
HAL Id: hal-01211494
https://hal.science/hal-01211494v3

Submitted on 11 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The semi-classical limit of large fermionic systems
Søren Fournais, Mathieu Lewin, Jan Philip Solovej

To cite this version:
Søren Fournais, Mathieu Lewin, Jan Philip Solovej. The semi-classical limit of large fermionic systems.
Calculus of Variations and Partial Differential Equations, 2018, pp.57-105. �10.1007/s00526-018-1374-
2�. �hal-01211494v3�

https://hal.science/hal-01211494v3
https://hal.archives-ouvertes.fr


THE SEMI-CLASSICAL LIMIT OF LARGE FERMIONIC

SYSTEMS

SØREN FOURNAIS, MATHIEU LEWIN, AND JAN PHILIP SOLOVEJ

Abstract. We study a system of N fermions in the regime where the
intensity of the interaction scales as 1/N and with an effective semi-

classical parameter ~ = N−1/d where d is the space dimension. For
a large class of interaction potentials and of external electromagnetic
fields, we prove the convergence to the Thomas-Fermi minimizers in the
limitN → ∞. The limit is expressed using many-particle coherent states
and Wigner functions. The method of proof is based on a fermionic de
Finetti-Hewitt-Savage theorem in phase space and on a careful analysis
of the possible lack of compactness at infinity.
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1. Introduction and main results

Large interacting quantum systems are extremely difficult to describe ac-
curately, due to the high complexity of the many-particle Schrödinger equa-
tion. It is therefore useful to derive approximate models that are much easier
to handle and, at the same time, have a proper physical behavior. In the
mean-field model, the real interaction between the particles is replaced by a
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self-consistent effective potential depending on the average density of parti-
cles in the system. It is believed that this model becomes a good approxima-
tion to the true many-particle problem when the system is sufficiently dense
(such that the particles meet very often) and the interactions are weak (for
a law of large numbers to hold). The purpose of this paper is to discuss the
validity of the mean-field model for fermions in a semi-classical-type limit.

The mean-field Hamiltonian for bosons and fermions. The Hamiltonian that
will be the object of our attention describes N spinless quantum particles
in R

d, where d > 1 is arbitrary (of course physically d = 1, 2, 3). In units
such that m = 1/2, it takes the form

H~,N =

N∑

j=1

(
− i~∇j +A(xj)

)2
+ V (xj) +

1

N

∑

16k<ℓ6N

w(xk − xℓ). (1.1)

For bosons this operator must be restricted to the subspace
⊗N

s L2(Rd) ⊂
L2(RdN ) containing all the functions that are symmetric under exchange of
variables, that is,

Ψ(xσ(1), ..., xσ(N)) = Ψ(x1, ..., xN )

for every permutation σ. For fermions, it must be restricted to the subspace∧N L2(Rd) ⊂ L2(RdN ) containing all the functions that are antisymmetric,

Ψ(xσ(1), ..., xσ(N)) = sgn(σ)Ψ(x1, ..., xN ).

In (1.1), A plays the role of a magnetic vector potential but can have a
different physical origin (e.g. for rotating gases), V is an external potential
that traps the particles (possibly only in a finite region of space if V → 0
at infinity), and w is the two-particle interaction potential (that could in
principle depend on N as well, but that will be kept fixed here). The factor
1/N in front of the interaction term is typical of the mean-field scaling and
its role is to make the two sums of the same order N in the Hamiltonian. In
the limit of large N , the expectation is that the particles behave indepen-
dently. In that case, the law of large numbers tells us that the jth particle
experiences the mean-field potential

1

N

∑

k 6=j

w(xj − xk) ≃
ˆ

Rd

w(xj − y)ρ(y) dy

where ρ is the density of particles in the system.
The validity of the mean-field approximation can be studied in the time-

dependent or in the time-independent case. For the time-dependent equa-
tion, one usually assumes that the particles are independent at the initial
time and then proves the propagation of chaos (that is, of the independence)
for all times in the limit of large N . The situation is slightly different for the
stationary problem where one has to prove that (say, in the ground state)
the particles are independent. This second situation will be the object of
our study.

For bosons, the validity of the mean-field approximation has been studied
in the limit N → ∞ with ~ fixed, first in some specific situations [50, 12,
59, 60, 74, 4, 6, 26, 79, 69, 80, 39, 53, 51, 72, 34, 73]. The most general
case has been addressed in a recent series of works [44, 45, 46, 48, 71] by
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Nam, Rougerie and the second author of the present article. Under rather
general assumptions on A, V and w, it is possible to prove that the bosonic
ground state energy per particle converges to that of the nonlinear Hartree
functional

EV,A
Hartree(u) =

ˆ

Rd

(
| − i~∇u(x) +A(x)u(x)|2 + V (x)|u(x)|2

)
dx

+
1

2

ˆ

Rd

ˆ

Rd

w(x− y)|u(x)|2|u(y)|2 dx dy. (1.2)

In mathematical terms, the bottom of the spectrum of H~,N restricted to

the bosonic subspace
⊗N

s L
2(Rd), divided by N , converges to the infimum

of EV,A
Hartree:

lim
N→∞

inf σ⊗N
s L2(Rd)(H~,N )

N
= inf
´

Rd
|u|2=1

EV,A
Hartree(u).

For the convergence of states and the link with the minimizers of EV,A
Hartree,

we refer to [44] and to the discussion below. The link between the time-

dependent Schrödinger equation iΨ̇ = H~,NΨ and the nonlinear time-dependent
Hartree equation

i
∂

∂t
u =

(
− i~∇+A

)2
u+ V u+ (|u|2 ∗ w)u

has stimulated many works as well [35, 31, 76, 8, 22, 23, 1, 25, 29, 70, 40,
68, 47]. The coupled limit N → ∞ and ~ → 0 has been investigated for the
time-dependent problem in [64, 33, 30].

The purpose of this work is to address the case of fermions. The anti-
symmetry (called the Pauli principle) implies that two particles cannot be
at the same place and this usually makes the kinetic energy grow much
faster than N , by the Lieb-Thirring inequality [57, 58, 52]. More precisely,
if ΨN is an N -particle normalized antisymmetric function with support in
a bounded domain ΩN ⊂ R

dN , then we have

N∑

j=1

ˆ

ΩN

|∇jΨ|2 > C|Ω|− 2
dN1+ 2

d .

In order to ensure that all the terms in the Hamiltonian are of the same
order, it is therefore necessary for fermions to take

~ =
1

N
1
d

,

which means that the mean-field limit is coupled to a semi-classical limit.
We therefore end up with the Hamiltonian

HN :=

N∑

j=1

(−i∇j

N
1
d

+A(xj)

)2

+ V (xj) +
1

N

∑

16k<ℓ6N

w(xk − xℓ), (1.3)

that will be our main object of interest in this work. Its fermionic ground
state energy (that is, the bottom of the spectrum in the fermionic subspace



4 S. FOURNAIS, M. LEWIN, AND J. P. SOLOVEJ

∧N L2(Rd)) will be denoted by

E(N) = inf σ∧N L2(Rd)(HN ). (1.4)

A given physical Hamiltonian is not necessarily in the form (1.1) but it
can sometimes be recast in that form after an appropriate scaling. This is
for instance the case for atoms [56, 55] (in units of length of the order Z−1/3)
and non-relativistic fermion stars [59, 60], see (1.11) and (1.12) below.

Vlasov and Thomas-Fermi theories. The Hamiltonian HN has been studied
a lot in the time-dependent setting [66, 77, 7, 21, 28, 11, 9, 5, 67, 10], where its
dynamics is known to converge to the Vlasov time-dependent equation in the
limit N → ∞. This is the Hamiltonian dynamics associated with the Vlasov
energy, which is the semi-classical equivalent to the Hartree functional (1.2):

EV,A
Vla (m) =

1

(2π)d

ˆ

Rd

ˆ

Rd

|p+A(x)|2m(x, p) dx dp +

ˆ

Rd

V (x)ρm(x) dx

+
1

2

¨

Rd×Rd

w(x− y)ρm(x) ρm(y) dx dy. (1.5)

Here

ρm(x) =
1

(2π)d

ˆ

Rd

m(x, p) dp.

and m(x, p) is a probability measure on the phase space R
d ×R

d that must
satisfy the additional constraint

0 6 m(x, p) 6 1 a.e. (1.6)

This condition says that one cannot put more than one particle at x with a
momentum p and it is inherited from the Pauli principle.

We will look at the ground state problem, that is, we study the minimiza-
tion of the Vlasov energy (1.5). If we minimize in the variable p for any fixed
x without the constraint (1.6), the ground state measures all have the trivial
momentum distribution δ0(p + A(x)) and the first term disappears. With
the fermionic constraint (1.6), the Vlasov energy is minimized for measures
of the form

mρ(x, p) = 1

(
|p+A(x)|2 6 cTF ρ(x)

2/d
)

(1.7)

where ρ now minimizes the Thomas-Fermi energy

EV
TF(ρ) := EV,A

Vla (mρ) =
d

d+ 2
cTF

ˆ

Rd

ρ(x)1+
2
d dx+

ˆ

Rd

V (x)ρ(x) dx

+
1

2

¨

Rd×Rd

w(x− y)ρ(x) ρ(y) dx dy (1.8)

and

cTF = 4π2
(

d

|Sd−1|

) 2
d
.

The functional is similar to the Hartree energy (1.2) with ρ = |u|2 except
that the quantum term

´

Rd |∇u|2 has been replaced by the fermionic classical

kinetic energy proportional to
´

Rd ρ
1+2/d and that the magnetic field has
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been discarded (but it appears in the formula (1.7) of the minimizers on
phase space).

We are interested in the link between the many-particle ground state
energy E(N) and that of the Vlasov and Thomas-Fermi energies in the
limit N → ∞ with ~ = N−1/d. To this end we introduce the Thomas-Fermi
ground state energy

eVTF(λ) := inf

{
EV
TF(ρ) : 0 6 ρ ∈ L1(Rd) ∩ L1+2/d(Rd),

ˆ

Rd

ρ = λ

}

= inf

{
EV,A
Vlas(m) : 0 6 m 6 1, (2π)−d

ˆ

R2d

m = λ

}
,

where λ = 1 in our case. The equality of the two infima is obtained by
inserting the formula (1.7) in the Vlasov energy (1.5).

Convergence of E(N)/N . Our first result is that the leading order of E(N)
is given by the Thomas-Fermi ground state energy eVTF(1).

Theorem 1.1 (Convergence of the ground state energy). Assume that w is
even, that w, |A|2 ∈ L1+d/2(Rd) + L∞

ε (Rd) and that either

V ∈ L1+d/2(Rd) + L∞
ε (Rd)

or

V− ∈ L1+d/2(Rd) + L∞
ε (Rd), V+ ∈ L1

loc(R
d), lim

|x|→∞
V+(x) = +∞.

Then we have

lim
N→∞

E(N)

N
= eVTF(1). (1.9)

We recall that f ∈ Lp(Rd) + L∞
ε (Rd) means that for every ε > 0, we can

write f = fp + f∞ with fp ∈ Lp(Rd) and ||f∞||∞ 6 ε. The assumptions
on the potentials cover most physically interesting systems in this regime.
Our result can easily be generalized in many directions but we do not state
precisely the corresponding theorems. Our two assumptions on V cover
either systems which are locally confined (the assumption V ∈ L1+d/2(Rd)+
L∞
ε (Rd) essentially means that V → 0 at infinity) or confined (when V+ →

+∞ at infinity). Our proof works the same if V has a different limit at
infinity or if V = +∞ outside of a domain Ω, which corresponds to Dirichlet
boundary conditions. We could also weaken the assumptions on w+ but
we refrain from doing it in order to simplify the next statement. It is also
possible to use a pseudo-relativistic kinetic energy

√(−i∇j

N
1
d

+A(xj)

)2

+m2 (1.10)

instead of the non-relativistic kinetic energy, but this generalization (and the
appropriate modifications on ETF and on the assumptions on the potential)
will not be discussed further. Finally, we notice that the assumption on the
magnetic potential A is probably far from optimal, but it already covers the
physical case of a potential in 3D satisfying ∇ · A = 0 and whose magnetic
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field B = ∇×A is square-integrable (since then A ∈ L6(R3) by the Sobolev
inequality).

Results of the form of (1.9) have been proved for particular models. For
atoms as in the work of Lieb and Simon [54, 55], we have

d = 3, A(x) = 0, V (x) = − 1

t|x| , w(x) =
1

|x| , (1.11)

where t = lim(N/Z) is the limiting proportion of electrons and protons.
In [60], Lieb and Yau studied pseudo-relativistic stars but their results also
apply to the simpler non-relativistic model which corresponds to

d = 3, A(x) = 0, V (x) = 0, w(x) = − 1

|x| . (1.12)

In Section 3, we provide an elementary proof of Theorem 1.1 which is
very much inspired of [60] and was recently written for bosons in [43].

Coherent states and Wigner functions. The main results of the paper con-
cern the convergence of states, which requires more subtle tools. We will
express it using coherent states and Wigner functions, but other choices are
possible.

Let f be any fixed normalized real-valued function in L2(Rd). For every
fixed (x, p) in the phase space R

d × R
d, we introduce the coherent state

f~x,p(y) = ~
− d

4 f

(
y − x√

~

)
ei

p·y
~ , (1.13)

where we recall that ~ = N−1/d. Then we have the resolution of the identity

1

(2π~)d

ˆ

Rd

ˆ

Rd

|f~x,p〉〈f~x,p| dx dp = 1 (1.14)

in L2(Rd). A typical choice is f a Gaussian, but any real-valued f can indeed
be used. For any such f and a fermionic N -particle state ΨN , we introduce
the corresponding k-particle Husimi function [37, 78, 14]

m
(k)
f,ΨN

(x1, p1, ..., xk, pk)

:=
〈
ΨN , a

∗(f~x1,p1) · · · a
∗(f~xk,pk

)a(f~xk,pk
) · · · a(f~x1,p1)ΨN

〉
, (1.15)

for k = 1, ..., N , where a and a∗ are the fermionic annihilation and creation
operators. In practice f is a very well localized function and the measure

m
(k)
f,ΨN

describes how many particles are in the k semi-classical boxes with

length scale
√
~, centered at (x1, p1),...,(xk, pk) in the phase space R

d ×R
d.

Two equivalent formulas are

m
(k)
f,ΨN

(x1, p1, ..., xk, pk)

=
N !

(N − k)!

〈
ΨN ,

(
P ~

x1,p1 ⊗ · · · ⊗ P ~

xk,pk
⊗ 1N−k

)
ΨN

〉
L2(RdN )

(1.16)

=
N !

(N − k)!

ˆ

Rd(N−k)

∣∣∣∣
〈
f~x1,p1 ⊗ · · · ⊗ f~xk,pk

,ΨN (·,y)
〉
L2(Rdk)

∣∣∣∣
2

dy (1.17)
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where P ~
x,p := |f~x,p〉〈f~x,p| is the orthogonal projection onto f~x,p. As will be

proved below in Lemma 2.2, we have

0 6 m
(k)
f,ΨN

6 1

and
1

(2π)dk

ˆ

R2dk

m
(k)
f,ΨN

=
N(N − 1) · · · (N − k + 1)

Nk
−→
N→∞

1,

for all k > 1.
Next we turn to the k-particle Wigner function which is defined as in [64,

30] by

W
(k)
ΨN

(x1, p1, ..., xk, pk) :=

ˆ

Rdk

ˆ

Rd(N−k)

e−i
∑k

ℓ=1 pℓ·yℓ×

×ΨN (x1 + ~y1/2, · · · , xk + ~yk/2, xk+1, ..., xN )×
×ΨN (x1 − ~y1/2, · · · , xk − ~yk/2, xk+1, ..., xN ) dy1 · · · dyk dxk+1 · · · dxN .

(1.18)

Contrary tom
(k)
f,ΨN

, the Wigner function W
(k)
ΨN

is not necessarily positive, but

it will have the same positive limit as m
(k)
f,ΨN

in the semi-classical regime.

Convergence of states: confined case. In our main results about the conver-
gence of states, we for simplicity distinguish the confined and unconfined
situations, which we state in two separate theorems. We start with the
former.

Theorem 1.2 (Convergence of states, confined case). Assume that w is

even, that w, |A|2, V− ∈ L1+d/2(Rd) + L∞
ε (Rd) and that

V+ ∈ L1
loc(R

d), lim
|x|→∞

V+(x) = +∞.

Let {ΨN} ⊂ ∧N L2(Rd) be any sequence such that ‖ΨN‖ = 1 and

〈ΨN ,HNΨN 〉 = E(N) + o(N). (1.19)

Then there exists a subsequence {Nj} and a probability measure P on the
set

M =

{
0 6 ρ ∈ L1(Rd) ∩ L1+2/d(Rd) :

ˆ

Rd

ρ = 1, EV
TF(ρ) = eVTF(1)

}

of all the minimizers of the Thomas-Fermi functional, such that the following
limit holds:

m
(k)
f,ΨNj

(x1, p1, ..., xk , pk) →
ˆ

M

k∏

ℓ=1

1

(
|pℓ +A(xℓ)|2 6 cTF ρ(xℓ)

2/d
)

︸ ︷︷ ︸
=mρ(xℓ,pℓ)

dP(ρ)

(1.20)
weakly in L1(R2dk) and weakly-∗ in L∞(R2dk), for all k > 1 and every real-
valued normalized f ∈ L2(Rd) or, in other words,

ˆ

R2dk

m
(k)
f,ΨNj

ϕ→
ˆ

M

(
ˆ

R2dk

(mρ)
⊗kϕ

)
dP(ρ) (1.21)
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for every test function ϕ ∈ L1(R2dk) + L∞(R2dk). For the Wigner function

W
(k)
ΨNj

defined in (1.18), we have the same limit

ˆ

R2dk

W(k)
ΨNj

ϕ→
ˆ

M

(
ˆ

R2dk

(mρ)
⊗kϕ

)
dP(ρ), (1.22)

this time for every test function ϕ such that

∂α1
x1

· · · ∂αk
xk
∂β1
p1 · · · ∂

βk
pk
ϕ ∈ L∞(R2dk), max(αj , βj) 6 1. (1.23)

Furthermore, we have the convergence of the k-particle probability density

ˆ

Rd

· · ·
ˆ

Rd

|ΨNj(x1, ..., xNj )|2 dxk+1 · · · dxNj →
ˆ

M

k∏

j=1

ρ(xj) dP(ρ) (1.24)

weakly in L1(Rd)∩L1+ 2
d (Rd) for k = 1, and weakly-∗ in the sense of measures

for k > 2. Finally, we have the convergence of the k-particle kinetic energy
density

ˆ

Rd

· · ·
ˆ

Rd

∣∣∣F~[ΨNj ](p1, ..., pNj )
∣∣∣
2
dpk+1 · · · dpNj

→
ˆ

M

k∏

ℓ=1

∣∣∣
{
ρ > |pℓ +A|dc−d/2

TF

}∣∣∣ dP(ρ), (1.25)

weakly-∗ in the sense of measures for k > 1.

In the statement,

F~[f ](p) :=
1

(2π~)d/2

ˆ

Rd

f(x)e−i p·x
~ dx (1.26)

is the ~-dependent Fourier transform. Later we also use the notation f̂ :=
F1[f ] for the unscaled Fourier transform.

The condition max(αj , βj) 6 1 in (1.23) means that all the components
of the d-dimensional multi-indices αj and βj are 6 1. The condition on ϕ is
taken from [38] but it can be replaced by any other for which the Calderon-
Vaillancourt theorem holds true.

The result says that, in the limit N → ∞, the many-body approximate
minimizers ΨN become purely semi-classical to leading order and that the
corresponding semi-classical measures are a convex combination of factor-
ized states involving the Vlasov minimizersmρ with ρ ∈ M. Note that if the
Thomas-Fermi energy has a unique minimizer ρ0, then there is no need to ex-
tract subsequences and the probability measure P has to be a delta measure
at ρ0. In particular, all the limits are now factorized, which corresponds to
independent probabilities. The convergence of the k-particle densities (1.24)
and kinetic energy densities (1.25) follows easily from the convergence (1.20)
of the Husimi measures and the fact that the system is confined (and from
the Lieb-Thirring inequality [57, 58, 52] for the one-particle density).

The simplest fermionic trial states ΨN are the Slater determinants ΨN =
(N !)−1/2 det(ψi(xj)) (a.k.a. Hartree-Fock states) where ψ1, ..., ψN form an
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orthonormal system [55, 63, 75]. The one-particle Husimi measure of a Slater
determinant is given by

m
(1)
f,ΨN

(x, p) =

N∑

i=1

∣∣〈ψi, f
~

x,p〉
∣∣2.

It can be proved that ΨN satisfies (1.19) if m
(1)
f,ΨN

(x, p) is converging to a

Vlasov minimizer mρ with ρ ∈ M (see Lemma 3.2 below). For a Slater
determinant, the k-particle semi-classical measures are always factorized in
the semi-classical limit and we then end up with a Dirac delta P = δρ. Our
proof of the convergence of the energy (Theorem 1.1) will indeed rely on the
Hartree-Fock problem.

An equivalent way to formulate the limits in Theorem 1.2 is in terms of
quantization of observables. In other words, for every test function ϕ we
associate an operator OpN,~(ϕ) acting on

∧N L2(Rd) and we look at the
limit of

〈
ΨN ,OpN,~(ϕ)ΨN

〉
. The quantization associated with the coherent

states f~x,p is defined by

OpN,~
f (ϕ) :=

ˆ

(Rd×Rd)k
ϕ(x1, ..., pk)a

∗(f~x1,p1) · · · a
∗(f~xk,pk

)×

× a(f~xk,pk
) · · · a(f~x1,p1) dx1 · · · dpk.

Similarly, associated with the Wigner function there is an operator defined
in terms of its integral kernel by

OpN,~
Weyl(ϕ)(x1, ..., xN , y1, ..., yN )

:=

(
N

k

)−1 ∑

16i1<···<ik6N

Opk,~Weyl(ϕ)(xi1 , ..., xik , yi1 , ..., yik)

where

Opk,~Weyl(ϕ)(x1, ..., xk, y1, ..., yk)

:= ~
−dk

ˆ

Rdk

ϕ

(
x1 + y1

2
, p1, ...,

xk + yk
2

, pk

)
e

i
~

∑k
j=1 pj ·(xj−yj) dp1 · · · dpk.

Then the theorem gives the limit
〈
ΨNj ,Op

Nj ,N
−1/d
j

f/Weyl (ϕ)ΨNj

〉
−→
j→∞

ˆ

M

(
ˆ

R2dk

m⊗k
ρ ϕ

)
dP(ρ)

for any fixed ϕ in the function spaces mentioned in the statement.

Convergence of states: unconfined case. In the unconfined case we have a
similar result, except that the limits are a priori local. Since some of the
particles can escape to infinity, our result will involve the minimizers of the
problems eVTF(λ) for a mass 0 6 λ 6 1.

Theorem 1.3 (Convergence of states, unconfined case). Assume that w is
even and that

w, |A|2, V ∈ L1+d/2(Rd) + L∞
ε (Rd).
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Let {ΨN} ⊂ ∧N L2(Rd) be any sequence such that ‖ΨN‖ = 1 and

〈ΨN ,HNΨN 〉 = E(N) + o(N).

Then there exists a subsequence {Nj} and a probability measure P on the
set

M =

{
0 6 ρ ∈ L1(Rd) ∩ L1+2/d(Rd) :

ˆ

Rd

ρ 6 1,

EV
TF(ρ) = eVTF

( ˆ

Rd

ρ
)
= eVTF(1)− e0TF

(
1−
ˆ

Rd

ρ
)}

which coincides with the set of all the possible weak limits of minimizing
sequences for the Thomas-Fermi problem, such that

• the limit (1.21) for m
(k)
f,ΨNj

holds for every ϕ ∈ L1(R2dk)+L∞
ε (R2dk);

• the limit (1.22) for W(k)
ΨNj

holds for every ϕ satisfying (1.23) and

tending to zero at infinity;

• the limit (1.24) for ρ
(k)
ΨNj

holds weakly in L1
loc(R

d) ∩ L1+ 2
d (Rd) for

k = 1, and weakly-∗ on C0
0 (R

dk) instead of C0(Rdk) for k > 2.

If
´

Rd ρ = 1 for P-almost-every ρ ∈ M, then these limits hold as in Theo-
rem 1.2.

In the unconfined case some particles may be lost at infinity (if not all),
and the limiting minimizing densities ρ might not be probability measures.
Nevertheless, the result says that the remaining particles must solve the
minimization problem eVTF(

´

ρ), corresponding to the fraction
´

Rd ρ of the
N particles which have not escaped to infinity. Furthermore, if no particle
is lost (

´

Rd ρ = 1 on M), then the convergence is the same as in the confined
case.

Note that the weak limit of the k-particle kinetic energy density (1.25) is
unknown in the unconfined case, due to the lack of control in the x-variable.
However, it follows from (1.21) that the amount of kinetic energy in the
limit cannot exceed the Vlasov one

lim inf
j→∞

〈
ΨNj , (−∆)ΨNj

〉

N
1+ 2

d
j

>

ˆ

B

(
d

d+ 2
cTF

ˆ

Rd

ρ1+
2
d

)
dP(ρ).

Discussion and strategy of proof. Our theorems 1.2 and 1.3 seem to be the
first dealing with the convergence to the Thomas-Fermi problem for general
potentials A,V,w. Given that the Thomas-Fermi model is at the core of
many approximate models in chemistry and material science [24], this result
is important for applications. For atoms and stars, our result provides the
following information.

Example 1.4 (Large atoms). For the choice (1.11), the Thomas-Fermi en-
ergy is

ˆ

R3

(
3

5
cTFρ(x)

5/3 − ρ(x)

t|x|

)
dx+

1

2

ˆ

R3

ˆ

R3

ρ(x) ρ(y)

|x− y| dx dy



THE SEMI-CLASSICAL LIMIT OF LARGE FERMIONIC SYSTEMS 11

and the setM consists of a unique ρt which has the mass
´

R3 ρt = min(1, 1/t).
Theorem 1.3 therefore provides the strong convergence to mρt for 0 < t 6 1
and the weak convergence to mρ1 for t > 1. This was proved in [54, 56, 49].

Example 1.5 (Non-relativistic stars). For stars (1.12), the corresponding
Thomas-Fermi energy is

3

5
cTF

ˆ

R3

ρ(x)5/3 dx− 1

2

ˆ

R3

ˆ

R3

ρ(x) ρ(y)

|x− y| dx dy

and we have M = {0} ∪
{
ρ0(· − τ), τ ∈ R

3
}

for some unique ρ0 with
´

R3 ρ0 = 1 [3, 2, 27, 61, 62, 60]. Therefore, if we can find a translation of
the system for which the limiting semi-classical measures are non trivial,
the limit can only involve the Thomas-Fermi minimizing density ρ0. The
convergence of states seems to be new. It was only discussed for a locally
perturbed model in [60, Thm. 6]. As mentioned previously, we have a similar
convergence result for pseudo-relativistic stars.

Our main new tool in this paper is a fermionic (weak) version of the de
Finetti-Hewitt-Savage theorem for classical measures (Theorem 2.7 below),
which implies that the weak limits of the semi-classical measures must always
be a combination of factorized probabilities (Theorem 2.1 below). We follow
here ideas of [44], where a weak version of the quantum de Finetti theorem
was introduced for the mean-field limit of bosons. The fact that we do not
need a quantum version for fermions is of course due to the semi-classical
feature of our model. The Pauli principle only persists in the constraint
that 0 6 m 6 1. We refer to [71] for a general presentation of classical and
quantum de Finetti theorems, with applications to the mean-field limit for
bosons, and to [32, 1] for the time-dependent problem.

Organization of the paper. The rest of the paper is devoted to the proofs
of our results. In Section 2 we give the main properties of the Husimi and
Wigner measures. The main result there is Theorem 2.1 in which we explain
that a sequence {ΨN} has always convergent semi-classical measures (up to
extraction of a subsequence), with a limit that is a convex combination of
factorized ‘fermionic” measures on the phase space:

m
(k)
f,ΨNj

⇀

ˆ

06µ61
´

R2d
µ6(2π)d

µ⊗k dP(µ), ∀k > 1.

Sections 3 and 4 are then devoted to the proof of Theorems 1.1, 1.2 and 1.3.
The proof of Theorem 1.1 is based on ideas of Lieb and Yau [60], while
that of Theorem 1.2 follows easily from our fermionic de Finetti-Hewitt-
Savage theorem. The proof of Theorem 1.3 is more tedious and relies on the
techniques introduced in [42, 44].

Acknowledgement. M.L. and J.P.S acknowledge financial support from the
European Research Council (Grant Agreements MNIQS 258023 and MAS-
TRUMAT 321029). S.F. acknowledges support from a Danish research coun-
cil Sapere Aude grant. This work was started when the authors were at the
Centre Émile Borel of the Institut Henri Poincaré in Paris in 2013. Part
of this work was done when S.F. was a visiting professor at the University
Paris-Dauphine.
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2. Fermionic semi-classical measures

This section is devoted to the study of the general properties of the Husimi

measures m
(k)
f,ΨN

which we have defined in (2.9), and to the relation with the

Wigner measures. The main result of the section is a general theorem about
the properties of the measures obtained in the limit N → ∞, whose proof
will be given later in Section 2.5.

Theorem 2.1 (Convergence to factorized fermionic measures on phase

space). Let ΨN be a sequence of normalized fermionic functions, ~ = N−1/d

and m
(k)
f,ΨN

,W
(k)
ΨN

be defined as in (1.15) and (1.18). Then, there exists a
subsequence Nj and a probability measure P on the set

B =

{
µ ∈ L1(R2d) : 0 6 µ 6 1, (2π)−d

ˆ

R2d

µ 6 1

}

such that, for every k > 1,
ˆ

R2dk

m
(k)
f,ΨNj

ϕ→
ˆ

B

(
ˆ

R2dk

µ⊗kϕ

)
dP(µ), (2.1)

for every normalized real-valued function f ∈ L2(Rd) and every ϕ ∈ L1(R2dk)+
L∞
ε (R2dk), and

ˆ

R2dk

W
(k)
ΨNj

ϕ→
ˆ

M

(
ˆ

R2dk

µ⊗kϕ

)
dP(µ) (2.2)

for every function ϕ tending to zero at infinity, satisfying (1.23).
Furthermore, if ΨN satifies the kinetic energy bound

〈
ΨN ,




N∑

j=1

−∆j


ΨN

〉
6 CN1+2/d, (2.3)

then
ˆ

B

(
ˆ

R2d

|p|2µ(x, p) dx dp
)
dP(µ) 6 C(2π)d

(hence
´

R2d |p|2µ(x, p) dx dp is finite P-almost surely) and the k-particle den-
sities converge weakly
ˆ

RdN

U(x1, ..., xk)|Ψn(x1, ..., xN )|2dx1 · · · dxN →
ˆ

B

(
ˆ

Rdk

ρ⊗k
µ U

)
dP(µ)

(2.4)

for every k > 1 and every U ∈ L1+d/2(Rd) + L∞
ε (Rd) for k = 1 and U ∈

C0
0 (R

dk) for k > 2, where

ρµ(x) =
1

(2π)d

ˆ

Rd

µ(x, p) dp.

The result says that, whatever the sequence {ΨN}, the semi-classical
measures always get factorized in the limit N → ∞ or, more precisely,
they are a convex combination of factorized phase-space measures uniformly
bounded by 1 and with a mass 6 1. In the rest of this section, we first derive

some elementary properties of the measures m
(k)
f,ΨN

, then we state a general

convergence theorem in the spirit of the classical de Finetti-Hewitt-Savage
theorem, before we provide the detailed proof of Theorem 2.1 in Section 2.5.
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2.1. Measures on phase space for N-body states. In this section, we

recall the elementary properties of the measures m
(k)
f,ΨN

. Some of the re-

sults of this section are well-known, but we gather them all here for the
convenience of the reader.

Coherent states. As before, we fix a real-valued normalized function f ∈
L2(Rd) and define

f~x,p(y) = ~
− d

4 f

(
y − x√

~

)
ei

p·y
~ , (2.5)

as well as

f~ := f~0,0 = ~
−d/4f(·/

√
~) and g~ := F~[f

~] = ~
−d/4f̂(·/

√
~). (2.6)

We will later have to take ~ = N−1/d but for the moment ~ could be arbi-
trary. We recall the resolution of the identity

1

(2π~)d

ˆ

Rd

ˆ

Rd

|f~x,p〉〈f~x,p| dx dp = 1. (2.7)

The latter follows from the useful formulas

〈f~x,p, u〉 =
ˆ

Rd

f~(y − x)u(y)e−i p·y
~ dy

= (2π~)d/2F~

[
f~(· − x)u

]
(p) (2.8)

=

ˆ

Rd

g~(k − p)F~[u](k)e
−i k·x

~ dk

= (2π~)d/2F~

[
g~(· − p)F~[u]

]
(x)

which imply immediately that

1

(2π~)d

ˆ

Rd

ˆ

Rd

|〈f~x,p, u〉|2dx dp =

ˆ

Rd

(
ˆ

Rd

∣∣∣F~

[
f~(· − x)u

]
(p)
∣∣∣
2
dp

)
dx

=

ˆ

Rd

(
ˆ

Rd

∣∣∣f~(y − x)u(y)
∣∣∣
2
dy

)
dx

= ‖f~‖2L2(Rd) ||u||
2
L2(Rd) = ||u||2L2(Rd) .

Semi-classical measures on phase space. Next, we recall the definition (1.15)
of the k-particle semi-classical (Husimi) measure

m
(k)
f,ΨN

(x1, p1, ..., xk, pk)

:=
〈
ΨN , a

∗(f~x1,p1) · · · a
∗(f~xk,pk

)a(f~xk ,pk
) · · · a(f~x1,p1)ΨN

〉
, (2.9)

for k = 1, ..., N . Here a∗(f) and a(f) are, respectively, the fermionic cre-
ation and annihilation operators, satisfying the Canonical Anticommutation
Relations [17] {

a∗(f)a(g) + a(g)a∗(f) = 〈g, f〉,
a∗(f)a∗(g) + a∗(g)a∗(f) = 0.

(2.10)
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See (1.16) and (1.17) for two other formulas for m
(k)
f,ΨN

. The following is a

simple consequence of these formulas and of the fact that ΨN is an antisym-
metric wave function.

Lemma 2.2 (Elementary properties of the phase space measures). Let f ∈
L2(Rd,R) and ΨN ∈ ∧N

1 L2(Rd) be two normalized functions. Then for

every 1 6 k 6 N , the function m
(k)
f,ΨN

defined in (2.9) is symmetric and

satisfies

0 6 m
(k)
f,ΨN

6 1 a.e. on R
2dk, (2.11)

1

(2π)dk

ˆ

R2dk

m
(k)
f,ΨN

(x1, p1, ..., xk , pk) dx1 · · · dpk

= N(N − 1) · · · (N − k + 1)~dk, (2.12)

and

1

(2π)d

ˆ

R2d

m
(k)
f,ΨN

(x1, p1, ..., xk, pk) dxk dpk

= ~
d(N − k + 1)m

(k−1)
f,ΨN

(x1, p1, ..., xk−1, pk−1). (2.13)

Proof. The symmetry of m
(k)
f,ΨN

follows from the fact that two creation

(resp. annihilation) operators anti-commute due to (2.10) or, equivalently,
from the formula (1.16) and the fact that ΨN is anti-symmetric. Simi-
larly, the uniform bound (2.11) is a consequence of the operator inequality
0 6 a∗(f)a(f) 6 1. The formulas (2.13) and (2.12) follow from the represen-
tation (1.16) and the resolution of the identity (2.7), which can be rewritten
as (2π~)−d

˜

R2d P
~
x,p dx dp = 1. �

From (2.12) and (2.13), the choice ~ = N−1/d arises naturally, as it makes

(2π)−dkm
(k)
f,ΨN

a probability measure in the limit N → ∞ for all k > 1.

Remark 2.3. The measures m
(k)
f,ΨN

can be defined in a similar manner for

bosons. Only the uniform bound (2.11) (which is the expression of Pauli’s
principle here) will be lost.

Link with k-particle densities. For any fixed (normalized) fermionic function
ΨN , we denote by

ρ
(k)
ΨN

(x1, ..., xk) :=

(
N

k

)
ˆ

Rd

· · ·
ˆ

Rd

|ΨN (x1, ..., xN )|2 dxk+1 · · · dxN (2.14)

and

t
(k)
ΨN

(p1, ..., pk) :=

(
N

k

)
ˆ

Rd

· · ·
ˆ

Rd

|F~[ΨN ](p1, ..., pN )|2 dpk+1 · · · dpN
(2.15)

the position and momentum densities for k particles, with 1 6 k 6 N . For
later purposes, we also define the k-particle density matrix of ΨN which is
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the operator γ
(k)
ΨN

with integral kernel

γ
(k)
ΨN

(x1, ..., xk ;x
′
1, ..., x

′
k) :=

(
N

k

)
ˆ

Rd

· · ·
ˆ

Rd

ΨN (x1, ..., xN )×

×ΨN (x′1, ..., x
′
k , xk+1, ..., xN ) dxk+1 · · · dxN . (2.16)

All the physical observables can be expressed in terms of these objects only.
The following gives a link with the semi-classical measures we have defined
in the previous section.

Lemma 2.4 (Particle densities and fermionic semi-classical measures). Let
f be any normalized function in L2(Rd,R) and f~, g~ be defined as in (2.6).
Then we have

1

(2π)dk

ˆ

(Rd)k
m

(k)
f,ΨN

(x1, p1, ..., xk, pk) dp1 · · · dpk = k! ~dk ρ
(k)
ΨN

∗
(
|f~|2

)⊗k

(2.17)
and

1

(2π)dk

ˆ

(Rd)k
m

(k)
f,ΨN

(x1, p1, ..., xk, pk) dx1 · · · dxk = k! ~dk t
(k)
ΨN

∗
(
|g~|2

)⊗k

(2.18)
for any (normalized) fermionic function ΨN .

Proof. As in (2.8), we start by noticing that, for every fixed y ∈ (Rd)N−k,
〈
f~x1,p1 ⊗ · · · ⊗ f~xk,pk

,ΨN (·,y)
〉
L2((Rd)k)

= (2π~)dkF~

[
f~x1,0 ⊗ · · · ⊗ f~xk,0

ΨN(·,y)
]
(p1, ..., pk)

= (2π~)dkF~

[
g~0,p1 ⊗ · · · ⊗ g~0,pkF~[ΨN ](·,y)

]
(x1, ..., xk).

Next we compute the integral of m
(k)
f,Ψ over the pj’s, using (1.16):

ˆ

(Rd)k
m

(k)
f,ΨN

(x1, p1, ..., xk, pk) dp1 · · · dpk

= k!

(
N

k

)
ˆ

(Rd)k
dp1 · · · dpk

ˆ

Rd(N−k)

dy
∣∣∣
〈
f~x1,p1 ⊗ · · · ⊗ f~xk,pk

,ΨN (·,y)
〉∣∣∣

2

= (2π~)dkk!

(
N

k

)
ˆ

(Rd)k
dp1 · · · dpk

ˆ

Rd(N−k)

dy

×
∣∣∣F~

[
f~x1,0 ⊗ · · · ⊗ f~xk,0

ΨN (·,y)
]
(p1, ..., pk)

∣∣∣
2

= (2π~)dkk!

(
N

k

)
ˆ

RdN

∣∣∣f~(y1 − x1) · · · f~(yk − xk)ΨN (y)
∣∣∣
2
dy1 · · · dyN

= (2π~)dkk! ρ
(k)
ΨN

∗
(
|f~|2

)⊗k
(x1, ..., xk).

The proof of (2.18) is similar. �

A simple consequence of (2.18) is the well-known formula for the kinetic
energy and its generalization with magnetic field (see, e.g., [49, Eq. (5.20)]):
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Corollary 2.5 (Kinetic energy). If f ∈ H1(R3,R) and |A|2 ∈ L1+d/2(Rd)+
L∞
ε (Rd), we have

〈
ΨN ,

( N∑

j=1

(−i~∇j +A(xj))
2

)
ΨN

〉

=
1

(2π~)d

ˆ

Rd

ˆ

Rd

|p +A(x)|2m(1)
f,ΨN

(x, p) dx dp −N~

ˆ

Rd

|∇f |2

+ 2ℜ
〈
ΨN ,

( N∑

j=1

(A−A ∗ |f~|2)(xj) · (−i~∇j)

)
ΨN

〉

+

〈
ΨN ,

( N∑

j=1

(|A|2 − |A|2 ∗ |f~|2)(xj)
)
ΨN

〉
. (2.19)

Proof. By density we may assume that Ψ and A are regular enough, which
allows us to make the following calculation. By definition, we have

〈
ΨN ,




N∑

j=1

−~
2∆j


ΨN

〉
=

ˆ

Rd

t
(1)
ΨN

(p)|p|2 dp

=
1

(2π~)d

ˆ

Rd

ˆ

Rd

m
(1)
f,ΨN

(x, p)|p|2 dx dp

+

ˆ

Rd

ˆ

Rd

t
(1)
ΨN

(p)|g~(q − p)|2(|p|2 − |q|2) dp dq

=
1

(2π~)d

ˆ

Rd

ˆ

Rd

m
(1)
f,ΨN

(x, p)|p|2 dx dp

−
ˆ

Rd

ˆ

Rd

t
(1)
ΨN

(p)|g~(q − p)|2|q − p|2 dp dq

− 2

(
ˆ

Rd

pt
(1)
ΨN

(p) dp

)
·
(
ˆ

Rd

p|g~(p)|2 dp
)
.

The last term vanishes since f is real, hence g~ is even, and we obtain

〈
ΨN ,

( N∑

j=1

−~
2∆j

)
ΨN

〉

=
1

(2π~)d

ˆ

Rd

ˆ

Rd

|p|2m(1)
f,ΨN

(x, p) dx dp −N~

ˆ

Rd

|∇f |2. (2.20)

With magnetic field, we expand the square

| − i~∇+A(x)|2 = −~
2∆+A(x) · (−i~∇) + (−i~∇) ·A(x) + |A(x)|2
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and apply (2.17) for the term with |A|2 and (2.20) for the term with −∆.
The cross term is calculated using (2.8) as follows:

1

(2π~)d

¨

Rd×Rd

p ·A(x)|〈u, f~xp〉|2 dx dp

=

¨

Rd×Rd

p ·A(x)|F~(f
~

x,0u)(p)|2 dx dp

=

ˆ

Rd

A(x) ·
ˆ

Rd

p|F~(f
~

x,0u)(p)|2 dp dx

= ~

ˆ

Rd

A(x) · ℑ
ˆ

Rd

f~x,0(y)u(y)∇(f~x,0u)(y) dy dx

= ~

ˆ

Rd

A(x) ·
ˆ

Rd

|f~(y − x)|2ℑ(u(y)∇u(y)) dy dx

= ~

ˆ

Rd

(A ∗ |f~|2)(y) · ℑ(u(y)∇u(y)) dy.

�

2.2. Structure of the limiting measures: tight case. For an arbi-

trary sequence ΨN with N → ∞, the functions (m
(k)
f,ΨN

)N>k are bounded in

L1(R2dk) ∩ L∞(R2dk), for every fixed k, by Lemma 2.2. It is therefore clear

that we can find a subsequence such that m
(k)
f,ΨN

⇀ m
(k)
f weakly for every

k > 1, in the sense that
ˆ

R2dk

m
(k)
f,ΨN

ϕ→
ˆ

R2dk

m
(k)
f ϕ

for every ϕ ∈ L1(R2dk) + L∞
ε (R2dk). In the limit we obtain a hierarchy

of symmetric functions (m
(k)
f )k>1. The purpose of this section and of the

following is to study the properties of these limiting hierarchies. In general,

the limiting functions m
(k)
f are not probability densities because some mass

can be lost at infinity. However, if the sequence (m
(1)
f,ΨN

) is tight, that is,

lim
R→∞

lim sup
N→∞

ˆ

|x|+|p|>R
m

(1)
f,ΨN

(x, p) dx dp = 0,

then them
(k)
f,ΨN

are also tight for k > 2 and the limitingm
(k)
f are all probabil-

ity measures. We consider this simpler case in this section. The tightness of
the sequence also implies that the compatibility relation (2.13) is preserved
in the limit:

1

(2π)d

ˆ

R2d

m(k)(x1, p1, ..., xk, pk) dxk dpk = m(k−1)(x1, p1, ..., xk−1, pk−1)

(2.21)
for all k > 1. The famous de Finetti-Hewitt-Savage theorem deals with the
structure of such infinite sequences of symmetric probability measures [15,
16, 19, 36, 18]. In our situation, the result can be stated as follows.
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Theorem 2.6 (Fermionic semi-classical measures on phase space). Let m(k)

be a family of symmetric positive densities in L1(Mk), with M ⊂ R
D, sat-

isfying

c

ˆ

M
m(k)(ξ1, ..., ξk) dξk = m(k−1)(ξ1, ..., ξk−1) (2.22)

with m(0) = 1 and 0 6 m(k) 6 1 for all k > 1. Then there exists a Borel
probability measure P on the set

S :=

{
µ ∈ L1(M) : 0 6 µ 6 1, c

ˆ

M
µ = 1

}

such that

m(k) =

ˆ

S
µ⊗k dP(µ), (2.23)

for all k > 1.

In our caseM = R
2d and c = (2π)−d but the result is actually true for any

Borel set M in R
D and any c > 0. The theorem says that infinite exchange-

able (i.e. symmetric) fermionic systems are always convex combination of
independent ones.

Proof. A very similar theorem is proved in [13, p. 510–511] (see also [65,
Lemma 4]). The usual theorem from [36] furnishes a probability measure P ∈
P(P(M)) such that (2.23) holds with S replaced by P(M). The condition
0 6 µ 6 1 can be characterized by the property that µ(A) 6 |A| for all A in
a countable set of balls, showing that S is a measurable set in P(M). We
therefore only have to prove that this measure P is concentrated on S. Now,
the assumption that 0 6 m(k) 6 1 implies m(k)(Ak) 6 |A|k for any Borel set
A ⊂M , and this gives

ˆ

P(M)

(
µ(A)

|A|

)k

dP(µ) 6 1

for every k > 1. Taking k → ∞ proves that P is concentrated on the subset
of P(M) containing all the probability measures µ such that µ(A) 6 |A|
for all A. These measures are absolutely continuous with respect to the
Lebesgue measure and the corresponding density is between 0 and 1. �

2.3. Structure of the limiting measures: general case. As we have

said, in general the limiting functionsm
(k)
f need not be probability measures,

and they need not satisfy the compatibility condition (2.21). The idea that
a de Finetti theorem nevertheless holds true in this case as well seems to
have been advertized for the first time in the quantum case in [44]. A similar
result with a different interpretation had been published before by Ammari
and Nier in [1]. The following is inspired of [44, Thm 2.2].

Theorem 2.7 (Weak fermionic semi-classical measures on phase space).

Let m
(N)
N be a sequence of symmetric positive densities in L1(MN ), with

M ⊂ R
D, and let m

(k)
N be its marginals defined recursively as in (2.22). We

assume that m(0) = 1, that 0 6 m
(k)
N 6 1 for every 1 6 k 6 N and that

m
(k)
N ⇀ m(k) weakly in L1(Mk) and weakly-∗ in L∞(Mk) for every fixed
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k > 1, as N → ∞. Then there exists a Borel probability measure P on the
set B := {µ ∈ L1(M) : 0 6 µ 6 1, c

´

M µ 6 1} such that

m(k) =

ˆ

B
µ⊗k dP(µ), (2.24)

for all k > 1.

The theorem says that the natural object obtained in the semi-classical
limit of large fermionic systems (with possible lack of compactness) is a
Borel probability measure P on the set of all the functions 0 6 µ 6 1 on M
such that

´

M µ 6 1/c.

Proof. The proof follows step by step that of [44, Thm 2.2] in the quantum
case and we only outline it. We fix a ball BR = {ξ ∈ M : ||ξ|| 6 R}
in the space M , with R an arbitrary positive integer. We then look at the
probability measures for the particles to be in BR. In particular, we will need
to know the exact number of particles in BR, which leads us to introduce
the functions

gN,R,0 := cN
ˆ

(M\BR)N
m

(N)
N (ξ1, ..., ξN )dξ1 · · · dξN

and

gN,R,n(ξ1, ..., ξn)

:= cN−n

(
N

n

) n∏

j=1

1BR
(ξj)

ˆ

(M\BR)N−n

m
(N)
N (ξ1, ..., ξN )dξn+1 · · · dξN

for n = 1, ..., N , and where ξ ∈ M is the phase space variable. In words,
gN,R,n is the probability density for n particles in BR, under the constraint
that the other N − n are all outside of BR. Note that

N∑

n=0

cn
ˆ

(BR)n
gN,R,n = cN

ˆ

MN

m
(N)
N = 1 (2.25)

and that the k-particle density in BR can be written as

k∏

j=1

1BR
(ξj)m

(k)
N (ξ1, ..., ξk) =

N∑

n=k

(N−k
n−k

)
(
N
n

) g
(k)
N,R,n(ξ1, ..., ξk)

=

N∑

n=k

(n
k

)
(N
k

)g(k)N,R,n(ξ1, ..., ξk)

where g
(k)
N,R,n denotes the kth marginal of the function gN,R,n.

It is useful to think of the fraction n/N of particles in BR as an additional
variable 0 6 t 6 1. For fixed N this new parameter takes values in Z/N ∩
[0, 1]. In the limit N → ∞, the whole interval [0, 1] is filled and t will
correspond to the radial integration in the ball B. We therefore introduce
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the probability measure

dg
(k)
N,R(t, ξ1, ..., ξk) :=

N∑

n=k

g
(k)
N,R,n(ξ1, ..., ξk)δn/N (t)

+ |BR|−k

(
k−1∑

n=0

ck
ˆ

(BR)k
gN,R,n

)
δ0(t) (2.26)

on the compact set [0, 1]× (BR)
k. Extracting subsequences, we may assume

that g
(k)
N,R converges weakly to a probability measure g

(k)
R on [0, 1] × (BR)

k,
for every k > 1. Since R is an integer by assumption, the weak convergence
can be assumed for every R as well.

Now, from the inequality

0 6

( n
N

)k
−
(n
k

)
(N
k

) 6
(k − 1)2

N − k + 1

(see [44, Eq.(2.13)]) and the normalization (2.25), we deduce that

ck
ˆ

(BR)k

∣∣∣∣
k∏

j=1

1BR
(ξj)m

(k)
N (ξ1, ..., ξk)

−
ˆ 1

0
tk g

(k)
N,R(t, ξ1, ..., ξk) dt

∣∣∣∣ dξ1 · · · dξk 6
(k − 1)2

N − k + 1
,

from which we conclude that

1
⊗k
BR
m(k) =

ˆ 1

0
tk dg

(k)
R (t, ·) (2.27)

for every k,R > 1.
Next we remark that

t

(
c

ˆ

BR

dg
(k+1)
N,R (·, ξk+1)− dg

(k)
N,R

)
= tδk/N (t) g

(k)
N,R =

k

N
δk/N (t) g

(k)
N,R

where the right side converges to 0 in the sense of measures. Passing to the
weak limit N → ∞, we deduce that the limiting hierarchy is consistent for
all 0 < t 6 1:

ct

ˆ

BR

dg
(k+1)
R (t, ·, ξk+1) = t dg

(k)
R (t, ·).

At t = 0 this equation tells us nothing. However, we can always change the

value of the limit dg
(k)
R as we want since the point t = 0 does not contribute

in (2.27). Similarly to (2.26), we choose it to be the constant that makes it
a probability measure and the consistency at t = 0 is then obvious. From
the de Finetti-Hewitt-Savage theorem (or, rather, a simple one-parameter
version of it which can be proved similarly as sketched in [44]), we conclude

that there exists a probability measure P̃R on [0, 1] × P(BR) such that

dg
(k)
R (t, ·) =

ˆ

P(BR)
p⊗k dP̃R(t, p).
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Inserting in (2.27), we get the representation formula

(1BR
)⊗km(k) =

ˆ

[0,1]×P(BR)
(tp)⊗k dP̃R(t, p).

Using that 0 6 m(k) 6 1 we can show similarly as in the proof of The-

orem 2.6, that P̃R concentrates on [0, 1] × S. The right side can then be
uniquely interpreted as an integral for a measure PR on BR := {0 6 µ 6

1BR
:
´

BR
µ 6 1/c}, with t playing the role of the radial variable:

(1BR
)⊗km(k) =

ˆ

BR

µ⊗k dPR(µ).

Since the previous equality holds for every positive integer R, the measure
PR is the cylindrical projection of PR′ for every R′ > R and the family (PR)
defines uniquely a measure P over B. We get the result by passing to the
limit R→ ∞. �

2.4. Link with Wigner functions. It is well known that the Wigner func-
tions converge to the same limit as the Husimi measures and we quickly recall
this here. It is indeed a general principle that all regular quantizations are
equivalent in the semi-classical limit.

First, we recall that when f = (π)−d/4e−|x|2/2, the Husimi and Wigner
measures are related by a convolution:

m
(k)
Ψ,f =

N(N − 1) · · · (N − k + 1)

Nk
W

(k)
Ψ ∗ G

~,

where G ~(x1, ..., pk) = (π~)−dk exp(−~
−1
∑k

j=1 |xj|2 + |pj |2) is a Gaussian

in phase space (see, e.g. [14, Prop. 21]). It is then clear that the two se-
quences must have the same weak limits. On the other hand, the Calderon-
Vaillancourt theorem from [38] states that

∣∣∣
∣∣∣Opk,~Weyl(ϕ)

∣∣∣
∣∣∣ 6 C sup

max(α,β)61

∣∣∣
∣∣∣∂α1

x1
· · · ∂αk

xk
∂β1
p1 · · · ∂

βk
pk
ϕ
∣∣∣
∣∣∣
L∞(R2dk)

,

for any function ϕ for which the right side is finite. This bound is useful for

showing that W
(k)
Ψ has weak limits. From this we obtain the estimate

∣∣∣
∣∣∣OpN,~

Weyl(ϕ)−OpN,~
f (ϕ)

∣∣∣
∣∣∣

6 C sup
max(α,β)61

∣∣∣
∣∣∣∂α1

x1
· · · ∂αk

xk
∂β1
p1 · · · ∂

βk
pk
(ϕ− ϕ ∗ G

~)
∣∣∣
∣∣∣
L∞(R2dk)

+ C
k2

N
sup

max(α,β)61

∣∣∣
∣∣∣∂α1

x1
· · · ∂αk

xk
∂β1
p1 · · · ∂

βk
pk
ϕ
∣∣∣
∣∣∣
L∞(R2dk)

.

The term ϕ−ϕ∗G ~ can be estimated uniformly by the gradient of ϕ, using
the fundamental theorem of calculus, leading to
∣∣∣
∣∣∣OpN,~

Weyl(ϕ)−OpN,~
f (ϕ)

∣∣∣
∣∣∣

6 Ck

√
~ sup
max(α,β)62

∣∣∣
∣∣∣∂α1

x1
· · · ∂αk

xk
∂β1
p1 · · · ∂

βk
pk
ϕ
∣∣∣
∣∣∣
L∞(R2dk)

.
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One more derivative of ϕ is necessary to prove that the limit of the Wigner
function coincides with that of the Husimi measure, but the limit of WΨ

nevertheless holds with only max(α, β) 6 1, using the density of smooth
test functions.

As a conclusion, these estimates give the convergence of the Wigner

functions when tested against any ϕ satisfying ∂α1
x1

· · · ∂αk
xk
∂β1
p1 · · · ∂βk

pk ϕ ∈
L∞(R2dk) for max(α, β) 6 1, provided that the convergence of the Husimi

measures has been established in the special case f = (π)−d/4e−|x|2/2. If the
weak convergence for the Husimi measures only holds in L1

loc(R
dk), then in

addition ϕ has to tend to zero at infinity.

2.5. Proof of Theorem 2.1. We are now able to write the proof of Theo-
rem 2.1.

Let f ∈ C∞
c (Rd) be a real-valued L2-normalized function. As we have

already explained in the beginning of Section 2.2, up to extraction of a
subsequence, we have

ˆ

Mk

m
(k)
f,ΨN

ϕ→
ˆ

Mk

m
(k)
f ϕ (2.28)

for every k > 1 and every ϕ ∈ L1(Mk) + L∞
ε (Mk). By Theorem 2.7, there

exists a probability measure P on B such that

m
(k)
f =

ˆ

B
µ⊗k dP(µ)

and therefore the convergence (2.1) follows for this f .
Next we establish the independence of the weak convergence with respect

to f . This is the content of the following

Lemma 2.8 (The limiting measures do not depend on f). Let ΨN be a
sequence of normalized fermionic functions and let f ∈ L2(Rd) be a nor-

malized function such that m
(k)
f,ΨN

⇀ m
(k)
f weakly as N → ∞ in the sense

of (2.1), for every k > 1. Then m
(k)
g,ΨN

⇀ m
(k)
f weakly, for every normalized

g ∈ L2(Rd).

Proof of Lemma 2.8. It clearly suffices to prove that

lim
N→∞

ˆ

Mk

ϕ(ξ)
(
m

(k)
f,ΨN

(ξ)−m
(k)
g,ΨN

(ξ)
)
dξ = 0

for all functions ϕ in a dense set. It will be convenient to take ϕ of the form

ϕ(x1, p1, ..., xk , pk) = u1(x1)v1(p1) · · · uk(xk)vk(pk)
with uj , vj in the Schwartz class.

First we remark that we can assume that f and g are smooth with compact

support. Indeed, using the definition of m
(k)
f,ΨN

and that ‖a(f − f̃)‖ =

‖a∗(f − f̃)‖ = ‖f − f̃‖L2 , we find that
∣∣∣
∣∣∣m(k)

f,ΨN
−m

(k)

f̃ ,ΨN

∣∣∣
∣∣∣
L∞(Mk)

6 2k‖f − f̃‖L2 .

Therefore we can approximate f and g by smooth functions f̃ and g̃ in
L2(Rd), at the expense of an error which is uniform in N . Then it suffices
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to prove the result for f̃ and g̃. For simplicity, we just assume that f and g
are smooth for the rest of the proof.

By definition of the phase space measure m
(k)
f,ΨN

, we have

1

(2π)dk

ˆ

Mk

ϕ(ξ)m
(k)
f,ΨN

(ξ) dξ

= N(N − 1) · · · (N − k + 1)
〈
ΨN ,Opk,~f (ϕ)⊗ 1N−k ΨN

〉

where

Opk,~f (ϕ) =
1

(2π)dk

ˆ

Mk

ϕ(x1, p1, ..., xk, pk)P
~

x1,p1 ⊗ · · · ⊗ P ~

xk ,pk
dx1 · · · dpk.

(2.29)
We now claim that

∣∣∣
∣∣∣Opk,~f (ϕ)−Opk,~g (ϕ)

∣∣∣
∣∣∣ 6 C~

kd
√
~ = CN−k− 1

2d (2.30)

where C depends on the regularity of f , g, ϕ and on k, but not on N . This
will imply

∣∣∣∣
ˆ

Mk

ϕ(ξ)
(
m

(k)
f,ΨN

(ξ)−m
(k)
g,ΨN

(ξ)
)
dξ

∣∣∣∣ 6 C
√
~ = CN− 1

2d

and finish the argument. The proof of (2.30) is based on well-known tech-
niques from semi-classical analysis. It consists in estimating the difference
between the above quantization (2.29) of ϕ and another quantization which
is independent of f . We provide the full proof here for the convenience of
the reader.

First we remark that for our specific function ϕ we can write

Opk,~f (ϕ) = B~

f,1 ⊗ · · · ⊗B~

f,k

where

B~

f,j =
1

(2π)d

ˆ

M
uj(x)vj(p)|f~x,p〉〈f~x,p| dx dp.

Since by (2.7) we have ‖B~

f,j‖ 6 ~
d ||uj ||L∞(Rd) ||vj||L∞(Rd) and the same esti-

mate for B~
g,j, we deduce that

∣∣∣
∣∣∣Opk,~f (ϕ)−Opk,~g (ϕ)

∣∣∣
∣∣∣ 6 ~

d(k−1)
k∑

j=1

‖B~

f,j −B~

g,j‖
∏

ℓ 6=j

||uℓ||L∞(Rd) ||vℓ||L∞(Rd) .

Therefore we only have to prove that

‖B~

f,j −B~

g,j‖ 6 C~
d
√
~

for all j = 1, ..., k. We will actually prove that

‖B~

f,j − ~
duj(x)vj(−i~∇)‖ 6 C~

d
√
~ (2.31)
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which will of course imply the previous bound. We ignore the index j for
simplicity and compute the kernel

B~

f (y, y
′) =

1

(2π)d~
d
2

ˆ

Rd

ˆ

Rd

u(x)v(p)f

(
y − x√

~

)
f

(
y′ − x√

~

)
ei

p·(y−y′)
~ dx dp

=
1

(2π)
d
2~

d
2

v̌

(
y − y′

~

)
ˆ

Rd

u(x)f

(
y − x√

~

)
f

(
y′ − x√

~

)
dx

where v̌ is the inverse Fourier transform of the function v. Now the idea
is to replace u(x) by u(y) and f((y − x)/~) by f((y′ − x)/~) and to then
use that

´

Rd f
2 = 1. Assuming that v̌ and f have their support in a ball of

radius R, we find
∣∣∣∣B~

f (y, y
′)− (2π)−

d
2 u(y) v̌

(
y − y′

~

)∣∣∣∣

6
R
√
~

(2π)
d
2

∣∣∣∣v̌
(
y − y′

~

)∣∣∣∣ (||∇u||L∞ + ||∇f ||L∞ ||f ||L1 ||u||L∞) .

The operator with kernel |v̌((y−y′)/~)| has the operator norm ||v̌(·/~)||L1(Rd) =

~
d ||v̌||L1(Rd) and this concludes the proof of (2.31), hence of the lemma. �

Together with the content of Section 2.4 dealing with the link between
the Husimi and Wigner measures, this concludes the proof of the first part
of Theorem 2.1. If now the kinetic energy of ΨN satisfies the semi-classical
bound (2.3), then by (2.20) we have

(2π)−d

ˆ

M
|p|2m(1)

f,ΨN
(x, p) dx dp 6 C +N−1/d

ˆ

Rd

|∇f |2.

Therefore the sequence is tight in the p variables and the weak-limit (2.1)
remains valid for functions ϕ(x1, ..., xk, p1, ..., pk) = U(x1, ..., xk) with U ∈
L∞
c (Rdk). By definition this is the weak convergence

ρ
m

(k)
f,ΨN

⇀

ˆ

B
ρ⊗k
µ dP(µ),

for every k > 1. Now, ρ
(k)
ΨN
/Nk is bounded in L1(Rdk) and satisfies

ρ
m

(k)
f,ΨN

=
k!

Nk
ρ
(k)
ΨN

∗ (|f~|2)⊗k

by Lemma 2.4. Since |f~|2 ⇀ δ, this proves that

k!

Nk
ρ
(k)
ΨN

⇀

ˆ

B
ρ⊗k
µ dP(µ)

weakly-∗ on C0
0 (R

dk).
For k = 1, the Lieb-Thirring inequality [57, 58, 52] gives us

ˆ

Rd

ρ
(1)
ΨN

(x)1+2/d dx 6 C

〈
ΨN

N∑

j=1

(−∆)xjΨN

〉
6 CN1+2/d

and, therefore, ρ
(1)
ΨN
/N is bounded in L1 ∩ L1+2/d. It must thus converge

weakly in that space. This concludes the proof of Theorem 2.1. �
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3. Convergence of the energy: proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1 and to the derivation
of some a priori estimates that will be useful in the remaining of the article.

3.1. Upper bound on E(N) using Hartree-Fock theory.

Proposition 3.1 (Upper bound). Assume that w is even, that w, |A|2, V− ∈
L1+d/2(Rd) + L∞

ε (Rd) and that

V+ ∈ L1
loc(R

d).

We have

lim sup
N→∞

E(N)

N
6 eVTF(1).

Proof. Taking a Hartree-Fock state Ψ = (N !)−1/2 det(fi(xj)) and introduc-
ing the corresponding density matrix

γ =
N∑

j=1

|fj〉〈fj |,

with ργ :=
∑N

j=1 |fj|2, we see that

E(N) 6 inf
γ2=γ=γ∗

Tr γ=N

{
Tr (−i~∇+A)2γ +

ˆ

Rd

V ργ

+
1

2N

¨

Rd×Rd

w(x− y)
(
ργ(x)ργ(y)− |γ(x, y)|2

)
dx dy

}
.

We first estimate the exchange term (the last term in the previous for-
mula). We write w = w1 + w2 with w1 ∈ L1+d/2(Rd) and w2 ∈ L∞(Rd).
Then

¨

Rd×Rd

|w2(x− y)| |γ(x, y)|2 dx dy 6 ||w2||L∞ Tr (γ2) = ||w2||L∞ N.

We have used here that Tr γ2 = Tr γ = N . For the term involving w1, we
use the Hölder and Gagliardo-Nirenberg-Sobolev inequalities to obtain
ˆ

Rd

|w1(x)| |f(x)|2 dx 6 ||w1||L1+d/2(Rd) ||f ||
2
L2+4/d(Rd)

6 ||w1||L1+d/2(Rd)

(
ε ||∇f ||2L2(Rd) +

C

εd/2
||f ||2L2(Rd)

)

for all ε > 0. Applying this in the variable x with y fixed, this gives
¨

Rd×Rd

|w1(x− y)| |γ(x, y)|2 dx dy 6 ||w1||L1+d/2(Rd)

(
εTr (−∆)γ +

CN

εd/2

)
.

Combining the two inequalities, we have shown that
∣∣∣∣
1

2N

¨

Rd×Rd

w(x− y) |γ(x, y)|2 dx dy
∣∣∣∣ 6

ε

N
Tr (−∆)γ + C(1 + ε−d/2)
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for all ε > 0. In dimensions d > 3, we can simply take ε = 1. In dimensions
d = 1 and d = 2 we take for instance ε = Nd−2(logN)−1. In all cases, we
arrive at

∣∣∣∣
1

2N

¨

Rd×Rd

w(x − y) |γ(x, y)|2 dx dy
∣∣∣∣ 6

εN
N2/d

Tr (−∆)γ +NεN

for some εN → 0 which is independent on γ. Finally, in order to relate
Tr (−∆)γ to the magnetic kinetic energy, we may use that

| − i~∇ +A|2 = −~
2∆− i~∇ · A− i~A · ∇+ |A|2 > −~

2

2
∆− |A|2 (3.1)

from which we deduce the final upper bound

lim sup
N→∞

E(N)

N
6 lim sup

N→∞
inf

γ2=γ=γ∗

Tr γ=N

{
1 + 2εN
N

Tr | − i~∇ +A|2γ

+
1

N

ˆ

Rd

(
V + 2εN |A|2

)
ργ +

1

2N2

¨

Rd×Rd

w(x− y)ργ(x)ργ(y) dx dy

}
.

(3.2)

By using semi-classical analysis, we now construct an appropriate trial
state for the variational problem on the right side, based on the classical
probability density on phase space.

Lemma 3.2 (Semi-classical analysis in a compact domain). Let ρ > 0 be
a fixed function in C∞

c (Rd) with support in the cube CR = (−R/2, R/2)d,
such that ρ > 0 and

´

CR
ρ = 1. Let A ∈ L2+d(CR) be a magnetic vector

potential. Define

γN := 1

(
(−i~∇+A)2CR

− cTFρ(x)
2/d

6 0
)

where (−i~∇ + A)2CR
is the magnetic Dirichlet Laplacian in the cube and

cTF = 4π2(d/|Sd−1|)2/d. Then we have

lim
N→∞

N−1Tr (−i~∇+A)2γN =
d

d+ 2
cTF

ˆ

Rd

ρ(x)1+2/d dx (3.3)

and

lim
N→∞

N−1Tr γN =

ˆ

Rd

ρ(x) dx. (3.4)

Furthermore, ργN /N ⇀ ρ weakly in L1(Rd) and weakly-∗ in L∞(Rd).
The same properties all hold true if γN is replaced by the projection γ̃N

onto the N lowest eigenvectors of (−i~∇+A)2CR
− cTFρ(x)

2/d.

Remark 3.3. The lemma is true under much weaker assumptions on A, but
we have used the same hypothesis as in the rest of the paper for convenience.

The lemma is proved in Appendix A and the proof of Proposition 3.1 now
follows immediately. Indeed, let ρ ∈ C∞

c (Rd) and γ̃N be as in the lemma
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(extended by zero outside of CR). Then, by (3.2)

lim sup
N→∞

E(N)

N

6 lim
N→∞

{
1 + 2εN
N

Tr | − i~∇+A|2γ̃N +
1

N

ˆ

Rd

(V + 2εN |A|2)ργ̃N

+
1

2N2

¨

Rd×Rd

w(x− y)ργ̃N (x)ργ̃N (y) dx dy

}

=
d

d+ 2
4π2

(
d

|Sd−1|

)2/d ˆ

Rd

ρ1+2/d +

ˆ

Rd

V ρ

+
1

2

¨

Rd×Rd

w(x− y)ρ(x)ρ(y) dx dy.

Here we have used that

N−1

ˆ

Rd

V ργ̃N = N−1

ˆ

CR

V ργ̃N →
ˆ

CR

V ρ,

that
´

|A|2ργ̃N is uniformly bounded and that

N−2

¨

CR×CR

w(x−y)ργ̃N (x)ργ̃N (y) dx dy →
¨

CR×CR

w(x−y)ρ(x)ρ(y) dx dy

since ργ̃N /N converges weakly in L1(Rd) and weakly-∗ in L∞(Rd), and

V,w, |A|2 ∈ L1
loc(R

d) by assumption. �

3.2. A priori estimates. We now derive some a priori bounds on any (nor-
malized) sequence {ΨN} of N -particle states with 〈ΨN ,HNΨN 〉 = O(N),
which will be useful for the lower bound.

Lemma 3.4 (Lieb-Thirring). There exists a constant C such that

HN >

N∑

j=1

(
− ∆j

4N
2
d

+ V+(xj)

)
− CN > −CN. (3.5)

In particular, any {ΨN} such that 〈ΨN ,HNΨN 〉 = O(N) must satisfy

1

N1+ 2
d

〈
ΨN ,




N∑

j=1

−∆j


ΨN

〉

+

ˆ

Rd

(
ρ
(1)
ΨN

(x)

N

)1+ 2
d

dx+

ˆ

Rd

V+
ρ
(1)
ΨN

(x)

N
dx 6 C, (3.6)

with ρ
(1)
ΨN

the one-particle densities defined in (2.14). In addition, for any

potential 0 6 f = f1 + f2 ∈ L1+d/2(Rd) + L∞(Rd), we have

1

N

ˆ

Rd

f(x)ρ
(1)
ΨN

(x) dx+
1

N2

ˆ

Rd

ˆ

Rd

f(x− y)ρ
(2)
ΨN

(x, y) dx dy

6 C
(
||f1||L1+d/2(Rd) + ||f2||L∞(Rd)

)
. (3.7)
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Proof. First we get rid of the magnetic field at the expense of a factor in
front of the kinetic energy, by using the simple bound

| − i~∇+A|2 > −~
2

2
∆− |A|2

as in (3.1). Our assumption on A implies that |A|2 ∈ L1+d/2(Rd)+L∞
ε (Rd),

just as for V−. We may therefore write V− + |A|2 = V1 + V2 ∈ L1+d/2(Rd) +
L∞(Rd). The estimate on V2 being obvious, we use the Lieb-Thirring in-
equality [57, 58, 52] to obtain

N∑

j=1

(
− ∆j

8N
2
d

− V1(xj)

)
> −1

4
Tr

(
− ∆j

N
2
d

− 4V1

)

−

> −CN
ˆ

Rd

V
1+d/2
1 .

(3.8)
In a similar manner, we note that |Ψ|2 is symmetric and rewrite, following
Lévy-Leblond [41],

〈
Ψ,


 1

N

∑

16k<ℓ6N

w−(xk − xℓ)


Ψ

〉
=
N − 1

2
〈Ψ, w−(x1 − x2)Ψ〉

=
1

2

〈
Ψ,


 ∑

26j6N

w−(x1 − xj)


Ψ

〉
.

We now use that Ψ(x1, ·) is antisymmetric in the remaining N − 1 variables
and the above Lieb-Thirring estimate in those variables. Since w− = w1 +
w2 ∈ L1+d/2(Rd) + L∞(Rd), we obtain as before

N∑

j=1

− ∆j

8N
2
d

− 1

N

∑

16k<ℓ6N

w−(xk − xℓ) > −CN
(
ˆ

Rd

w
1+d/2
1 + ||w2||L∞

)
.

(3.9)
This concludes the proof of (3.5). The estimate (3.6) follows from the Lieb-
Thirring inequality written in terms of the density

〈
ΨN ,




N∑

j=1

−∆j


ΨN

〉
> C

ˆ

Rd

(
ρ
(1)
ΨN

)1+2/d
, (3.10)

which is dual to (3.8). In (3.7), the one-body part follows directly from (3.6)
and Hölder’s inequality. For the two-body estimate, we use (3.9) with w−

replaced by f/ε and obtain

ε
N∑

j=1

− ∆j

8N
2
d

− 1

N

∑

16k<ℓ6N

f(xk−xℓ) > −CN
(
ε−d/2

ˆ

Rd

f
1+d/2
1 + ||f2||L∞

)
.

Taking the expectation value in the state ΨN and using (3.6), we find (3.7)
after optimizing over ε. �

3.3. Lower bound and end of the proof of Theorem 1.1. Here we
establish the lower bound, which concludes the proof of Theorem 1.1.
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Proposition 3.5 (Lower bound). Under the assumptions of Theorem 1.1,
we have

lim inf
N→∞

E(N)

N
> eVTF(1), (3.11)

Proof. The first step is to regularize the interaction potential w. For every
ε > 0, we may write w = f + g with f ∈ L1+d/2(Rd) and ‖g‖L∞ 6 ε. We
then consider the problem E′(N) in which w has been replaced by another
potential w′, and a state ΨN such that 〈ΨN ,HNΨN 〉 = E(N)+ o(N). Then
by (3.7), we obtain

〈
ΨN ,

∑

16j<k6N

w(xj − xk)ΨN

〉

>

〈
ΨN ,

∑

16j<k6N

w′(xj − xk)ΨN

〉
−CN

∣∣∣∣f − w′
∣∣∣∣
L1+d/2(Rd)

− N − 1

2
ε

and, therefore,

E(N) > E′(N)− CN
∣∣∣∣f − w′

∣∣∣∣
L1+d/2(Rd)

− N − 1

2
ε. (3.12)

A similar bound holds for the Thomas-Fermi model and we conclude by an
‘ε/2 argument’ that it suffices to prove (3.11) for a smooth interaction po-
tential w′ which approximates f . For simplicity of notation, we will assume
for the rest of the proof that w is itself smooth enough. The exact property
we need is that ŵ ∈ L1(Rd), which implies that w is a continuous bounded
function that tends to zero at infinity.

Now, we write w = w1 − w2 where ŵ1 = (ŵ)+ and ŵ2 = (ŵ)− which are
also in L1(Rd). Note that w1 and w2 are in addition both even since ŵ is
real. We will use the fact that
〈
ΨN ,

∑

16j<k6N

w1,2(xj − xk)ΨN

〉
=
N(N − 1)

2
〈ΨN , w1,2(xℓ − xm)ΨN 〉

(3.13)
for any ℓ 6= m, by the symmetry of |Ψ|2. The idea is now to split the N

particles into two groups of, respectivelyM and L particles, with L = ⌊
√
N⌋.

The first group will just be x1, ..., xM whereas the second (smaller) group
will be denoted for convenience as y1 = xM+1, ..., yL = xN . Then, we express
the repulsive part w1 of the potential w using only the particles in the first
group and write the attractive part w2 as an interaction between the two
groups. This means that we rewrite, using (3.13),

〈
ΨN ,

∑

16j<k6N

w1(xj − xk)ΨN

〉

=
N(N − 1)

M(M − 1)

〈
ΨN ,

∑

16m<m′6M

w1(xm − xm′)ΨN

〉
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on one hand, and

−
〈
ΨN ,

∑

16j<k6N

w2(xj − xk)ΨN

〉

= N(N − 1)

〈
ΨN ,

(
w2(y1 − y2)

2
− w2(x1 − y1)

)
ΨN

〉

=
N(N − 1)

L(L− 1)

〈
ΨN ,

∑

16ℓ<ℓ′6L

w2(yℓ − yℓ′)ΨN

〉

− N(N − 1)

LM

〈
ΨN ,

M∑

m=1

L∑

ℓ=1

w2(xm − yℓ)ΨN

〉

on the other hand. Expressing the one-particle terms in a similar manner
using only the M particles of the first group, we deduce that

〈ΨN ,HNΨN 〉
N

=

〈
ΨN , H̃ΨN

〉

M

where

H̃ =

M∑

m=1

|− i~∇m+A(xm)|2+V (xm)+
1− 1/N

M − 1

∑

16m<m′6M

w1(xm−xm′)

+
M(1− 1/N)

L(L− 1)

∑

16ℓ<ℓ′6L

w2(yℓ − yℓ′)−
(1− 1/N)

L

M∑

m=1

L∑

ℓ=1

w2(xm − yℓ).

This new Hamiltonian corresponds to a system with M ∼ N quantum par-
ticles which repel through the potential w1 and L ∼

√
N classical particles

that repel through the potential w2, with an additional attraction between
the two species given by −w2. In other words, we have transformed the
attractive part w2 of w into an interaction with an auxiliary system of
L particles that repel each other. A similar approach was used by Lieb-
Thirring [59] and Lieb-Yau [60] and it was in turm inspired by arguments
of Levy-Leblond [41] and Dyson-Lenard [20]. For bosons the argument was
explained in [43] (there one can take M and L of the order N , which sim-
plifies a bit the argument). From the antisymmetry of ΨN in the M first
variables, we conclude that

〈ΨN ,HNΨN 〉
N

> inf
y1,...,yL

inf σ∧M
1 L2(Rd)(H̃)

M

and it therefore remains to estimate the bottom of the spectrum of H̃ for M
fermions, uniformly with respect to the positions y1, ..., yL of the L classical
particles. The rest of the argument will then be based on the following well-
known lemma, which allows to bound from below the two-body interaction
by a one-particle term.
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Lemma 3.6 (Estimating the two-body potential by a one-particle term).

Let f be a function such that f̂ is in L1(Rd) and non-negative, and denote

Df (g, g) :=

ˆ

Rd

ˆ

Rd

g(x)g(y)f(x − y) dx dy = (2π)
d
2

ˆ

Rd

|ĝ(k)|2f̂(k) dk > 0.

Then we have

∑

16k<k′6K

f(zk − zk′) > −f(0)
2
K +

K∑

k=1

f ∗ η(zk)−
1

2
Df (η, η) (3.14)

for every η ∈ L1(Rd) and every z1, ..., zK ∈ R
d, and

〈
Ψ̃,

∑

16k<k′6K

f(zk − zk′)Ψ̃

〉
> −f(0)

2
K +

1

2
Df (ρ

(1)

Ψ̃
, ρ

(1)

Ψ̃
). (3.15)

for every K-particle state Ψ̃.

Proof of Lemma 3.6. Use that Df (g, g) > 0 for g =
∑K

k=1 δzk − η and then

take η = ρ
(1)

Ψ̃
. �

Now, let Ψ̃ be any fermionic M -particle state. Using (3.15) with f = w1,
we get

1− 1/N

M − 1

〈
Ψ̃,

∑

16m<m′6M

w1(xm − xm′)Ψ̃

〉

>
1− 1/N

2(M − 1)
Dw1(ρ

(1)

Ψ̃
, ρ

(1)

Ψ̃
)− M(1 − 1/N)

2(M − 1)
w1(0)

>
1

2M
Dw1(ρ

(1)

Ψ̃
, ρ

(1)

Ψ̃
)− M

2(M − 1)
w1(0).

Using now (3.14) with f = w2 and η = ρ
(1)

Ψ̃
(L− 1)/M , we find

M(1− 1/N)

L(L− 1)

∑

16ℓ<ℓ′6L

w2(yℓ − yℓ′)

− (1− 1/N)

L

〈
Ψ̃,

M∑

m=1

L∑

ℓ=1

w2(xm − yℓ)Ψ̃

〉

> −(L− 1)(1 − 1/N)

2ML
Dw2(ρ

(1)

Ψ̃
, ρ

(1)

Ψ̃
)− M(1− 1/N)

2(L− 1)
w2(0)

> − 1

2M
Dw2(ρ

(1)

Ψ̃
, ρ

(1)

Ψ̃
)− M

2(L− 1)
w2(0).
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Recall that Ψ̃ only depends on the xm’s. We have therefore proved the
following lower bound, independent of the yℓ’s,

〈Ψ̃, H̃Ψ̃〉
M

>
1

M
Tr
[(
| − i~∇+A|2 + V

)
γ
(1)

Ψ̃

]
+

1

2M2
Dw(ρ

(1)

Ψ̃
, ρ

(1)

Ψ̃
)

− 1

2(M − 1)
w1(0)−

1

2(L− 1)
w2(0)

>
1

M
Tr
(
| − i~∇+A|2 + V

)
γ
(1)

Ψ̃
+

1

2M2
Dw(ρ

(1)

Ψ̃
, ρ

(1)

Ψ̃
)

− ‖ŵ‖L1

(2π)d/2
√
N
,

where we recall that M = N − ⌊
√
N⌋ and that ~ = N−1/d ≃ M−1/d. The

term on the right is (up to the last constant) the reduced Hartree-Fock (rHF)
energy of the M particles, that is well-known to converge to the Thomas-
Fermi problem in the limit M ≃ N → ∞ [54, 55, 49]. Even if we only need
the lower bound, we state and prove the full convergence.

Lemma 3.7 (Reduced-Hartree-Fock model). Under the same assumptions
on V , A and w as in Theorem 1.1, we have

lim
N→∞

~N1/d→1

inf
06γ61

Tr (γ)=N

{
1

N
Tr
(
| − i~2∇+A|2 + V

)
γ +

1

2N2
Dw(ργ , ργ)

}
= eVTF(1).

(3.16)

Proof of Lemma 3.7. The upper bound follows from Lemma 3.2. By (3.1)
and the Lieb-Thirring inequality expressed in terms of the one-particle den-
sity matrix

Tr (−∆)γ > C

ˆ

Rd

ρ
1+ 2

d
γ , ∀0 6 γ 6 1

we deduce that any appropriate minimizing sequence γN satisfies

N2/d

ˆ

Rd

V+ργN +

ˆ

Rd

ρ1+2/d
γN +Tr (−∆)γN 6 CN1+2/d. (3.17)

Under the assumption that V ∈ L1+d/2(Rd) + L∞
ε (Rd), these estimates can

be used to replace the potentials V , A and w by functions in C∞
c (Rd).

When V+ → +∞ at infinity, we first bound from below V+ by the truncated
potential

VM
+ := V+1(|V+| 6M) +M1(|V+| >M)

and take M → ∞ at the very end of the argument, using that

lim
M→∞

e
V M
+ −V−

TF (1) = eVTF(1).

The previous estimates then allow to replace A and w by functions in
C∞
c (Rd) and VM by a function in C∞(Rd), which is equal to M outside

of a sufficiently large ball.
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We now fix a real-valued normalized function f ∈ L2(Rd) and use formu-
las (2.19) and (2.17) to obtain

Tr (| − i~2∇+A|2 + V )γN =
1

(2π~)d

ˆ

R2d

(
|p+A(x)|2 + V (x)

)
mN (x, p) dx dp

−N~

ˆ

Rd

|∇f |2 − 2Tr (A−A ∗ |f~|2) · (−i~∇)γN

+

ˆ

Rd

(|A|2 − |A|2 ∗ |f~|2 + V − V ∗ |f~|2)ργN

and

Dw(ργN , ργN ) = ~
−2dDw(ρmN

, ρmN
) +Dw−w∗|f~|2∗|f~|2(ργN , ργN )

where mN (x, p) =
〈
f~x,p, γNf

~
x,p

〉
and ρmN

= (2π)−d
´

Rd mN (x, p) dp. Note

that 0 6 mN 6 1 and (2π)−d
˜

mN (x, p) dx dp = 1, hence mN is a suitable
trial function for the Vlasov problem. Using the bound (3.17) we have

Tr (A−A ∗ |f~|2) · (−i~∇)γ > − ||(−i~∇)
√
γN ||

S2

∣∣∣
∣∣∣√γN (A−A ∗ |f~|2)

∣∣∣
∣∣∣
S2

= −
√

~2Tr (−∆)γN

√
ˆ

Rd

(A−A ∗ |f~|2)2ργN

> −CN
∣∣∣
∣∣∣A−A ∗ |f~|2

∣∣∣
∣∣∣
L2+d(Rd)

.

We can argue similarly for the other terms (when V ∈ C∞(Rd) is equal
to M outside of a large ball BR, we have to use that V − V ∗ |f~|2 =
(V −M)− (V −M)∗ |f~|2 has compact support and converges to 0 strongly

in L1+d/2(Rd)). We obtain

1

N
Tr (| − i~2∇+A|2 + V )γN +

1

2N2
Dw(ργN , ργN )

>
1

(2π)dN~d

ˆ

R2d

(
|p+A(x)|2 + V (x)

)
mN (x, p) dx dp

+
1

2N2~2d
Dw(ρmN

, ρmN
) + o(1).

Since N~
d → 1, we obtain the Vlasov energy on the right and the proof of

Lemma 3.7 is complete. �

This now concludes the proof of the lower bound (3.11), hence of Theo-
rem 1.1. �

4. Convergence of states: proof of Theorems 1.2 and 1.3

Let {ΨN} be as in the statement, that is, such that 〈ΨN ,HNΨN 〉 =
E(N) + o(N). By the estimates in Lemma 3.4, we know that ΨN satisfies
the semi-classical kinetic energy bound

〈
ΨN ,




N∑

j=1

−∆j


ΨN

〉
6 CN1+2/d. (4.1)
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This implies by Theorem 2.1 that, after extraction of a (not displayed)
subsequence,

m
(k)
f,ΨN

⇀

ˆ

B
µ⊗k dP(µ), W

(k)
ΨN

⇀

ˆ

B
µ⊗k dP(µ), (4.2)

k!

Nk
ρ
(k)
ΨN

⇀

ˆ

B
ρ⊗k
µ dP(µ), (4.3)

weakly for all k > 1, where P is a probability measure on

B =

{
µ ∈ L1(R2d) : 0 6 µ 6 1, (2π)−d

ˆ

R2d

µ 6 1

}
.

Therefore, there only remains to show that P has its support in the set
of minimizers of the Vlasov energy (in the confined case) and in the set of
weak limits of minimizing sequences (in the unconfined case).

4.1. Confined case: proof of Theorem 1.2. We start with the much sim-
pler confined case where V+ → +∞ at infinity. In that case, the argument
below actually gives directly the energy lower bound, and the arguments of
Section 3.3 are not needed. From the bound (3.6) we have

1

N

ˆ

Rd

V+(x)ρ
(1)
ΨN

(x) dx

=
1

N(N − 1)

¨

R2d

(
V+(x) + V+(y)

)
ρ
(2)
ΨN

(x, y) dx dy 6 C

and infer that ρ
(1)
ΨN
/N and ρ

(2)
ΨN
/N2 are tight at infinity. From this we infer

that there is no loss of mass at infinity and that P has its support on

S =

{
µ ∈ L1(R2d) : 0 6 µ 6 1,

1

(2π)d

ˆ

R2d

µ =

ˆ

Rd

ρµ = 1

}
.

Using (4.3) and the tightness property at infinity, we are able to pass to the
limit in the interaction term:

lim
N→∞

〈
ΨN ,

1

N2

∑

16j<k6N

w(xj − xk)ΨN

〉

= lim
N→∞

ˆ

R2d

w(x− y)
ρ
(2)
ΨN

(x, y)

N2
dx dy =

1

2

ˆ

S
D(ρµ, ρµ) dP(µ).

In order to pass from the second to the third line, one must first use the
bound (3.7) to replace the interaction potential w by a bounded function,

and then use the weak convergence of ρ
(2)
ΨN

in L1((Rd)2). By Fatou’s lemma

for V+ and the weak convergence of ρ
(1)
ΨN

for V−, we also deduce that

lim inf
N→∞

〈
ΨN ,

1

N

N∑

j=1

V (xj)ΨN

〉
= lim inf

N→∞

ˆ

Rd

V
ρ
(1)
ΨN

N
>

ˆ

S

(
ˆ

Rd

V ρµ

)
dP(µ).
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Finally, using the same argument as in the proof of Lemma 3.7 for the
magnetic kinetic energy, we also deduce from Fatou’s lemma that

lim inf
N→∞

〈
ΨN ,

1

N

N∑

j=1

| − i~∇j +A(xj)|2ΨN

〉

= lim inf
N→∞

1

(2π)d

¨

R2d

|p+A(x)|2m(1)
f,ΨN

(x, p) dx dp

>

ˆ

S

(
1

(2π)d

¨

R2d

|p +A(x)|2µ(x, p) dx dp
)
dP(µ).

Therefore, we have proved that

eVTF(1) > lim
N→∞

E(N)

N
= lim

N→∞

〈ΨN ,HNΨN 〉
N

>

ˆ

S
EV,A
Vla (µ) dP(µ).

The minimum of the Vlasov energy is precisely eVTF(1) and since P is a
probability, we have

ˆ

S
EV,A
Vla (µ) dP(µ) =

ˆ

S

(
EV,A
Vla (µ)− eVTF(1)

)

︸ ︷︷ ︸
>0

dP(µ) + eVTF(1)

and there must be equality everywhere. This implies that P is supported on

the minimizers of EV,A
Vla . These are all of the form mρ(x, p) = 1(|p+A(x)|2 6

cTFρ(x)
2/d) where ρ minimizes the Thomas-Fermi energy. Hence, P induces

a probability density P(ρ) on the set of minimizers of the Thomas-Fermi
energy and this concludes the proof of Theorem 1.2. �

4.2. Unconfined case: proof of Theorem 1.3. The proof in the uncon-
fined situation is much more subtle and we will follow here ideas from [44],
based on localization methods in Fock space [42].

Let χ be a smooth function on R
+ with 0 6 χ 6 1, χ|[0,1] ≡ 1 and

χ|[2,∞) ≡ 0. Denote χR(x) = χ(|x|/R) and ηR = (1− χ2
R)

1/2. Let

G−
R,n =

(
N

n

)
(χR)

⊗nTr n+1,...,N

(
(ηR)

⊗N−n|ΨN 〉〈ΨN |(ηR)⊗N−n
)
(χR)

⊗n

be the projection onto the n-particle space of the many-particle state local-
ized using χR [42], and, in a similar fashion,

G+
R,n =

(
N

n

)
(ηR)

⊗nTr n+1,...,N

(
(χR)

⊗N−n|ΨN 〉〈ΨN |(χR)
⊗N−n

)
(ηR)

⊗n.

We remark that

TrG+
R,n = TrG−

R,N−n (4.4)

and that the k-particle density matrices are localized in the usual sense:

(χR)
⊗kγ

(k)
ΨN

(χR)
⊗k =

N∑

n=k

γ
(k)

G−

n,R

, (ηR)
⊗kγ

(k)
ΨN

(ηR)
⊗k =

N∑

n=k

γ
(k)

G+
n,R

. (4.5)
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Next we split the N -body quantum energy using a partition of unity in the
one-particle state as follows

〈ΨN ,HNΨN 〉
N

= N−1Tr | − i~∇ +A|2γ(1)ΨN
+N−1

ˆ

ρ
(1)
ΨN
V

+N−2

ˆ

Rd

ˆ

Rd

w(x− y)ρ
(2)
ΨN

(x, y) dx dy

= N−1Tr | − i~∇ +A|2χRγ
(1)
ΨN
χR +N−1

ˆ

ρ
(1)
ΨN
χ2
RV

+N−2

ˆ

Rd

ˆ

Rd

w(x− y)χ2
R(x)χ

2
R(y)ρ

(2)
ΨN

(x, y) dx dy

+N−1Tr | − i~∇ +A|2ηRγ(1)ΨN
ηR

+N−2

ˆ

Rd

ˆ

Rd

w(x− y)η2R(x)η
2
R(y)ρ

(2)
ΨN

(x, y) dx dy + εN,R,

with the localization error

εN,R :=
1

R2N1+2/d

ˆ

χ′(|x|/R)2ρ
Ψ

(1)
N

(x) dx +
1

N

ˆ

ρ
(1)
ΨN
V η2R

+
2

N2

ˆ

Rd

ˆ

Rd

w(x− y)χ2
R(x)η

2
R(y)ρ

(2)
ΨN

(x, y) dx dy.

From the known weak convergence of the densities one has

0 = lim
R→∞

(
lim sup
N→∞

|εN,R|
)

:= lim
R→∞

εR

(the term involving w is treated by first replacing w by a bounded function
of compact support, using (3.7), and then by using the weak convergence of

ρ
(2)
ΨN

). On the other hand, the terms involving ηR may be rewritten using

the property (4.5) as

1

N1+2/d
Tr (−∆)ηRγ

(1)
ΨN
ηR+

1

N2

ˆ

Rd

ˆ

Rd

w(x−y)η2R(x)η2R(y)ρ
(2)
ΨN

(x, y) dx dy

=

N∑

n=1

n

N
Tr

(
H0

N,n

n
G+

R,n

)
>

N∑

n=1

n

N

E0(n, n/N)

n
Tr (G+

R,n),

where H0
N,n is the n-body Hamiltonian

H0
N,n :=

n∑

j=1

| − iN−1/d∇j +A(xj)|2 +
1

N

∑

16j<k6n

w(xj − xk)

with ground state energy E0(n, n/N). Passing to the weak limit for the
terms involving χR, we obtain as before

lim
N→∞

〈ΨN ,HNΨN 〉
N

>

ˆ

B
EV,A
Vla

(
χ2
R(x)m

)
dP(m)

+ lim inf
N→∞

N∑

n=1

n

N

E0(n, n/N)

n
Tr (G+

R,n) + εR. (4.6)
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When n → ∞ and n/N → λ > 0, then a simple adaptation of Theorem 1.1
states that

lim
n→∞
n/N→λ

n

N

E0(n, n/N)

n
= λ inf

ρ>0
´

Rd
ρ=1

{
d

d+ 2
λ2/dcTF

ˆ

Rd

ρ1+2/d

+
λ

2

ˆ

Rd

ˆ

Rd

w(x− y)ρ(x)ρ(y) dx dy

}

= e0TF(λ).

Arguing as in [44, p. 613–614], it is not difficult to see that

lim
N→∞

N∑

n=1

(
n

N

E(n, n/N)

n
− e0TF(n/N)

)
Tr (G+

R,n) = 0.

Finally, using (4.4) we find that

N∑

n=1

e0TF

( n
N

)
Tr (G+

R,n) =

N−1∑

n=0

e0TF

(
1− n

N

)
Tr (G−

R,n).

Now the proof can be concluded based on the following Lemma, inspired
of [44, Thm. 2.6].

Lemma 4.1. For every continuous function f on [0, 1], we have

lim
N→∞

N∑

n=1

f
( n
N

)
Tr (G−

R,n) =

ˆ

B
f

(
ˆ

Rd

χ2
R ρm

)
dP(m). (4.7)

Indeed, the lemma implies that

lim
N→∞

N−1∑

n=0

e0TF

(
1− n

N

)
Tr (G−

R,n) =

ˆ

B
e0TF

(
1−
ˆ

Rd

χ2
R ρm

)
dP(m)

and therefore we have proved that

lim
N→∞

〈ΨN ,HNΨN 〉
N

>

ˆ

B

{
EV,A
Vla

(
χ2
R(x)m

)
+ e0TF

(
1−
ˆ

Rd

χ2
R ρm

)}
dP(m) + εR.

Taking finally the limit R→ ∞ gives the final estimate

eVTF(1) = lim
N→∞

〈ΨN ,HNΨN 〉
N

>

ˆ

B

{
EV,A
Vla (m) + e0TF

(
1−
ˆ

Rd

ρm

)}
dP(m).

(4.8)

Since EV,A
Vla (m) > eVTF

(´
Rd ρm

)
and since eVTF(1) 6 eVTF(λ) + eVTF(1 − λ) for

every 0 6 λ 6 1, we conclude that P must be supported on the set
{
0 6 m 6 1 :

ˆ

Rd

ρm 6 1,

EV,A
Vla (m) = eVTF

( ˆ

Rd

ρm

)
= eVTF(1)− e0TF

(
1−
ˆ

Rd

ρm

)}

which can easily be seen to be the set of weak limits of minimizing sequences

for the variational problem eV,AVla (1). The probability measure P induces a
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probability measure P on the set M of the corresponding ρ’s and the proof
of Theorem 1.3 is finished. �

Proof of Lemma 4.1. The proof is the same as [44, Thm. 2.6]. For k > 1,
we have by (4.5)

1

Nk

N∑

n=k

(
n

k

)
Tr (G−

R,n) =
1

Nk
Tr (χR)

⊗kγ
(k)
ΨN

(χR)
⊗k

=
1

Nk

ˆ

Rdk

k∏

j=1

χR(xj)
2ρ

(k)
ΨN

(x1, ..., xk) dx1 · · · dxk

−→
N→∞

1

k!

ˆ

B

(
ˆ

Rd

χ2
Rρm

)k

dP(m),

from the local convergence of ρ
(k)
ΨN
/Nk. Now

k!

Nk

N∑

n=k

(
n

k

)
Tr (G−

R,n) =

N∑

n=k

n(n− 1) · · · (n− k + 1)

Nk
Tr (G−

R,n)

has the same limit as
∑N

n=1(n/N)kTr (G−
R,n). Therefore we have proved the

lemma for f(x) = xk, for all k > 1. The result for any continuous function f
follows from the density of polynomials on [0, 1], together with the fact that∑N

n=0Tr (G
−
R,n) = 1 for every N , by definition of the localized state. �

Appendix A. Proof of Lemma 3.2

We first get a uniform estimate on ργN . Indeed, using that

γN = 1((−iN−1/d∇+A)2CR
− cTFρ 6 0) 6 e

−β
(
(−iN−1/d∇+A)2CR

−cTFρ
)
,

for any β > 0, we deduce that

ργN (x) 6 |e−β((−iN−1/d∇+A)2CR
−cTFρ)(x, x)|.

From the Feynman-Kac formula and the diamagnetic inequality, we have

|e−β
(
(−iN−1/d∇+A)2CR

−cTFρ
)
(x, y)| 6 ecTFβ||ρ||L∞eN

−2/dβ∆CR (x, y),

where ∆CR
is the (non-magnetic) Dirichlet Laplacian on CR, and hence

ργN (x) 6

(
2

R

)d

ecTFβ||ρ||L∞

∑

k1,...,kd∈(π/R)N\{0}

e−N−2/dβ
∑d

j=1 |kj |
2×

×
d∏

j=1

sin2 (kj(xj −R/2))

6

(
2

R

)d

ecTFβ||ρ||L∞




∑

k∈ π

RN1/d
N\{0}

e−β|k|2




d

6 ecTFβ||ρ||L∞Nπ−dβ−d/2

(
ˆ

R

e−|k|2 dk

)d

.
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Optimizing over β gives

ργN (x) 6

(
2ecπ

πd

)d/2

N ||ρ||d/2
L∞(Rd)

. (A.1)

We have therefore shown that ργN /N is bounded in L∞(CR). Up to
extraction of a subsequence, we may assume that ργN /N ⇀ ρ̃ weakly. Now
we use that

0 > − 1

N
Tr
(
(−iN−1/d∇+A)2CR

− cTFρ
)
−

=
1

N
Tr ((−iN−1/d∇+A)2 − cTFρ)γN

=
1

N
Tr (−iN−1/d∇+A)2CR

γN − cTF
1

N

ˆ

CR

ρργN

from which we deduce that

1

N
Tr (−iN−1/d∇+A)2CR

γN 6 cTF
1

N

ˆ

CR

ρργN 6 C ||ρ||L1 ||ρ||d/2L∞ ,

due to the uniform upper bound on ργN /N . We then introduce the semi-
classical measure mN (x, p) =

〈
f~x,p, γNf

~
x,p

〉
and call its weak limit m. Ar-

guing as before, we obtain

lim inf
N→∞

(
1

N
Tr (−iN−1/d∇+A)2CR

γN − cTF
1

N

ˆ

CR

ρργN

)

>
1

(2π)d

ˆ

Rd

ˆ

Rd

(
|p+A(x)|2 − cTFρ(x)

)
m(x, p) dp dx.

We now use the well-known Weyl asymptotics for the energy, i.e.

lim
N→∞

− 1

N
Tr
(
(−iN−1/d∇+A)2CR

− cTFρ(x)
)
−

= − 1

(2π)d

ˆ

Rd

ˆ

Rd

(
|p+A(x)|2 − cTFρ(x)

)
−
dx dp. (A.2)

The result (A.2) is standard for smooth vector potentials A. Let Aε be a
smooth approximation of A in L2. Using the inequality

(1− δ)(−iN−1/d∇+Aε)
2 − δ−2|A−Aε|2 6 (−iN−1/d∇+A)2

6 (1 + δ)(−iN−1/d∇+Aε)
2 + δ−2|A−Aε|2,

and the uniform upper bound on ργN /N , the result follows for general A.
So we consider the Weyl asymptotics,

lim
N→∞

− 1

N
Tr
(
(−iN−1/d∇+A)2CR

− cTFρ(x)
)
−

= − 1

(2π)d

ˆ

Rd

ˆ

Rd

(
|p+A(x)|2 − cTFρ(x)

)
−
dx dp

= inf
06m′61

1

(2π)d

ˆ

Rd

ˆ

Rd

(
|p+A(x)|2 − cTFρ(x)

)
m′(x, p) dx dp.

with unique minimizer m′(x, p) = 1(|p+A(x)|2 − cTFρ(x) 6 0) in L∞(Rd ×
R
d), we conclude that m = 1(|p +A(x)|2 − cTFρ(x) 6 0) a.e. This gives in
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particular that

N−1ργN (x)⇀ ρm(x) =
1

(2π)d

ˆ

Rd

1(|p+A(x)|2 − cTFρ(x)
)
dp = ρ(x)

weakly in L1 ∩ L∞, hence that

N−1Tr (γN ) = N−1

ˆ

CR

ργN →
ˆ

CR

ρ = 1. (A.3)

The latter says that (−iN−1/d∇ + A)2CR
− cTFρ has N + o(N) negative

eigenvalues. From the above limits we also have as desired

lim
N→∞

1

N
Tr (−iN−1/d∇+A)2CR

γN =
1

(2π)d

ˆ

Rd

ˆ

Rd

|p|21(|p|2 − cTFρ(x)
)
dx dp

=
d

d+ 2
4π2

(
d

|Sd−1|

)2/d ˆ

Rd

ρ(x)1+2/d dx.

Finally, the results are all the same for an orthogonal projection γ̃N on N
first eigenfunctions of (−iN−1/d∇+A)2CR

− cTFρ since Tr |γN − γ̃N | = o(N)

by (A.3) and therefore ‖ργN − ργ̃N ‖L1 = o(N). For N large we have

1
(
(−iN−1/d∇+A)2CR

6 ρ(x)−ε
)
6 γ̃N 6 1

(
(−iN−1/d∇+A)2CR

6 ρ(x)+ε
)

since, by the above arguments with ρ replaced by ρ± ε,

Tr1
(
(−iN−1/d∇+A)2CR

6 ρ(x)± ε
)
∼ (1± εRd)N.

From the above estimates we conclude that ργ̃N /N is bounded in L∞, and

therefore ργ̃N /N has the same weak limit as ργN in L1 ∩ L∞. We also have

Tr ((−iN−1/d∇+A)2CR
− cTFρ)(γN − γ̃N ) = o(N)

which implies that

Tr (−iN−1/d∇+A)2CR
(γN − γ̃N ) = o(N1+2/d)

and concludes the proof of Lemma 3.2. �
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