Exponentiality of First Passage Times of Continuous Time Markov Chains

Abstract : Let be a continuous time Markov chain with finite or countable state space S and let T be its first passage time in a subset D of S. It is well known that if mu is a quasi-stationary distribution relative to T, then this time is exponentially distributed under . However, quasi-stationarity is not a necessary condition. In this paper, we determine more general conditions on an initial distribution mu for T to be exponentially distributed under . We show in addition how quasi-stationary distributions can be expressed in terms of any initial law which makes the distribution of T exponential. We also study two examples in branching processes where exponentiality does imply quasi-stationarity.
Type de document :
Article dans une revue
Acta Applicandae Mathematicae, Springer Verlag, 2014, 131 (1), pp.197-212. 〈10.1007/s10440-013-9854-z〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01209975
Contributeur : Archive Ouverte Prodinra <>
Soumis le : vendredi 2 octobre 2015 - 22:22:09
Dernière modification le : mercredi 21 mars 2018 - 16:08:10

Lien texte intégral

Identifiants

Collections

Citation

Romain Bourget, Loic Chaumont, Natalia Sapoukhina. Exponentiality of First Passage Times of Continuous Time Markov Chains. Acta Applicandae Mathematicae, Springer Verlag, 2014, 131 (1), pp.197-212. 〈10.1007/s10440-013-9854-z〉. 〈hal-01209975〉

Partager

Métriques

Consultations de la notice

82