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ABSTRACT

Geometry and texture image decomposition is an important paradigm in image processing. Following to Yves
Meyer works based on Total Variation (VT), the decomposition model has known a renewed interest. In this pa-
per, we propose an algorithm which decomposes color image into geometry and texture component by projecting
the image in a bivariate polynomial basis and considering the geometry component as the partial reconstruction
and the texture component as the remaining part. The experimental results show the adequacy of using our
method as a texture extraction tool. Furthermore, we integrate it into a dynamic texture classification process.

Keywords: Texture extraction, Dynamic Textures, Polynomial decomposition, Video classification.

1. INTRODUCTION

Various works, more or less recently, have tackled the problem of image decomposition that still is one of the
major aims in image processing. In fact, a lot of domain are concerned, from denoising to pattern recognition.
In this paper, we investigate the possibility of having a representation space of the image information, space
adapted to video classification and more especially dynamic textures classification. After a brief reminding
of the principle of image decomposition, we detail our method of texture extraction : firstly presenting the
Polynomial Transform, then the decomposition step. After that, our decomposition method is used to construct
a video descriptor for dynamic texture classification.

2. IMAGE DECOMPOSITION

Yves Meyer1 has proposed a model of image decomposition using the algorithm of Rudin-Osher-Fatemi.2 Ac-
cording to this model, an image is split in two parts, one containing the structure u, the other one containing
the texture u. The result is provided by the minimization of the functional

F(u, v) = ‖f‖F + λ ‖g‖G (1)

where f ∈ F , g ∈ G and λ is the parameter of the model. More precisely, F is the space of functions with bounded
variations and G the space of oscillating functions with the property that more a function is oscillating, more
its standard norm ‖g‖G will be low. This model can be solved numerically due to the formulation proposed in
J-F.Aujol,3,4 by the introduction of an additional parameter µ corresponding to the maximum norm of textures
in the space G. The use of non-linear projectors defined by A.Chambolle5 provides the decomposition of the
image by an iterative algorithm (see3,4 for more details).

A. Buades6 has created a method that, as we know, is the fastest and most efficient implementation of the
theory given Yves Meyer.1 It is a fast approximate solution to the original variational problem obtained by
applying non-linear filtering to the image. For each image pixel, a decision is made whether it belongs to the
geometric part or to the texture part. This decision is made by computing a local total variation of the image
around the point, and comparing it to the local total variation after a low pass filter has been applied. In fact,
edge points in an image tend to have a slowly varying local total variation when the image is convoluted by a low
pass filter while textural points instead show a strong decay of their local total variation. After the selection of
the points belonging to the geometrical part, the texture part is considered as the difference between the original



image and the geometrical part. (See Figure 1 for image decomposition with Buades6 method). In fact, there
is no unique decomposition and the algorithm relies on an important parameter, the scale parameter which is
directly related to the granularity of textures distinguished.

(a) (b) (c)
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Figure 1. A. Buades method with scale parameter set to 3 : (a and d) original images, (b and e) images of geometry, (c
and f) images of texture.

3. IMAGE DECOMPOSITION WITH POLYNOMIAL TRANSFORM

A Bivariate Polynomial (BP) of degree d is a function of x = (x1, x2) ∈ R2 given by

P (x) =
∑

(d1,d2)∈[0;d]2

d1+d2≤d

ad1,d2
xd1

1 xd2
2 (2)

with any ad1,d2
∈ R.

3.1 Bivariate polynomial basis

Considering a finite set of pairs D = {(d1, d2)} ⊂ N2, we represent by ED the space of all BP such as ad1,d2 ≡ 0
if (d1, d2) /∈ D and by KD the subset of monomials

KD =
{
Kd1,d2(x) = xd1

1 xd2
2

}
(d1,d2)∈D

(3)

Obviously KD satisfies the linear independence and spanning conditions and so, KD is a basis of ED, the
canonical basis. In our context of color image decomposition, we look for bases with more suitable properties
such as orthogonality or normality. So, to construct a discrete orthonormal BP finite basis we first have to
consider the underlying discrete domain

Ω =
{
x(u,v) =

(
x1,(u,v), x2,(u,v)

)}
(u,v)∈D (4)

where D will now represent the set of pairs associated to Ω. Starting from KD we intend to construct a new
orthonormal basis applying the Gram-Schmidt process. That implies that we need some product and norm for



functions defined on Ω. Given two bivariate functions, F and G, their discrete extended scalar product is defined
by

〈F |G〉 =
∑

(u,v)∈D

ω(x(u,v)) F (x(u,v))G(x(u,v)) (5)

with ω a real positive function over Ω [Legendre, Chebichev, Hermite, ...]. Then, the actual construction process
of an orthonormal basis

BD,ω = {Bd1,d2
}(d1,d2)∈D (6)

is a recurrence upon (d1, d2)

Td1,d2
(x) = Kd1,d2

(x)−
∑

(l1,l2)≺2(d1,d2)

〈Kd1,d2
|Bl1,l2〉ωBl1,l2(x) (7)

Bd1,d2
(x) =

Td1,d2
(x)

|Td1,d2
|ω

(8)

where ≺2 is the lexicographical order and | |ω the norm induced by 〈 | 〉ω. The resulting set of B polynomials
verifies

〈Bd1,d2
|Bl1,l2〉ω =

{
0 if (d1, d2) 6= (l1, l2)
1 if (d1, d2) = (l1, l2)

(9)

and so BD,ω is effectively an orthonormal basis with respect to a weighting function ω. A special case, later used
in this paper, is the complete base where D exactly represents the set of pairs associated to Ω, that is

D = [0;N1]× [0;N2] (10)

The space ED being dense in the space of functions over Ω, it allows to well approximate any bivariate
function I by an appropriate combination of elements of a BD,ω orthonormal basis

PI(x) =
∑

{(d1,d2)}⊂D

bd1,d2 Bd1,d2(x) (11)

where bd1,d2
is the scalar resulting of the projection bd1,d2

= 〈I|Bd1,d2
〉ω. In fact, with a complete orthonormal

basis, the polynomial approximation of I is a first order osculatory polynomial interpolation : for all points of
the domain we have PI(x) = I(x). An other nice property is that the projection on polynomial Bd1,d2 can be
considered as an approximation of the partial derivation ∂d1∂d2 . Finally and in practice, the discrete projection
process supposes that both I and Bd1,d2

can be evaluated on the common domain Ω. So, the set of collocation
points can be obtain by uniform or non-uniform discretization of given intervals. For example, with [−1; 1]2 and
referring to equation (10), the collocation points obtained by uniform discretization are

x1,(u,v) = −1 +
2u

N1
x2,(u,v) = −1 +

2v

N2
(12)

3.2 Polynomial Transform

Now we describe the Polynomial Transform algorithm which is founded on piecewise discrete polynomial approx-
imation and the principle of Wavelet Packet. At a given level of this multi-resolution transform, lets consider a
function U defined on a domain Ω of size n1 × n2, and a basis BM,ω defined on a support M of size h1 × h2, the
transform process is defined as follows :

1. definition of a covering set of the discrete domain Ω with sub-domains ΩM of size h1 × h2

2. for each sub-domain ΩM , projection of the corresponding restriction UM in the basis BM,ω that provides
the coefficients bM,d1,d2

= 〈UM |Bd1,d2
〉ω



(a) (b)

Figure 2. First level of Polynomial Transform with a 4 × 4 Hermite complete basis.

3. for all pair (d1, d2) the reordering of the global set of coefficients bM,d1,d2
into h1×h2 new functions Ud1,d2

defined on domains of size n1|h1
× n2|h2

This method provides some flexibility especially in the choice of the resolution factors, depending of the sub-
domains size and of their offset, the transform can be perform with juxtaposed or overlapped sub-domains.
Moreover, the choice of the weighting function ω allows, at the same time, to perform a multi-scale and a multi-
resolution transformation. As an illustration, Figure 2 shows an example of a first level transformation using a
4× 4 Hermite complete basis.

3.3 Image decomposition by partial reconstruction

A Polynomial Transform performed with a complete basis is perfectly reversible. However, it is possible to
obtain many kind of approximations by selecting the coefficients during the reconstruction phase, i.e. partial
reconstruction. This choice of coefficients may follow various strategies, among them we have : (a) brutal
restriction to a given subset, for example the polynomials of degree less than a threshold; (b) restriction based
on energies, for example by using the normality of the basis to assimilate the absolute value of its coefficients
to a part of the energy of a sub-domain, then sort the coefficients and finally retain a fixed number of these
coefficients or those satisfying a certain condition (cf. PCA).

In our case, to decompose the image into geometric and texture component, we assume that the geometrical
part is given by a partial reconstruction Ĩ of the original image I in an overlapped Polynomial Transform
context. As seen before, this transform is very flexible, so there are many conceivable solutions. In order to
get a compromise between quality and computation time, we choose to use an Hermite basis, to set the sub-
domain size to 3× 3, with an offset of 2, and to select the three dominant coefficients for each sub-domain. The
partial reconstruction of a color image I = (Ij)j=1···3, i.e. the construction of the geometrical part, can then be
summarize by

Ĩj(x) =
1

c(x)

∑
{ΩM3x}

Ψ(ΩM )ω(xM )
∑

(d1,d2)∈Pj,M

bj,d1,d2
(Ij,M )Bd1,d2

(xM )

 (13)

where x is a point referring to the global image domain Ω, xM is the same point referring to a given sub-domain
ΩM , Ij,M the restriction of Ij to sub-domain ΩM , Pj,M the set of selected polynomials for Ij,M approximation,
ω the weighting function of the scalar product and bj,d1,d2

the coefficient of the projection of Ij,M on the basis
polynomial Bd1,d2 . A degree of anisotropy Ψ(ΩM ) is assigned to each sub-domain ΩM and c(x) is the sum of x
contributions, c(x) =

∑
{ΩM3x}Ψ(ΩM )ω(xM ). The degree of anisotropy is evaluated according to

Ψ(ΩM ) =
1

1 + λr
(14)



where λ is the largest eigenvalue of a color structure tensor composed with the approximations of partial deriva-
tives, projections on the basis polynomials of degree one

S =

( ∑
j (bj,1,0)

2 ∑
j bj,1,0 bj,0,1∑

j bj,0,1 bj,1,0
∑

j (bj,0,1)
2

)
(15)

The balance between isotropic and anisotropic reconstruction is adjust by the parameter r that controls the
degree of anisotropy in a range of 0.25 for isotropic (gaussian) to 2 for highly isotropic. By doing that, we assure
a real color process and avoid marginal treatment deficiencies. Finally, the texture component IT is simply
deduce from the partial reconstruction by considering that it is the residual part of the image

IT = I − Ĩ (16)

The results of image decomposition into geometry and texture components by partial reconstruction after an

(a) (b) (c)

(d) (e) (f)

Figure 3. Our decomposition method with r = 0.75 : (a and d) original images, (b and e) images of geometry, (c and f)
images of texture.

Hermite Polynomial Transform as defined in equation(13), with the parameter r of equation (14) set to 0.75, are
shown in Figure 3.

4. EXPERIMENTAL RESULTS

To illustrate the efficiency of our method, we will use it in a dynamic texture classification scheme which is among
challenging research themes in the image analysis field. The database used in our application is Dyntex++
database,7 see Figure 4. Because it is composed of images that represent textures in motion, it therefore seems
appropriate for the present study. Since the videos are not evenly distributed among the 36 classes in this
database, the pretreatments7 were realized so that each class contains the same number of sequences. We finally
have 3600 dynamic textures, grouped into 36 classes and each sequence, i.e. each instance of a dynamic texture,
has a size of 50× 50× 50 pixels.

In our approach, we use the video sequences without converting them in grey level. Then, we both extract the
temporal information provided by the color displacement fields14 (ν1, ν2) and the spatial information provided
by the color texture components IT using our method of Polynomial Transform decomposition. Thereafter, we
modelize ν1, ν2 and IT by approximating them with a complete Hermite bivariate basis of degree 2. In our
experiment the datas were randomly split into two equal size training and test sets.9–13 The random split was



(a) Blossoming (b) Flag (c) Rotating wind orna-
ment

(d) Underwater (e) Vehicle traffic on
road

(f) Rain on water

Figure 4. Examples of Dyntex++ database.

VLBP (Volume Local Binary Patterns)8 61.1%

SIFT-3D (3 Dimensional Scale Invariant Feature Transform)9 63.7%

LBP-TOP(Local Binary Patterns on Three Orthogonal Planes)10,11 71.2%

DFS (Dynamic Fractal Spectrum)12 89, 9%

HOG-NSP (Histogram of Oriented Gradients with Nine Symmetry Planes)11 90, 1%

NLSSA (Non-Linear Stationary Subspace Analysis)13 92.4%

Our method 93, 13%

Table 1. Classification results for Dyntex++ database.

repeated 10 times and the average classification accuracy is reported in Table 1. The classification is performed
with a SVM15 as classifier and RBF functions as kernels. From Table 1, we can see that our descriptor performs
quite well comparatively to the usual methods of dynamic textures classification. Moreover, the application of
our approach provides a very significant gain in computation time because all main computations can be realized
through convolutions.

5. CONCLUSION

In this paper, we have proposed a new approach for texture extraction from color image sequence, by using
Polynomial Transformations. Partial reconstruction and global approximation are used to build descriptors used
in a classification process of dynamic textures. In addition to the simplicity of implementation, we provide
a computing time which is especially fast compared to most of methods based on the theory of Yves Meyer
due to the cost of the minimization of the total variation. The experimental results show that the proposed
approach achieves a very good recognition rate for the Dyntex++ database. This shows the relevance of our
texture extraction method in the context of classification of dynamic textures. In some future, we will continue
to improve our image decomposition method in order to extract the noise coefficients ignored in the partial
reconstruction of the image. We will also investigate the abilities of a derived method which only relies on three
dimensional transformations for our classification process of dynamic textures.
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