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Abstract. This paper is meant as a short survey on analytically de-
�ned digital geometric objects. We will start by giving some elements
on digitizations and its relations to continuous geometry. We will then
explain how, from simple assumptions about properties a digital object
should have, one can build mathematical sound digital objects. We will
end with open problems and challenges for the future.
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1 Introduction

Geometry is historically the �eld of mathematics dealing with objects and their
properties: length, angle, volume, shape, position and transform. The word Ge-
ometry stems from the ancient greek words for Earth and Measure. Geometry
was the science of shapes and numbers as practical tool for measuring �elds,
distances between far away places, volumes for commerce, etc. For centuries,
properties were proven and geometric objects were constructed based on con-
struction rules. Euclid with his manuscripts Elements, revolutionized geometry
with his formalization of abstract reasoning in mathematics and more signi�-
cantly in geometry. The second revolution was brought upon by René Descartes
with the introduction of coordinates. This marked a profound change in the way
geometry was considered. It established a link between Euclidean geometry and
algebra: Analytical Geometry was born. Many advances were now possible in
astronomy, physics, engineering, etc. Many di�erent forms of geometries have
since been proposed such as Di�erential geometry, Algebraic geometry, etc.
Digital Geometry is one of the most recent forms of geometry. It can be broadly
de�ned as the geometry of digital objects and transforms in a digital space.
In this paper we are mainly considering digital points with integer coordinates
(points in Zn). Digital Geometry has the particularity of, usually, not being an
independent geometry but a digital counterpart of Euclidean geometry. Digital
objects are supposed to behave and look as much as possible as their continu-
ous counterpart. This question of representing/coding the continuous world in
a �nite computer is, of course, not limited to digital geometry. From the begin-
ning, when sensors went from analog to digital and when the display mode went
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from continuous (vector monitor) to digital (raster graphics), the fundamental
question of object and space de�nition has been raised. It proved more elusive
than initially thought [1]. Elementary rules of topology or geometry, that seem
so obvious that they have been raised to the axiomatic status by Euclid, have
proven to be false in Digital Geometry [2]: two, non identical, parallel 2D dig-
ital straight lines can have an in�nite number of intersection points while two
orthogonal 2D digital straight lines may have no intersection point. Particular
versions of the Jordan theorem had to be divised that are in some sense speci�c
to digital geometry [3].
This confrontation between the digital and the continuous worlds has given birth
to various theories. One way of solving this hiatus is to consider the digital infor-
mation as a sampled version of continuous information. The digital world is an
approximation where information has been lost. Signal Theory provides the the-
oretical toolkit. Although one of the most e�cient approaches when it comes to
handling digital information (image processing, image analysis), it does little in
helping de�ning actual geometry. It does not really provide any tool if one wants
to draw, for instance, a line on a screen. We are considering another approach
that �nds its origins in the question of drawing digital equivalents of continuous
objects on a raster screen (or earlier on, on a plotter). Digital Geometry is, in
this sense, more closely linked to computer graphics or arithmetics. As for the
continuous geometry, digital geometry started out focusing on very concrete and
basic questions: how can one generate a digital analog of a continuous object
for visualization purposes ? This algorithmic approach has prevailed for many
decades, with algorithms such as the Bresenham Digital Straight line drawing al-
gorithm or Arie Kaufman et al. that proposed many digital primitive generation
algorithms [4�9]. The main drawback of such an algorithmic approach is that it
is di�cult to ensure global properties from the local construction scheme. The
other problem with a de�nition by construction is that you can only generate
�nite digital objects. As an alternative, researchers tried to describe and cate-
gorize digital objects not as a result of an algorithm but as digital classes with
properties, be it geometrical or, more generally, topological [10�15]. This allows
to de�ne (classes of) digital objects that are in�nite and without boundaries
such as planes or surfaces in general. This approach proved useful to construct
object classes with desired properties but it proved di�cult to ensure tightness
for the classes. And, as for the continuous geometry, analytical characterization
of digital objects has proven to be e�ective in describing objects and the related
transforms. It is a bit early to claim that it will revolutionize Digital Geometry
but it allowed new insight and brought new tools for the de�nition of digital
objects, in pattern recognition and design of digital transforms. Consider this
paper as a short introduction paper into digitization transforms in general and
Digital Analytical Geometry in particular.

In section two, we are going to discuss di�erent types of digitizations. In
section three we are going to focus on digital analytical objects. We will then
conclude and propose some perspectives.



How do I de�ne a digital analytical object? 3

2 Digitization

2.1 Notations

Let us denote n the dimension of space (digital or Euclidean) in this paper. Let
{e1, . . . , en} denote the canonical basis of the n-dimensional Euclidean vector
space and O the center of the associated geometric coordinate system. Let Zn

be the subset of Rn that consists of all the integer coordinate points. A digital
(resp. Euclidean) point is an element of Zn (resp. Rn). We denote by xi the i-th
coordinate, associated to ei, of a point or a vector x. A digital (resp. Euclidean)
geometric object is a set of digital (resp. Euclidean) points. A digital inequality
is an inequality with coe�cients in R from which we retain only the integer
coordinate solutions. A digital analytical object is a digital object de�ned as
union and intersection of a �nite set of digital inequalities. The family of sets
over Zn (resp. Rn) is denotedP (Zn) (resp.P (Rn)). A digitization is a transform
from sets in the Euclidean to sets in the digital world: ∆ : P (Rn)→ P (Zn).

For all k ∈ {0, . . . , n−1}, two integer points v and w are said to be k-adjacent
or k-neighbors, if for all i ∈ {1, . . . , n}, |vi−wi| ≤ 1 and

∑n
j=1 |vj −wj | ≤ n− k.

In the 2-dimensional plane, the 0- and 1-neighborhood notations correspond re-
spectively to the classical 8- and 4-neighborhood notations. In the 3-dimensional
space, the 0-, 1- and 2-neighborhood notations correspond respectively to the
classical 26- ,18- and 6-neighborhood notations [3, 16, 17].

A k-path is a sequence of integer points such that every two consecutive points
in the sequence are k-adjacent. A digital object E is k-connected if there exists
a k-path in E between any two points of E. A maximum k-connected subset of
E is called a k-connected component. Let us suppose that the complement of a
digital object E, Zn \E admits exactly two k-connected components F1 and F2,
or in other words that there exists no k-path joining integer points of F1 and F2,
then E is said to be k-separating in Zn. If there is no path from F1 to F2 then E
is said to be 0-separating or simply separating. A point v of a k-separating object
E is said to be a k-simple point if E \ {v} is still k-separating. A k-separating
object that has no k-simple points is said to be strictly k-separating. The notion
of k-separation is de�ned for digital surfaces without boundaries. See [18] for
more general notions.

For A and B two subsets of Rn, A ⊕ B = {a+ b : a ∈ A, b ∈ B} is the
Minkowski sum of A and B. Let us denote Ǎ = {−a : a ∈ A} the re�ection
set of A. Let us denote A the �at of smallest dimension containing A. For a
distance d, then the let us denote Bd(r) = {x ∈ Rn : d(x,O) ≤ r}, the ball of ra-
dius r for the distance d. Let us denote d1, d2, d∞ respectively the Manhattan,
Euclidean and Chebychev distance. Let us denote ‖x‖k the corresponding norm
(with k = 1, 2,∞).

2.2 General remarks on Digitizations

Let us �rst start with some general remarks about digitization methods. The
digitization of objects is fundamentally an ill-de�ned problem [1]: any digital
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objects can be considered as the digitization of any continuous object. Usually
the goal is to have digital objects that ressemble the continuous object. The re-
sulting digital objects may keep some, but not all, properties of the continuous
object [18�21]. See [19, 21] for a more formal presentation of a link between the
continuous and the digital worlds based on non-standard analysis.
A digitization is de�ned broadly as a transform from the family of Euclidean
sets to the family of the digital sets. However, most of the literature deals with
digital objects de�ned as digitization of speci�c classes of geometric objects [22,
23, 4�9, 24�34]: for instance, the Bresenham digital straight line segment gener-
ation algorithm [22] works only for continuous straight line segments between
two digital points. In this case, the digitization transform is usually implicit. The
fact that the digitization scheme is not explicitely de�ned is also an important
problem for pattern recognition: comparing two digital circle recognition algo-
rithm supposes that the underlying digital circles are de�ned in the same way or
otherwise it is like comparing apples to oranges. Other digitization transforms
are de�ned only for linear objects [16, 17] and others still for all objects [35].
Let us mention some classes of digitization transforms that are important: A
general digitization is a digitization that is de�ned for all continuous objects.
A coherent digitization transform ∆ veri�es the following property E ⊂ F ⇒
∆(E) ⊂ ∆(F ).

2.3 Morphological Digitizations

Let us build a narrative for the construction of a general, coherent digitization
transform ∆. For a geometric object E, how can we build its digital counterpart
∆(E) that ressembles E ? Simply considering that ∆(E) = E∩Zn is not a good
idea. There are no particular reasons for E to pass through digital points and
we may end up with ∆(E) = ∅. So let us consider points that are close to E:

∆(E) = {p ∈ Zn : d(p,E) ≤ r} , where d is a distance and r ∈ R (1)

There are some important immediate properties that go with such a de�nition:
∆(E ∪ F ) = ∆(E) ∪ ∆(F ) and E ⊂ F ⇒ ∆(E) ⊂ ∆(F ), which is a stronger
version of the coherence property. These are fundamental properties when it
comes to digital modeling of complex objects. It de�nes a general, coherent
digitization transform. There are two parameters to work with: the distance
d and a thickness parameter r. Let us note that the parameter r can also be
de�ned as a function. See [31, 26, 33] for examples of digital objects de�ned with
a non-constant thickness. Considering the points that are close to the original
continuous object seems reasonable if we want the digital object to look like the
original. There are also theoretical reasons for such a choice [19, 21].
If a point p veri�es d(p,E) ≤ r then a ball Bd(r) of radius r, for the distance d,
centered on p intersects E which leads to the following formulation:

∆(E) = {p ∈ Zn : (Bd(r)⊕ p) ∩ E 6= ∅} (2)

This type of digitization method is part of digitization methods called morpho-
logical digitization [36�40] with Bd(r) as structuring element.
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Classically, the distances that have been considered are the Manhattan, the
Euclidean and the Chebychev distances. An interesting set of distances well
adapted for digitization transforms is the set based on adjacency norms [33].
Every digital adjacency relationship can be associated to a norm.

De�nition 1. For an integer k, 0 ≤ k < n, the k-adjacency norm [·]k is de�ned

as follows: ∀x ∈ Rn, [x]k = max
{
‖x‖∞,

‖x‖1
n−k

}
.

These distances are interesting because they verify the following property [33]:
Let p, q ∈ Zn, then, p and q are k-adjacent i� [p− q]k ≤ 1. See Figure 1 for
adjacency distance balls.

Fig. 1. 2D and 3D balls for the adjacency distances and the corresponding Flakes [33].

For morphological digitizations [36, 41, 37], the structuring element is not
necessarily a distance ball as in formula (2). One can consider any continuous
object F as structuring element and de�ne a digitization transform of a contin-
uous object E by [37]:

∆(E) =
{
p ∈ Zn :

(
F̌ ⊕ p

)
∩ E 6= ∅

}
(3)

The region
{
x ∈ Rn :

(
F̌ ⊕ x

)
∩ E 6= ∅

}
is called the o�set region. Formu-

lation (3) has implicitly already been used in digitizations such as the grid in-
tersection digitization [41] with half-open structuring elements. This is also the
starting point for the analytical characterization of digital objects with the an-
alytical description of the o�set region. Note that, for an arbitrary structuring
element F , it is the re�ection F̌ that appears in formula (3).

3 Analytical Characterization of Digital Objects

Let us �rst de�ne what we understand by analytical characterization of a digital
object: a digital object is de�ned by a set of equations (inequalities typically).
A point belongs to the digital object i� it veri�es the set of equations. The
cardinality of the set of equations should be independent of the number of digital
points of the object. The analytical characterization of digital objects has a great
interest in digital geometry. A digital object is de�ned in comprehension and not



6 E. Andres

Fig. 2. This �gure has been proposed in [37]. (a)
{
p ∈ Z2 : F ⊕ p 6= ∅

}
(b) (F̌⊕E)∩Z2.

The region in gray in (b) is called the o�set zone.

as a voxel enumeration. In�nite digital objects can be represented. This was also
one of the reasons for trying to de�ne digital objects based on topology [10�15].
The key to the analytical characterization is that it allows a characterization of
digital objects with interesting topological properties.
Since Reveilles proposed the analytical characterization of digital straight lines
[20], many papers have been proposed that describe or discuss properties of
analytical digital objects. Those papers can be roughly classi�ed into two groups:

� Direct de�ned Analytical Digital Object: Papers that introduce an analytical
de�nition of digital objects or classes of objects, or that analytically char-
acterize previously known digital objects. Those objects are de�ned directly
in the digital space without being explicitely associated to a digitization
transform.

� Digitized Analytical Objects: papers that introduce a digitization transform
that allows an analytical characterization of digital objects.

3.1 Direct de�ned Analytical Digital Objects

Let us �rst list some of the digital objects that have been directly analytically
de�ned in the digital space without an explicite reference to a digitization trans-
form. The list is of course not exhaustive.

Digital Analytical Hyperplane: The �rst class of digital object that has
been analytically characterized has been the digital straight 2D line [42, 43]. It
was J-P. Reveilles that proposed an analytical description of a Digital Straight
Line (DSL) 0 ≤ ax − by + c < ω [20] with a thickness parameter ω that allows
a parametrization of its topology. He also made an explicit link between digital
straight lines, topology, quasi-a�ne transforms and arithmetics [20, 44�46]. Many
papers have been devoted to its study. Indeed, the structure of digital straight
lines is rich, with immediate links to word theory, the Stern-Brocot tree, the
Farey sequence, etc. It allows a natural extension to higher dimensions [20, 28,
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25] with the analytical characterization of digital hyperplanes:

H : 0 ≤ a0 +

n∑
i=1

aixi < ω. (4)

See [41, 47] for a survey of digital linearity and planarity with interesting
historical perspectives and useful comments and references on digital analytical
lines and hyperplanes. An important step in bringing di�erent theoretical
approaches together, was to establish a link between the thickness of digital
hyperplanes and topology [25]: let us assume, w.l.o.g. that 0 ≤ a1 ≤ . . . ≤ an,
the digital hyperplane 0 ≤ a0 +

∑n
i=1 aixi < ω is k-separating i� ω ≥

∑n
k+1 ai.

With ω =
∑n

k+1 ai the digital hyperplane is strictly k-separating, without
simple points. Papers have been devoted to the study of di�erent classes of
digital hyperplanes such as naive hyperplanes [25], supercover hyperplanes
[48, 49, 35], Graceful lines and planes [27, 50], etc. An interesting sequence of
papers has focused on the connectivity of digital analytical hyperplanes [51,
45, 46]. The problem proved to be quite di�cult when it comes to digital
analytical (hyper)planes with irrational coe�cients. Several papers have dealt
with topology especially in order to de�ne a notion of digital surface [10, 52].

Digital Analytical Hyperplanes have been de�ned as purely analytical digital
objects. It is however quite easy to associate a digitization transform to digital
analytical hyperplanes. The most obvious way is to center a digital hyperplane
on the continuous hyperplane: for H : a0 +

∑n
i=1 aixi = 0, we de�ne ∆(H) ={

p ∈ Zn : ω
2 ≤ a0 +

∑n
i=1 aixi <

ω
2

}
. Note that the Bresenham line [22] is such

a centered Reveilles line [20]. There is the question of orientation of the digital
hyperplane: with a de�nition such as 0 ≤ a0 +

∑n
i=1 aixi < ω, on which side

do we put the �≤� and the �<�. One can easily switch side and obtain 0 <
ω−a0+

∑n
i=1(−ai)xi ≤ ω, so a choice has to be made. This question is somewhat

di�cult if we want coherent digitization models, so let us focus a moment on so
called closed analytical digital hyperplanes 0 ≤ a0 +

∑n
i=1 aixi ≤ ω (with two

�≤�). Let us suppose that we have a digitization transform ∆ that is de�ned
for hyperplanes such that, for a continuous hyperplane H : a0 +

∑n
i=1 aixi = 0,

we have ∆(H) =
{
p ∈ Zn : ω

2 ≤ a0 +
∑n

i=1 aixi ≤
ω
2

}
. Under some conditions,

it is possible to take this as a starting point for the construction of a general,
coherent morphological digitization transform:

De�nition 2. For some classes of digitization transforms ∆ de�ned for hyper-
planes, one can extend ∆ as a general and coherent morphological digitization
with a structuring element ∆(O) that is de�ned by:

For x ∈ Rn, ∆(O) =
⋂
∀H⊃O

∆(H).

The idea behind this de�nition is basically the following: For a digitization
transform to be coherent, it has to verify the condition E ⊂ F ⇒ ∆(E) ⊂ ∆(F ).
∆(O) has to belong to the digitization of all the hyperplanes that pass through
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the coordinate center O. If we consider the equality, we basically de�ne the
digitization of a point which in this case can serve as structuring element for
the morphological digitization transform. The di�culty lies in the choice of ω
for the digitization transform: for a hyperplane H, we want ∆(H) to be equal to⋃

x∈H ∆(x) and that is of course not true for any random choice of ω. There are
classes of digital hyperplane thickness that work, namely those that correspond
to the optimal hyperplane thickness for it to be k-separating: ω is equal to
the sum of the absolute values of the n − k biggest coe�cients of H. These
thicknesses correspond to the adjacency norm [.]k based digitization transforms.
It is interesting to note that, for these digitizations, the structuring element
is a polytope and therefore all the linear objects, at least, can be described
analytically as linear digital objects (with linear inequalities). The best known
of such digitization transforms is the Supercover model [2, 18, 37, 40, 41, 53, 54,
48, 49, 35]. One other thickness that works is ω =

√∑n
i=1 a

2
i . The corresponding

structuring element ∆(O) is the unit hypersphere. The associated norm is the
Euclidean norm. What other thicknesses work is an interesting open question.

Andres Hypersphere: The second class of digital objects that have been
de�ned directly as digital objects are the so called Andres hyperpsheres [24, 33]:

S =
{
x ∈ Zn : ω1 ≤

∑n
i=1 (xi − ci)2 < ω2

}
where c is the center of the digital

hypersphere and
√
ω2 −

√
ω1 its (Euclidean) thickness. The same method (as

for the hyperplanes) of centering the spherical shell can be used to associate a
digitization transform. The Andres hypersphere has been proposed to overcome
the limitation of the Bresenham circle [23] in particular that is only de�ned for
integer radius, integer coordinate center and that, at the time, did not have an
analytical characterization. There is one now [26, 33]. An interesting property of
such Andres hyperspheres is that concentric Andres hyperspheres pave digital
space. This is quite useful for applications such as simulation of wave propagation
[55].

nD Straight Lines: Flats in general have not been studied that much with the
notable exception of straight lines: 2D analytical lines [20], 3D analytical lines
[56, 30], graceful lines [50], analytical nD lines [29]. The study of Digital Analyti-
cal Lines has gained a lot of traction in the arithmetical community [57, 58] for its
link to word theory. It is interesting to note that I. Debled-Rennesson's 3D line
is de�ned as the intersection of two orthotropic naive 3D planes (thinnest planes
without 6-connected holes) and thus is an analytically de�ned 26-connected ob-
ject. However, contrary to what one could think, the 3D line one would obtain
by considering naive planes and intersecting them to de�ne a morphological dig-
itization is usually not 26-connected. The choice of the two planes among three
possible orthotropic planes depends on the orientation of the 3D line. I am not
quite sure that there exists a corresponding 3D plane thickness (and thus a corre-
sponding general digitization transform) that would de�ne such digital 3D lines.
It is an interesting question and it shows that direct analytical de�nitions for
digital objects may lead to interesting topological properties.
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Other Purely Analytically de�ned Digital Objects: There are other an-
alytically de�ned objects that could be considered as purely analytically de�ned
digital objects. Let us just mention some approaches that are particularly in-
teresting: The team around I. Debled-Rennesson proposed the notion of Blurred
analytical objects [59] with applications in noisy digital object recognition. E.
Andres, M. Rodriguez et al. proposed a notion of analytically characterized dig-
ital perpendicular bisector [60] which allowed to tackle the problem of the com-
putation of a circumcenter of several pixels and the recognition of fuzzy circles.
One could add Y. Gerard and L. Provost that proposed a notion of analytically
de�ned curves and surfaces, named Digital Level Layers [61]. Although based on
a morphological digitization, the objects are purely analytically de�ned.

3.2 Digitized Analytical Objects

In this section, we are going to take a look at digitized objects that have been
analytically characterized. An immediate example is the Bresenham Straight
line Segment [22] that has been shown to be a Reveilles straight line segment
[20]. In the same way, in [26], most notions of digital circles that have been
introduced have been analytically characterized [23, 7]. An extension to higher
dimensions has been proposed in [33] with an explicit mention of Morphological
Digitizations. Let us start with morphological digitization transforms.

Supercover digitization: One of the �rst analytically characterized digiti-
zation model that has been proposed is the supercover digitization (also called
outer Jordan digitization [41, 53]) based on the Chebychev distance d∞ [2, 18, 37,
40, 41, 53, 54, 48, 49, 35]. The supercover digitization is well-known for a long time
because it has a natural geometric interpretation. The unit ball for the distance
Bd∞

(
1
2

)
is a hypercube of side one. If we denote V(p) the voxel centered on p,

Formula (2) for the Chebychev distance is the same as {p ∈ Zn : V(p) ∩ E 6= ∅}:
a point belongs to the supercover of a continuous object E i� the corresponding
voxel is cut by E. The union of all the voxels of the supercover of a continuous
object covers the continuous object, thus the name supercover. This geometric
interpretation is so natural that it has been considered long (actually as early as
the 19th century [53]) before the link to the Chebychev distance has been made.
We will not recall all the details on the supercover model: see [18] for general
properties of the digitization transform. In [48, 49, 35] for the analytical charac-
terization of the supercover digitization of m-simplice and m-�ats in dimension
n. In [33], the reader will �nd an analytical characterization of supercover 2D
circles and 3D spheres.

Standard digitization: The supercover digitization transform has many in-
teresting topological properties. In particular, a supercover digitization of a con-
nected object is always (n−1)-connected and tunnel-free but not strictly separat-
ing. When E crosses and edge or a vertex of a grid voxel then all the grid points
whose voxel share this edge or vertice belong to the digitization. This is called
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a bubble [48, 49, 35]. The supercover of a hyperplane, for instance, is (n − 1)-
connected but with possibly simple points. For theoretical [10, 52, 62] as well as
practical reasons, it is interesting to have a model without bubble. Various meth-
ods have been proposed to solve this problem such as modifying the de�nition of
a voxel [18] but that does not work [16, 17]. There is however a way to solve this
problem [16, 17]. The idea is the following: the supercover S(H) of a hyperplane

H : a0+
∑n

i=1 aixi = 0 is given by S(H) : −
∑n

i=1|ai|
2 ≤ a0+

∑n
i=1 aixi ≤

∑n
i=1|ai|
2 .

It is (n−1)-connected, tunnel-free but it might have simple points (bubbles). The

analytical hyperplane−
∑n

i=1|ai|
2 ≤ a0+

∑n
i=1 aixi <

∑n
i=1|ai|
2 is (n−1)-connected,

tunnel-free and strictly separating (without bubbles). The only di�erence comes
from the ” ≤ ” for the hyperplane supercover that is replaced by a ” < ” for
the analytical hyperplane. So transforming one into the other comes down to
choosing a side on which we change a ” ≤ ” into a ” < ”. We de�ne therefore
an orientation convention: A halfspace H : a0 +

∑n
i=1 aixi ≤ 0 is said to have a

standard orientation i� a1 > 0 or a1 = 0 and a2 > 0 or . . . if a1 = . . . = an−1 = 0
and an > 0. Otherwise the halfspace is said to have a supercover orientation.
Since the de�ning structuring element for the supercover digitization transform
is a unit hypercube, it is easy to see that the o�set zone for a supercover lin-
ear object is a polytope de�ned as intersection of a �nite sequence of digital

half-spaces S(E) =
{
p ∈

(⋂k
i=1Hi

)
∩ Zn;Hi : ai,0 +

∑n
j=1 ai,jxj ≤ 0

}
where k

is the cardinality of the set of halfspaces {Hi} de�ning the supercover of E. For
such a set of halfspaces, we replace each halfspace Hi : ai,0 +

∑n
j=1 ai,jxj ≤ 0

that has a standard orientation by H ′i : ai,0 +
∑n

j=1 ai,jxj < 0 in the analytical
characterization of the digital object. If the halfspace has a supercover orienta-
tion, it is not modi�ed. This de�nes the standard digitization transform St(E) of
a linear Euclidean object E. It has been shown in [63] that the standard digitiza-
tion produces (n− 1)-connected, tunnel-free and strictly separating objects. See
Figure3 for examples of the standard digitization of points and a 3D triangle.
The standard model keeps most of the properties of the supercover model and
as such is a coherent digitization. It is not general however as it is de�ned only
for linear objects. There is however a caution. Contrary to the supercover digi-
tization, in general, St(E) 6=

⋃
x∈E St(x). The standard digitization is de�ned as

a �nite rewriting of the inequalities de�ning the supercover of a linear object. It
does not hold for an in�nite sequence of inequalities.

Grid Intersection digitization: A popular digitization scheme is called grid
intersection digitization [54]. For a continuous object E, the intersection points
of E and the grid lines (all the straight lines xi = k, k ∈ Z) are considered
and the closest grid point to these intersection points forms the digital object.
This is the same as considering a structuring element corresponding to the set
of polygons with vertices

(
0, . . . , 0,± 1

2 , 0, . . . , 0,±
1
2 , 0, . . . , 0

)
. It is very similar

to the digitization with the Manhattan distance d1. While the unit ball for this
distance is a diamond shaped polytope with all the above mentioned points
as vertices. The digitization is de�ned for all k-dimensional objects, k > 0.
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Fig. 3. Standard and Supercover digitization of points on the left and digitization of
a 3D triangle on the right.

Analytical characterization can be obtained by computing the intersection of
the object with one of the orthotropic faces of the structuring element or by
determining the analytical charcterization of the d1-distance digitization. The
Bresenham line [22] is such an object and its characterization has been given
in [20] by JP. Reveilles. In [26, 33] there is the analytical characterization of d1
digital circles and spheres.

Flake Digitization [34, 64]: The analytical characterization of the supercover
of a sphere S is quite complicated [33]. Most (in the geometric sense) of the o�set
region corresponds however simply to a translation of the continuous sphere S.
Indeed, the outer and inner boundary of Bd∞ ⊕S is in great part determined by
the vertices of the ball. Let us call V∞ the set of vertices of Bd∞ then V∞ ⊕ S
corresponds largely to the same surface than the boundary of Bd∞ ⊕ S. If we
consider a structuring element F composed of straight line segments that join
the vertices v of Bd∞ to its reverse v̌ then F ⊕ S is (n − 1)-connected and
tunnel-free if S is big enough (details of S need to be bigger than a voxel [34,
64]). This is true, not only for the supercover model but for all structuring
elements that are polytopes, especially those corresponding to adjacency norms.
The distinctive advantage is that this digitization transform is very simple to
characterize analytically if the surface S is de�ned by an implicit equation f(x) =
0 such that there is a side of the surface where f(x) < 0 and a side where
f(x) > 0. Let us suppose we have a surface S de�ned by such an implicit
equation f(x) = 0, x ∈ Rn. Let us suppose that we have a structuring element
F which is a polytope, with central symmetry (for the sake of simplicity here).
The vertices of F form the set vi. Let us de�ne the Flake F ′ formed by the
straight lines joining the vertices vi to its symmetric v̌i (See Figure 1). Then
(F ′ ⊕ S) ∩ Zn is analytically characterized by:{

p ∈ Zn :
n

min
i=1

(f(vi)) ≤ 0 ∧ n
max
i=1

(f(vi)) ≥ 0

}
(5)
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The idea is actually very simple: as morphological digitization, the surface S
cuts a structuring element F ′⊕p i� there are vertices on each side of the surface
de�ned by the implicit equation. The so-de�ned Flake digitization transform
(F ′ ⊕ S) ∩ Zn is similar to (F ⊕ S) ∩ Zn except may be on places where S
does not �t some regularity properties [34]. The �ake digital object keeps the
topological properties of the original object. This is a way of de�ning implicit
digital objects is straightforward way with the limitation that it is de�ned only
for (n − 1)-dimensional surfaces that are regular enough. See Figure 4 for an
exemple of a implicitly de�ned quadric digitized with all three 3D adjacency
�akes.

Fig. 4. Flake digitizations of the quadric 9x2 − 4y2 − 36z − 180 = 0.

4 Conclusion and Perspectives

In this paper we propose a short survey on digital analytical geometry and show
what the ideas are behind the analytical characterization of digital objects. There
are two key points in digital analytical geometry that we have not addressed in
this paper due to space: transforms and object recognition. Both pro�t greatly of
the analytical characterizations of digital objects. For the transforms, let us just
cite the Quasi-A�ne Transforms [44] among many others. For Object Recogni-
tion, having mathematical de�nitions of objects changes many things. Much has
not been said and many papers have been omitted in this short survey. We have
proposed several open questions along the pages of this article and many others
still remain. As concluding words, let us not forget that beyond digital analyt-
ical geometry, there are many other forms of digital geometry that still need
to be invented or explored: parametric digital geometry, non-Euclidean digital
geometry, multiscale digital geometry, etc.



How do I de�ne a digital analytical object? 13

References

1. Montanari, U.: On limit properties in digitization schemes. J. ACM 17(2) (1970)
348�360

2. Chassery, J.M., Montanvert, A.: Géométrie discrète en imagerie. In: Ed. Hermès,
Paris (France). (1987)

3. Rosenfeld, A.: Digital topology. Amer. Math. Monthly 86 (1979) 621�630
4. Kaufman, A.E.: E�cient algorithms for 3d scan-conversion of parametric curves,

surfaces, and volumes. In: Proc. 14th SIGGRAPH. (1987) 171�179
5. Kaufman, A.E.: E�cient algorithms for scan-converting 3d polygons. Computers

& Graphics 12(2) (1988) 213�219
6. Kim, C.E.: Three-dimensional digital line segments. IEEE Trans. PAMI 5(2)

(1983) 231�234
7. McIlroy, M.D.: Best approximate circles on integer grids. ACM Trans. Graph. 2(4)

(1983) 237�263
8. McIlroy, M.D.: Getting raster ellipses right. ACM Trans. Graph. 11(3) (1992)

259�275
9. Taubin, G.: Rasterizing algebraic curves and surfaces. IEEE Computer Graphics

14(2) (1994) 14�22
10. Francon, J.: Discrete combinatorial surfaces. CVGIP 57(1) (1995) 20�26
11. Herman, G.T.: Discrete multidimensional jordan surfaces. CVGIP 54(6) (1992)

507�515
12. Morgenthaler, D.G., Rosenfeld, A.: Surfaces in three-dimensional digital images.

Information and Control 51(3) (1981) 227�247
13. Rosenfeld, A., Kong, T.Y., Wu, A.Y.: Digital surfaces. GMIP 53(4) (1991) 305�312
14. Kong, T.Y., Rosenfeld, A.: Digital topology: Introduction and survey. CVGIP

48(3) (1989) 357�393
15. Kovalesky, V.: Finite topology and image analysis. Adv. in Electronics and Electron

Physics 84 (1992) 197�259
16. Andres, E.: De�ning discrete objects for polygonalization: The standard model. In:

10th DGCI, Bordeaux (France). Volume 2301 of LNCS., Springer (2002) 313�325
17. Andres, E.: Discrete linear objects in dimension n: the standard model. Graphical

Models 65(1-3) (2003) 92 � 111
18. Cohen-Or, D., Kaufman, A.E.: Fundamentals of surface voxelization. CVGIP

57(6) (1995) 453�461
19. Chollet, A., Wallet, G., Fuchs, L., Largeteau-Skapin, G., Andres, E.: Insight in

discrete geometry and computational content of a discrete model of the continuum.
Pattern Recognition 42(10) (2009) 2220�2228

20. Reveillès, J.P.: Calcul en Nombres Entiers et Algorithmique. PhD thesis, Université
Louis Pasteur, Strasbourg, France (1991)

21. Reveillès, J., Richard, D.: Back and forth between continuous and discrete for the
working computer scientist. Ann. Math. Artif. Intell. 16 (1996) 89�152

22. Bresenham, J.: Algorithm for computer control of a digital plotter. IBM Systems
Journal 4(1) (1965) 25�30

23. Bresenham, J.: A linear algorithm for incremental digital display of circular arcs.
Commun. ACM 20(2) (1977) 100�106

24. Andres, E., Jacob, M.A.: The discrete analytical hyperspheres. IEEE Trans. on
Vis. and Comp. Graphics 3(1) (1997) 75�86

25. Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. GMIP 59(5)
(1997) 302�309



14 E. Andres

26. Andres, E., Roussillon, T.: Analytical description of digital circles. In: 16th DGCI,
Nancy (France). Volume 6607 of LNCS., Springer (2011) 235�246

27. Brimkov, V.E., Barneva, R.P.: Graceful planes and thin tunnel-free meshes. In:
8th DGCI Marne-la-Vallee (France). Volume 1568 of LNCS. (1999) 53�64

28. Debled-Renesson, I., Reveillès, J.P.: A new approach to digital planes. In: SPIE
Vision Geometry III, Boston(USA), vol. 2356. (1994)

29. Feschet, F., Reveillès, J.: A generic approach for n-dimensional digital lines. In:
13th DGCI, Szeged (Hungary). Volume 4245 of LNCS., Springer (2006) 29�40

30. Figueiredo, O., Reveillès, J.: A contribution to 3d digital lines. In: 5th DGCI,
Clermont-Ferrand (France). (1995) 187�198

31. Fiorio, C., Jamet, D., Toutant, J.L.: Discrete circles: an arithmetical approach
with non-constant thickness. Proc. SPIE Vision Geometry XIV 6066 (2006) 1�12

32. Dachille, F., Kaufman, A.E.: Incremental triangle voxelization. In: Proc. Graph-
ics Interface, Montréal (Canada), Canadian Human-Computer Communications
Society (2000) 205�212

33. Toutant, J., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres:
From morphological models to analytical characterizations and topological prop-
erties. Discrete Applied Mathematics 161(16-17) (2013) 2662�2677

34. Toutant, J., Andres, E., Largeteau-Skapin, G., Zrour, R.: Implicit digital surfaces
in arbitrary dimensions. In: 18th DGCI, Siena (Italy). Volume 8668 of LNCS.,
Springer (2014) 332�343

35. Andres, E.: The supercover of an m-�at is a discrete analytical object. Theor.
Comput. Sci. 406(1-2) (2008) 8�14

36. Heijmans, H.J.A.M.: Morphological image operators. Academy Press, Boston
(1994)

37. Lincke, C., Wüthrich, C.A.: Surface digitizations by dilations which are tunnel-free.
Discrete Applied Mathematics 125(1) (2003) 81�91

38. Ronse, C., Tajine, M.: Hausdor� discretization for cellular distances and its rela-
tion to cover and supercover discretizations. J. Visual Communication and Image
Representation 12(2) (2001) 169�200

39. Tajine, M., Ronse, C.: Topological properties of hausdor� discretization, and com-
parison to other discretization schemes. Theor. Comput. Sci. 283(1) (2002) 243�
268

40. Stelldinger, P., Terzic, K.: Digitization of non-regular shapes in arbitrary dimen-
sions. Image Vision Comput. 26(10) (2008) 1338�1346

41. Klette, R., Rosenfeld, A.: Digital straightness - a review. Discrete Applied Math-
ematics 139(1-3) (2004) 197�230

42. Brons, R.: Linguistic methods for the description of a straight line on a grid. CGIP
3(1) (1974) 48�62

43. Coven, E.M., Hedlund, G.: Sequences with minimal block growth. Mathematical
Systems Theory 7(2) (1973) 138�153

44. Coeurjolly, D., Blot, V., Jacob-Da Col, M.A.: Quasi-a�ne transformation in 3-d:
Theory and algorithms. In: Combinatorial Image Analysis. Volume 5852 of LNCS.
(2009) 68�81

45. Jamet, D., Toutant, J.: Minimal arithmetic thickness connecting discrete planes.
Discrete Applied Mathematics 157(3) (2009) 500�509

46. Berthé, V., Jamet, D., Jolivet, T., Provençal, X.: Critical connectedness of thin
arithmetical discrete planes. In: 17th DGCI Sevilla (Spain). Volume 7749 of LNCS.,
Springer (2013) 107�118

47. Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital planarity - A review. Discrete
Applied Mathematics 155(4) (2007) 468�495



How do I de�ne a digital analytical object? 15

48. Andres, E., Nehlig, P., Francon, J.: Tunnel-free supercover 3d polygons and poly-
hedra. In: Eurographics '97. Volume 16 of Computer Graphics Forum. (1997)
C3�C13

49. Andres, E., Nehlig, P., Francon, J.: Supercover of straight lines, planes and trian-
gles. In: 7th DGCI, Montpellier (France). Volume 1347 of LNCS. (1997) 243�253

50. Brimkov, V.E., Barneva, R.P.: Graceful planes and lines. Theor. Comput. Sci.
283(1) (2002) 151�170

51. Brimkov, V.E., Barneva, R.P.: Connectivity of discrete planes. Theor. Comput.
Sci. 319(1-3) (2004) 203�227

52. Francon, J.: Arithmetic planes and combinatorial manifolds. In: 5th DGCI,
Clermont-Ferrand (France). (1995) 209�217

53. C.Jordan: Remarques sur les intégrales dé�nies. Journal de Mathématiques, 4ème
série (1892), T.8 69�99

54. Sankar, P.: Grid intersect quantization schemes for solid object digitization. Com-
puter Graphics and Image Processing 8(1) (1978) 25 � 42

55. Mora, F., Ruillet, G., Andres, E., Vauzelle, R.: Pedagogic discrete visualization of
electromagnetic waves. Eurographics 2003, Interactive Demos and Posters 123 �
126

56. Debled-Rennesson, I.: Etude et reconnaissance des droites et plans discrets, PhD
Thesis. PhD thesis, Université Louis Pasteur, Strasbourg, France (1995)

57. Berthé, V., Labbé, S.: An arithmetic and combinatorial approach to three-
dimensional discrete lines. In: 16th DGCI, Nancy (France). Volume 6607 of LNCS.,
Springer (2011) 47�58

58. Berthé, V., Labbé, S.: An arithmetic and combinatorial approach to three-
dimensional discrete lines. In: 16th DGCI, Nancy (France). Volume 6607 of LNCS.,
Springer (2011) 47�58

59. Debled-Rennesson, I., Remy, J., Rouyer-Degli, J.: Segmentation of discrete curves
into fuzzy segments. Elect. Notes in Discrete Mathematics 12 (2003) 372�383

60. Andres, E., Largeteau-Skapin, G., Rodríguez, M.: Generalized perpendicular bi-
sector and exhaustive discrete circle recognition. Graphical Models 73(6) (2011)
354�364

61. Gérard, Y., Provot, L., Feschet, F.: Introduction to digital level layers. In: 16th
DGCI, Nancy (France). Volume 6607 of LNCS., Springer (2011) 83�94

62. Francon, J.: Sur la topologie d'un plan arithmétique. Theor. Comput. Sci.
156(1&2) (1996) 159�176

63. Brimkov, V.E., Andres, E., Barneva, R.P.: Object discretizations in higher dimen-
sions. Pattern Recognition Letters 23(6) (2002) 623�636

64. Sekiya, F., Sugimoto, A.: On connectivity of discretized 2d explicit curve. Math-
ematical Progress in Expressive Image Synthesis, Symposium MEIS2014 (Japan)
(2014) 16�25


