A combinatorial theory of random matrices III: random walks on $\mathfrak{S}(N)$, ramified coverings and the $\mathfrak{S}(\infty)$ Yang-Mills measure

Abstract : The aim of this article is to study some asymptotics of a natural model of random ramified coverings on the disk of degree $N$. We prove that the monodromy field, called also the holonomy field, converges in probability to a non-random field as $N$ goes to infinity. In order to do so, we use the fact that the monodromy field of random uniform labelled simple ramified coverings on the disk of degree $N$ has the same law as the $\mathfrak{S}(N)$-Yang-Mills measure associated with the random walk by transposition on $\mathfrak{S}(N)$. This allows us to restrict our study to random walks on $\mathfrak{S}(N)$: we prove theorems about asymptotics of random walks on $\mathfrak{S}(N)$ in a new framework based on the geometric study of partitions and the Schur-Weyl-Jones's dualities. In particular, given a sequence of conjugacy classes $(\lambda_N \subset \mathfrak{S}(N))_{N \in \mathbb{N}}$, we define a notion of convergence for $(\lambda_N)_{N \in \mathbb{N}}$ which implies the convergence in non-commutative distribution and in $\mathcal{P}$-expectation of the $\lambda_N$-random walk to a $\mathcal{P}$-free multiplicative Lévy process. This limiting process is shown not to be a free multiplicative Lévy process and we compute its log-cumulant functional. We give also a criterion on $(\lambda_N)_{N \in \mathbb{N}}$ in order to know if the limit is random or not.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01211302
Contributeur : Franck Gabriel <>
Soumis le : vendredi 28 octobre 2016 - 17:44:28
Dernière modification le : lundi 29 mai 2017 - 14:26:11

Fichiers

Franck.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01211302, version 2
  • ARXIV : 1510.01046

Collections

INSMI | UPMC | USPC | PMA

Citation

Franck Gabriel. A combinatorial theory of random matrices III: random walks on $\mathfrak{S}(N)$, ramified coverings and the $\mathfrak{S}(\infty)$ Yang-Mills measure. 2016. 〈hal-01211302v2〉

Partager

Métriques

Consultations de la notice

183

Téléchargements de fichiers

29