Semi-Supervised Factored Logistic Regression for High-Dimensional Neuroimaging Data

Abstract : Imaging neuroscience links human behavior to aspects of brain biology in ever-increasing datasets. Existing neuroimaging methods typically perform either discovery of unknown neural structure or testing of neural structure associated with mental tasks. However, testing hypotheses on the neural correlates underlying larger sets of mental tasks necessitates adequate representations for the observations. We therefore propose to blend representation modelling and task classification into a unified statistical learning problem. A multinomial logistic regression is introduced that is constrained by factored coefficients and coupled with an au-toencoder. We show that this approach yields more accurate and interpretable neural models of psychological tasks in a reference dataset, as well as better generalization to other datasets.
Type de document :
Article dans une revue
Neural Information Processing Systems, 2015
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger
Contributeur : Danilo Bzdok <>
Soumis le : dimanche 4 octobre 2015 - 12:34:07
Dernière modification le : vendredi 8 mars 2019 - 01:20:07
Document(s) archivé(s) le : mardi 5 janvier 2016 - 10:11:16


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01211248, version 1


Danilo Bzdok, Michael Eickenberg, Olivier Grisel, Bertrand Thirion, Gaël Varoquaux. Semi-Supervised Factored Logistic Regression for High-Dimensional Neuroimaging Data. Neural Information Processing Systems, 2015. 〈hal-01211248〉



Consultations de la notice


Téléchargements de fichiers