each node, accumulating the bead
thatR R+ move the circumferenceC, is modied by a  concentration eld according to the displaced area for every
factorC  C(1l+ moe/R). By analogy, we approximate the moved node.
expansion by (4) Add or subtract and redistribute nodes if necessary.
_ To induce some random behavior which results in the
s=1+ (7 ngering pattern, we add a random perturbation to the bead
concentration eld. This random perturbation is limited by
+ 5% and is correlated over an50-grid point, corresponding
updated nodes to the width of 1 cm. We generate this distribution by a
—6— e bicubic interpolation of a eld of uncorrelated variables, with
o - @2 50 interpolated points between each uncorrelated value. This
t noise is needed to trigger the branching of the ngers.
center node A series of frames for the evolution of the nger structures
generated by this numerical scheme is shown in gid.his
numerical scheme differs from the one usedni[to simulate
labyrinth patterns in a similar system, in two important ways.

FIG. 8. (Color online) Schematic of the moving segment. Severf Ir'St: & set of neighboring nodes, rather than a single one,
nodes are moving. The old con guration is represented by circles oS Moved at every time step. This is done to assure that the
the dashed line; the new con guration, by pentagons on the solid lineCurvature remains reasonably smooth and allows us to use
The spline which determines the updated positions is based on tig€veral neighboring nodes (more than three) to approximate
two neighboring nodes on each side of the interval (hexagons) anthe derivatives of the path of the interface, which in turn is
the center node moved a distangg, in the direction normal to the  used to de ne the curvature and the perpendicular direction.
chain. The positions of the new nodes are distributed along the spline Second, the granular eld is numerically represented as
function. Dimensions in the gure are exaggerated. a two-dimensional eld, rather than a local quantity which

B. Dynamics

boundary nodes
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FIG. 9. Examples of the evolution of the numerical scheme with a central, circular injection point. The size of the geometr§ @sch.
Each row represents a time series of the evolution. Top row,0.1; middle row, = 0.3; and bottom row, = 0.5. There is an additional
noise eld in the initial bead con guration, limited to + 0.05.

moves with the nodes of the interface. In the scheme presentdlde air-liquid interface. The ratio between the enclosed area
in [27], each node contains a thickness vector in the directiomnd the circumference of the air phasez A /C , will on
perpendicular to the interface, whose length equals the frordaverage correspond to half of the nger width and serves as a
thickness. Each pair of neighboring nodes spans out aatural de nition of a characteristic length.

trapezoid, such that the corners correspond to the nodes’ Consider now a single nger which moves into the
positions and the positions of the thickness vectors. The frorduspension. An increment of the displaced air volumaA,;;,

is thereby effectively represented as a chain of trapezoidahere A 4 is the increased area of the air phase, will be
(see Fig.7 in [27]). This scheme works ne as long as the accompanied by an increased volume of the fiom #ont,
node separation, i.e., the resolution, needed to simulate tiie to the accumulation of new beads. Mass conservation
structures is approximately equal to the front thickness. Ifgives that

the node separation is small compared to the length of the

thickness vectors, small deformations of the chain could lead Aot = —=— A air (9)

to large displacements of the thickness vectors, which again 1S

leads to large errors in the mass conservation of the front.
Moreover, neighboring thickness vectors could cross, and th
front representation would be completely unphysical. A smal

node separation compared to the front thickness is indee ape, with a radiu®, equal to the reciprocal of the maximum

peededln ordertofalthfullydlscrgtlzethe systemzat 0.35, curvature. We assume that the nger moves in a steady
i.e., beyond the results for labyrinth structures presented in

Ref. [27]. This is needed for the application of simulation
aligned ngers in a tilted Hele-Shaw celB§).

The curvature () varies smoothly along the interface
nd will take its maximum value at the ngertip. We can
pproximate a small section around the ngertip by a circular

V. THE CHARACTERISTIC LENGTH

Consider a steadily growing nger as shown in Fi§. The
curvature is O at the sides of the nger an@R1at the ngertip. :
LetL andL s be the front thickness at the tip and at the side of Pngertip
the nger, respectively. In the quasistatic approximation, we
have that the pressure threshold over the front at the side of
the ngers equals that of the ngertip. By E), we have

—Le= o+ —L. ®)

liquid / sedimented beads

The frictional ngers can be characterized by a width, and k|G, 10. (Color online) Schematic of a steadily growing nger.

we let  denote half this nger width as shown in FidO0. is half the nger width,L is the front thickness at the sides of
As the cell gaph, is constant, we have that the air volume the nger, andL is the front thickness of the ngertip. The annulus
in the Hele-Shaw cell scales with the apparent area of the aiection at the ngertip identi es a small region of the front at the

phase as seen from abov,;, and that the surface area of ngertip, bounded by an angle. The maximum curvature of the
the interface scales with the apparent circumferefeof ngertipis = UR.
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state, such that the ngertip retains its shape during the s

evolution. The area element of the front of the ngertip can be

approximated by a section of an annulus (Rig. The area of
this section iAqont = (R + L¢)? S R?), where is a small

angle which binds the section on both sides of the ngertip.

A small variation of this element, with respect tandL ., is
given by

Afont= 2 (R+ L)L+ 2RL¢+ L2 (10)

When the tip of the nger moves forward by an in nitesimal
distance,x , the air volume associated with the front element .
increases byA 5; = 2 R x + O( x 2). Note that the interface
in the direction normal to the
interface (along the longest cathetus of the white triangle

at moves a distancex cos

2.0 slope: 0.38 e
7

5 ///.Io
£
¥

1.0 A

0.5
experiment
simulation

” 3
, d []

in Fig. 10), to retain the circular shape. This perpendicular 1 > 3 4 5 6
displacement stretches the original section of the interface.
The projection of the displacement onto the circular interface FIG. 11. (Color online) The characteristic lengthis the ratio

givesR = x sin

X (alongthe shortest cathetus of the between the area of the nger structures and the nger structure

open white triangle in Figl0), where the latter approximation circumference. Error bars correspond to one standard deviation; data

is valid when
and (L0), we get
1+ Lo beo S Le 1+ Le
R x 1S R 2R
At steady state, we have {/ x = 0, which leads to the
following condition at the ngertip:

1. When we combine this with Eqs9)(

11)

L, 1+
“to 2T 12
R 15 > (12)

This expression provides a correction to Eq. (22) in R&f],[
which readd.t/R = / (1S ). Note that/ (1S )= +
2+ O( %), while an expansion of Eq.1P) reads +

22+ O( 3). By comparison, the new expression provides aif we expand in / (1S ), we have that

correction in the second-order term in thexpansion of the
result.

points without error bars correspond to single observations. The
dashed line corresponds to the best t of the theoretical prediction in
Eq. (15). The slope of B8 cm corresponds to the numerical value
prefactor 2 / , which is used to infer the numerical value of

/

This relationship is clearly seen when we plot the exper-
imentally observed versus (Fig. 11). We use the linear
coefcient to estimate / = (0.38/2)? = 0.0361 cn? in
the simulation, which again gives consistent results for

calculated for the resulting patterns of the simulations
(Fig. 11), although the results of the simulations overpredict

slightly for low values of , i.e., high values of . Note that

as

can be made when a yield stress

to leading order.
A similar prediction for

We assume that a steadily growing nger will grow in a of the bead packing [ (L)] grows exponentially with. [27].
way which minimizes the threshold pressure. When we us&he good agreement among experiments, simulations, and
Eq. (12) to eliminate = 1/R inthe pressure threshold for the theory (Fig.11) validates the linear approximation [E®)]

ngertip [Eq. (4) evaluated at equality], we get

= Y N 13
p = I—_t 18 —Lt. (13)
Minimizing the right-hand side with respectq gives
L= 1+ S1 (14)
I -
Mass conservation dictatesthay = / (1S ). Using
this with Egs. 8), (12), and (L4) gives
=2 —, (15)
where we have introduced
18 1+ .
= —S1 16
15 (16)

to simplify the notation.

for the ranges of parameters we consider here.

VI. CONCLUSION

In conclusion, we have presented a new numerical scheme
for simulating frictional ngers. The scheme discretizes the
interface as a chain of nodes which is coupled to a two-
dimensional mass eld, needed to calculate the accumulated
layer of beads along the interface. This numerical representa-
tion improves an earlier schen#/] and enables us to simulate
structures where the front thickness is large compared to the
length scale at the details of the interface.

The dynamics is generated by a simpli ed threshold model
based on the effective surface tension of the interface and the
bead stress in the front [Egl){. The only free parameter in the
model is inferred from the comparison of the experimentally
observed nger width to the theoretically predicted value
(Fig. 11). We successfully reproduce experimentally observed
patterns (Figs9 and11).

The branching behavior of the nger growth is triggered by
noise in the system. In the experimental setup there are multiple
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sources of noise, e.g., uctuations in the force chains throughelative to the radius of curvature, as previous approaches
the front, which result in the static friction, variations in the did [27]. The numerical representation described here can in
static friction properties between the beads and the boundingrinciple represent the highly curved front segments along the
glass plates, and variations in the height between the glassterface of a bubble. Such a simulation would, however, need
plates. The dominating source of noise in the simulation isa dynamical rule more sophisticated than E4).tp account
the imposed uctuations in the bead eld. In addition, noise for the bubble expansion.
in the simulation arises from the discretization of the chain
and the noise imposed dn,, which is needed to mask the
underlying grid. While the noise in the simulation is suf cient
to generate patterns which share the same qualitative structures
as the experimental result (compare Figj$H, and9), exactly We thank Benjy Marks for discussions at various stages of
how the correlation of the different sources of noises affects théhe project. J.A.E. acknowledges support from the Research
branching behavior remains an open question. This questioBouncil of Norway through CLIMIT Project No. 200041
lies outside the scope of this article, but we note that thisand from Campus France through the Eiffel Grant. B.S.
might be studied by considering how the branching geometracknowledges support from EPSRC Grant No. EP/L013177/1.
is affected by the imposed correlation structure in the initialR.T., K.J., and E.G.F. acknowledges support from The Euro-
bead eld. pean Union’s Seventh Framework Programme for research,
Another line of future research is to use the discretizatiortechnological development, and demonstration under Grant
procedure to simulate bubble structures seen in the samfggreement No. 316889-ITN FlowTrans. R.T. also acknowl-
experimental setuplpP,28]. As discussed in SedV B, the edges support from the University of Oslo and Univérsie
discretization scheme does not rely on a small front thicknesStrasbourg.
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