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Abstract

The sustainable use of multicomponent treatments such as combination therapies, combination vaccines/chemicals, and
plants carrying multigenic resistance requires an understanding of how their population-wide deployment affects the speed
of the pathogen adaptation. Here, we develop a stochastic model describing the emergence of a mutant pathogen and its
dynamics in a heterogeneous host population split into various types by the management strategy. Based on a multi-type
Markov birth and death process, the model can be used to provide a basic understanding of how the life-cycle parameters
of the pathogen population, and the controllable parameters of a management strategy affect the speed at which a
pathogen adapts to a multicomponent treatment. Our results reveal the importance of coupling stochastic mutation and
migration processes, and illustrate how their stochasticity can alter our view of the principles of managing pathogen
adaptive dynamics at the population level. In particular, we identify the growth and migration rates that allow pathogens to
adapt to a multicomponent treatment even if it is deployed on only small proportions of the host. In contrast to the
accepted view, our model suggests that treatment durability should not systematically be identified with mutation cost. We
show also that associating a multicomponent treatment with defeated monocomponent treatments can be more durable
than associating it with intermediate treatments including only some of the components. We conclude that the explicit
modelling of stochastic processes underlying evolutionary dynamics could help to elucidate the principles of the
sustainable use of multicomponent treatments in population-wide management strategies intended to impede the
evolution of harmful populations.
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Introduction

The emergence and spread of pathogen mutants able to

overcome treatments that hitherto conferred complete protection

on a host population, has become a real scourge in medicine,

agriculture and forestry [1–4]. Multicomponent treatments, such

as combination therapies simultaneously using several different

antibiotics, recombinant multicomponent vaccines targeting more

than one stage in the pathogen life cycle, mixtures of chemicals

with differing mechanisms of action, and multigenic plant

resistance carrying more than one resistance gene, were believed

to be an efficient way to prolong the effectiveness of existing

treatment components by delaying the pathogen adaptation

process [1,5–7]. Even though adapting to a multicomponent

treatment involves multiple mutations, and therefore a higher cost

to achieve adaptation, several phenomena, such as genetic drift,

migration, recombination and the selective pressure exerted by the

treatment itself, make it possible for an escape mutant to emerge.

Striking examples such as the re-emergence of tuberculosis in a

multidrug resistant form [8], seasonal adaptations of influenza to

multicomponent vaccines [9], and the breakdown of multigenic

plant resistance by foliar pathogens [10], have revealed that to

achieve their purpose, multicomponent treatments should be

deployed using optimal management strategies that control the

adaptive dynamics of pathogens at the population level [1,3,11].

On average, multicomponent treatments take fifteen to twenty

years of investment, which makes them too expensive to be

carelessly frittered by inappropriate use. Surprisingly, little attempt

has been made to estimate the durability of multicomponent

treatments employed in population-wide management strategies.

This continuing ignorance can be explained by the fact that

determining the speed at which a pathogen adapts at the

population level requires considering processes as challenging to

model as the stochastic emergence of an escape mutant and its

spread throughout a host population, both of which can be altered

by the management strategy. Most of the studies that have

considered pathogen adaptation as a population-wide epidemio-

logical problem use deterministic SIR compartment models in

which disease transmission is modeled in terms of contacts

between two types of host individuals, namely treated and

untreated hosts [6,12–15]. The advantage of the approach is that

it makes it possible to link the properties of the management

strategy, for instance the spatial heterogeneity of the treatment

[16] or treatment coverage [15,17], with the dynamics of the

pathogen. However, with rare exceptions [12,13], this approach is

actually used to derive the invasion conditions of a pre-existing
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mutant, and not the speed of the pathogen adaptation. Another

limitation is that compartmentalised models can track the dynamics

of only limited numbers of types of host and pathogen [18].

Furthermore, treatment components can be used in various ways to

devise a variety of population-wide control strategies that split the

host population into several types. For instance, studying the impact

of deploying two different antibiotics on bacterial evolutionary

dynamics, Bonhoeffer & al. [12] demonstrated that treatment

strategies in which, at any given time, equal fractions of the

population receive different antibiotics can delay the trend toward

antibiotic resistance. Management strategies intended to increase the

environmental heterogeneity facing the pathogen, thereby inhibiting

its spread, are becoming preponderant in the management of

pathogen adaptive dynamics [3,11], since they offer the hope that

the current arsenal of treatments can be used judiciously. However,

recent theoretical studies have shown that the success of a deployed

management strategy depends on the difference in relative fitness

between the resident and mutant pathogen strains, which determines

the intensity of their competition [14,16,19,20]. This leads us to

conclude that the evolutionary trajectory of a mutant escaping a

multicomponent treatment included as part of a population-wide

management strategy can be impressively complex, requiring the

development of modelling approaches that account for both the life-

cycle parameters of the different pathogen types, and the structure of

the host population diversified by the management strategy.

Stochastic models are more appropriate for estimating the time it

takes for evolutionary change to occur in a pathogen population

spreading over heterogeneous environments, and could overcome

limitations of the widely-used deterministic SIR approach [21].

Indeed, the interactions between stochastic migration and stochastic

selection engender evolutionary processes that are invisible to

deterministic evolutionary theory [22]. However, the existing

models are often just stochastic versions of SIR epidemic models,

and even those that study pathogen adaptive dynamics at the

population level ignore the stochastic migration process [23,24].

The objective of this paper is to estimate the speed of pathogen

adaptation in a host population which is subjected to a

multicomponent treatment, and to provide some general guidance

for the sustainable population-wide use of multicomponent

treatments. To model the spread of the mutant through a host

population, split by a management strategy into numerous types,

we consider the mutant migration from an infected host, where it

emerged, into a host receiving treatment. If the basic reproductive

number of a new pathogen type is greater than one, then it is

almost certain to become established, since there is no competition

on the treated hosts. We therefore define the emergence time of an

escape mutant as the time of the first migration from a mutant-

infected host into a host subjected to multicomponent treatment.

We formulated and analyzed a stochastic model based on a multi-

type Markov birth and death process. This allowed us to take into

account both pathogen mutation and migration stochastic

processes, and the structure of a host population diversified by

the management strategy. Unlike conventional studies of pathogen

adaptive dynamics, our model allows us to track the population

size dynamics of numerous pathogen types spreading through a

heterogeneous host population. In numerical simulations, we

varied the values of pathogen growth and migration rates, and

determined the time to emergence of a mutant pathogen in a host

receiving a multicomponent treatment. We first explored the

impact of the proportion of hosts treated on the durability of the

multicomponent treatment, and then looked at the impact of the

mutation cost. We also investigated the effect of various

management strategies on the durability of multicomponent

treatment. We discuss the application of the results obtained to

the population-wide deployment of combination therapies, com-

bination vaccination/chemicals, and to the use of multigene

resistance in cultivar mixtures.

Materials and Methods

Model Overview
We assume that there are N different treatment components

that can be combined in various ways to devise a treatment for a

host population. A treatment including all N components is

Table 1. Definition of variables and parameters used to model pathogen adaptive dynamics.

Name Value Description Reference

Xij (t) – The random variable for the number of pathogen individuals of
type i on host type j at time t

–

X (t) (Xij (t))i,j[½1,2N �2 Vector random variable for the number of each type in the pathogen
population at time t

–

r ½0:3; 12� Growth rate of pathogen population [49,52]

D ½0:1; 0:3� Migration rate of pathogen population –

Dik 0 or D Dik~D if pathogen type i can infect host type k, else Dik~0 –

N f1,2,3,4g Number of treatment components –

C ½0; 0:8� Mutation cost of carrying one mutation [53–55]

bi 1{
P

z[i C Fractional reduction due to mutation cost of the growth rate of pathogen type i –

pki 0 or n, n[½10{5; 10{3� Probability that a pathogen type k will to mutate into a pathogen type i [49,56,57]

pi

P
l=i pil Mutation probability for pathogen type i –

jj ½0; 1� Proportion of host type j in the host population –

j ½0; 1� Proportion of the host treated when N~1 –

K 10000 Maximum population size of the pathogen population –

S Equation (7) Emergence time of an escape mutant able to infect an individual host
carrying N-component treatment

–

doi:10.1371/journal.pone.0071926.t001

Emergence Time of a Mutant Overcoming a Treatment
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designated a multicomponent treatment, treatments consisting of

only one component are designated monocomponent treatments,

and other treatments, with from 2 to N{1 components, are

designated intermediate treatments. Moreover, the application of

these different treatment types can constitute a population-wide

management strategy intended to diversify the host population

when different numbers of host individuals receive one type of

treatment only [12]. Thus, as a result of the diversification

resulting from the management strategy, the host population can

contain up to 2N types: one untreated and 2N{1 treated types all

receiving different combinations of the treatment components.

Since our model is non-spatial, it assumes that the management

strategy applied will result in a well-mixed host population.

We consider pathogen population to be a set of infectious

particles transmitting the disease, such as spores in fungal plant

diseases, virus-laden aerosols or infectious agents carried by

mosquitoes. An individual pathogen can be susceptible or resistant

to any component of a N-component treatment. Thus, the

pathogen population can contain up to 2N pathogen types. The

initial composition of the pathogen population includes a resident

pathogen type produced by infected but untreated hosts, and can

include pathogen types that have already adapted to monocom-

ponent treatments. We start studying pathogen dynamics after the

first stage of development of the epidemic, when all untreated

hosts have already been infected, and the resident pathogen types

have already reached a steady state with the host density. If we

consider the deployment of a multicomponent treatment simulta-

neously with defeated treatments, we assume that all hosts carrying

defeated treatments are also infected. In other words, the pathogen

population starts with maximum population size for the resident

pathogen type (and, if considered, adapted pathogen types) at time

t~0. This initial state can be the result of the two following

situations: (1) the deployment of a management strategy can

precede the infection, such as the preventive vaccination of a part

of the host population or the replacement of some susceptible hosts

by resistant ones or (2) the strategy is deployed after the epidemic

starts, such as chemical/drug treatments, vaccination or the

deployment of genetically-resistant hosts. In the second case, for

the sake of simplicity, we assume that the treatment immediately

eliminates the infection. In both cases, it is assumed that only a

part of the host population is treated.

Let Xij(t) denote the random variable for the number of

pathogens of type i on host type j at time t [ 0,?½ Þ, (i,j) [ ½1,2N �2,

with a state space consisting of the non-negative integers,

0,1,2,:::f g. If pathogen type i is not able to infect host type j,

then for all t, Xij(t)~0. The set Xij(t), t [ 0,?½ Þ
� �

, (i,j) [ ½1,2N �2,

makes up the vector random variable X (t)~ X11(t),:::,ð
X12N (t),:::,X2N 1(t),:::,X2N 2N (t)Þ representing the number of each

type in the pathogen population at time t. Let X (t), t [ 0,?½ Þf g be

a d-dimensional continuous-time, homogeneous, birth and death

Markov process with state space U~ u~ u1,:::,udð Þ,uj~0,1,:::
�

?,j~1,:::,dg, where d~22N , of which the transition matrix only

allows transitions to certain nearest neighbours [25]. The model

drives the dynamics of each pathogen type i inhabiting host type j by

birth and death, mutation and migration stochastic processes. When

a birth or death occurs, the population size of pathogen type, Xij(t),

increases or decreases by one. Moreover, during its multiplication

pathogen type i can produce a mutant of type k, which is capable of

infecting particular type(s) of treated hosts. At this moment the

Figure 1. Model predictions of emergence time dynamics. We
assume a management strategy that divides the host population into
untreated and monocomponent treated individuals, so that the
proportion of treated hosts is j. Here, the emergence time of an
escape mutant is the time before it migrates from an untreated into a
treated host. (A) Emergence time as a function of the migration rate, D,
and the proportion of hosts treated, j. The results are based on a
simulation of model equations (2–5) with the following parameter
values: r~0:3, n~10{5 , C~0:2, K~10000. (B) A simplified decision
diagram to assist with developing management strategies in order to
achieve durable pathogen control. The decision diagram sums up the
emergence time functions obtained as in (A), but with a tuning growth
rate, r, from 0 to 12 and D from 0.1 to 0.3. All the other parameter
values are identical to those in Figure 1A. For any pair of pathogen
parameters (r, D), the diagram depicts in green the proportions of
treated hosts, j, that could inhibit pathogen adaptation. For instance, a
pathogen with high growth and dispersal rates adapts swiftly at any
proportion of the host treated, while the adaptation of a pathogen with
intermediate growth and migration rates can be inhibited by either low
or high proportions. (C) Emergence time decomposition. Mean times of
mutation, mutant migration, and mutant emergence on a treated host
as functions of the proportion of the host treated, j. The mutation time
is the time the first pathogen mutation occurs on an untreated host.
The migration time is the time of the first migration of the pathogen
mutant from an untreated to a treated host. To reduce the calculation
time, simulations were performed with the following parameter values:
r~0:8, D~0:2, n~10{3 , C~0:1, N~1, K~10000. In all simulations

the initial population size of the resident pathogen type is
X11(0)~(1{j)K and for all other types (i,j)=(1,1), Xij(0)~0.
doi:10.1371/journal.pone.0071926.g001

Emergence Time of a Mutant Overcoming a Treatment
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population size of pathogen type k on host type j increases by one. A

given mutation is able to defeat only one component of the

treatment. Since there is a mutation cost, and a high probability of

being outcompeted by the resident type, the mutant’s chance of

surviving grows if it is transmitted to a suitable treated host, where

there is no competition. We use the term ‘migration’ to refer to the

transfer of an individual pathogen from one host to another; this can

correspond to droplet-borne, sexually transmitted, or vector-borne

Figure 2. Emergence time as a function of the number of treatment components (N) for five different management strategies, Str1,
. . ., Str5. Pie charts (A) depict the composition of a diversified host population by the deployment of a three-component treatment (N~3): each
color corresponds to a host type listed below, and the proportion of each host type corresponds to a pie sector. Host type S includes untreated hosts,
types R1, R2, R3 and R1, R2, R3 - hosts receiving different monocomponent treatments, host types R1R2, R1R3, R2R3 receiving different intermediate
treatments, and type R1R2R3 consists of hosts receiving a three-component treatment. Host types with italic and underline names receive defeated
treatments that have already been overcome. For the detailed description of the management strategies, see the text in Materials and Methods
section. We used the same deployment principle for the N-component treatment, N[f1, . . . ,4g. In (B), the pathogen has low growth and migration
rates, r~0:3 and D~0:1. Emergence time takes high values for Str~4 and N~4, S4,4~13764:3, and for Str~5 and N~3, S5,3~12372:7o. In (C),
the pathogen has a low growth rate and a medium migration rate, r~0:3 and D~0:2. S4,4~4721:4 and S5,3~9440:18 are the highest values of the
emergence time. In (D), the pathogen has a medium growth rate and a low migration rate, r~0:8 and D~0:1. S4,4~9863:58 and S5,3~8451:13 are
the highest values of the emergence time. In (A-C), the other parameters are n~10{3 , K~10000 and C~0:1. In Str1, Str2 and Str5, the initial
population size of the resident pathogen type is X11(0)~(1{j)K and for all other types (i,j)=(1,1), Xij(0)~0. In Str3 and Str4, X11(0)~(1{j)K ,
Xkk(0)~jiK where k corresponds to a host type treated with a monocomponent treatment, and for all other types (i,j)=(1,1) and (i,j)=(k,k),
Xij(0)~0.
doi:10.1371/journal.pone.0071926.g002

Emergence Time of a Mutant Overcoming a Treatment
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disease transmission or the airborne transport of spores. Thus, when

an individual pathogen of type i migrates from host type j to host

type l, l=j, the population size of pathogen type i on host type j

decreases by one, and that of i on host type l increases by one, if the

host type l is suitable and can be infected. Otherwise the migrants

are lost and drop out of the pathogen dynamics. Note that migration

does not reduce the severity of the disease on the host population, in

a way that parallels the spread of spores in fungal diseases. The

succession of stochastic birth, death, mutation and migration events

provides a population-level description of the adaptation of a

pathogen population to a treatment-diversified host population.

Further, we define the transition probabilities for the above-listed

stochastic events in a formal way.

Transition Rates
Mutation and birth transition rates. An individual path-

ogen can duplicate itself either to produce a new individual

belonging to the same pathogen type or it can mutate into a new

pathogen type. Since we assume that a pathogen mutant occurs

during reproduction, a mutation event is considered as the

spontaneous birth of an individual pathogen. The emergence of a

individual pathogen i as a result of mutation depends on the

mutation probabilities of all the potential ancestors k of type i.

Then, the mutation transition rate is

Lij(X (t))~
X
k=i

pkirbkXkj(t), ð1Þ

where pki is the probability that pathogen type k will mutate into

pathogen type i, pii~0, r is the pathogen growth rate, and bk is the

fractional reduction of pathogen type k growth rate induced by

additional mutation costs. We assume that the pathogen population

undergoes one mutation per reproduction. Thus, if pathogen type i
can be attained only by means of several mutations, then pki~0,

else pki~n. Thus, the probability that a mutation will produce

pathogen type i becomes
P

k=i pki. We assume that successive

mutations decrease the pathogen growth rate in an additive way

[26,27]. We define a cost Cz (z [ ½1,N�) for each mutation, such that

the fractional reduction of pathogen type k growth rate results in

bk~1{
PN

Z~1 C1
z The individual k carries mutation zf g,

bk [ ½0,1�. Further, for the sake of simplicity, we assume that the

mutation cost Cz is the same for all mutations z, Cz:C. Thus,

pathogen types differ with regard to their fitness rbk, k [ ½1,2N �.
We define the birth transition rate without mutation of

pathogen type i on host type j, lij(X (t)), as a product between

the growth rate of the pathogen type, r, its fractional reduction

because of mutation cost, bi, the pathogen type size, Xij(t), and the

probability that no mutation will occur during a birth event, 1{pi,

where pi~
P

l=i pil is the probability to mutate:

lij(X (t))~rbi(1{pi)Xij(t): ð2Þ

Migration transition rate. Since a migration event is the

transfer of an individual pathogen from host type j into host type

k, we assume that its transition rate depends on the proportion of

host type k in the host population that has been diversified by a

management strategy. Thus, the migration transition rate is,

cijk(X (t))~jkDikXij(t), ð3Þ

where jk is the proportion of host type k, in particularP2N

k~1 jk~1, and Dik~D, if pathogen type i can infect the host

k, or Dik~0 if it cannot. Hereinafter, in numerical simulations, we

use D, as the principle descriptor of the migration process, and we

designate it the migration rate. When N~1, we have j1 the

proportion of untreated hosts and j2~1{j1 the proportion of

treated hosts, but for the sake of simplicity, we use j for j2 and

1{j for j1.

Death transition rate. We assume that the number of

individual pathogens can decrease as a result of competition or by

migration into unsuitable treated hosts. To include the negative

effect of competition on the pathogen dynamics, we use the term,

rbi(1{pi)Xij(t)

jjK

X2N

l~1

bl

bi

Xlj(t){1

0
@

1
A,

where K is the maximum population size of the pathogen

population; the maximum pathogen population size on host type j
is jjK . The competitive relationships between jth and lth

individuals are described by a generalized Lotka-Volterra equation

for 2N types. The competition intensity is determined by the ratio

bl=bi. The term ‘{1’ reflects the fact that an individual pathogen

cannot compete with itself. Since a migration event is modeled by

the death of an individual of pathogen type i on host type j, and

Figure 3. Emergence time as a function of the mutation cost.
The emergence time is plotted for a two-component treatment (N~2,
green, left axis) and a three-component treatment (N~3, red, right
axis) at low (solid line) and high (dotted line) migration rates. (A) The
management strategy splits the host population into a 1:1 mixture of
untreated and multicomponent-treatment receiving hosts (Str5, Fig.
2A). (B) Multicomponent treatment is deployed with other treatments
involving different combinations of the N{1 components, so that the
host type carrying the muticomponent treatment constitutes 50% of
the host population, and the other host types are present in equal
proportions (Str2, Fig. 2A). In (A) and (B), we let r~0:3, Dlow~0:05,
Dhigh~0:25, n~10{3 and K~10000. In all simulations the initial
population size of the resident pathogen type is X11(0)~(1{j)K , and
for all (i,j)=(1,1), Xij(0)~0.
doi:10.1371/journal.pone.0071926.g003

Emergence Time of a Mutant Overcoming a Treatment
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the birth of an individual pathogen of type i on host type k, the

mortality resulting from migration into unsuitable treated hosts is

defined as follows,

Xij(t)
X2N

m~1,
m=i

jm(D{Dim),

where D{Dim~0 if pathogen type i can infect the host m, or

D{Dim~D if it cannot. Then, the death transition rate of

pathogen type i on host type j is

mij(X (t))~
rbi(1{pi)Xij(t)

jjK

X2N

l~1

bl

bi

Xlj(t){1

0
@

1
A

zXij(t)
X2N

m~1,
m=i

jm(D{Dim):

ð4Þ

Interevent time. We define the probabilities of a birth,

mutation, migration and death event as their transition rates

divided by the sum of all transition rates. Following the definition

in [28], we assume the interevent time, the time between

successive events, to be an exponential random variable with

parameter:

X
ijk

lij(X (t))zLij(X (t))zcijk(X (t))zmij(X (t)): ð5Þ

Stochastic Model of Pathogen Adaptive Dynamics
The transition probabilities for the stochastic process

X (t), t [ 0,?½ Þf g, is P(X (tzDt)~vDX (t)~u), u, v [ U , where

X (t)~( . . . ,Xij(t), . . . ,Xik(t), . . . )~( . . . ,a, . . . ,b, . . . )~u

and

X (tzDt)~( . . . ,Xij(tzDt), . . . ,Xik(tzDt), . . . )

~( . . . ,azm, . . . ,bzn, . . . )~v

with i,j,k [ ½1,2N � and a,b,m,n [ f1,2, . . .g, as follows

P(X (tzDt)~v DX (t)~u)~

(lijzLij)Dtzo(Dt), if (m,n)~(1,0)

(likzLik)Dtzo(Dt), if (m,n)~(0,1)

cijkDtzo(Dt), if (m,n)~({1,1)

cikjDtzo(Dt), if (m,n)~(1,{1)

mijDtzo(Dt), if (m,n)~({1,0)

mikDtzo(Dt), if (m,n)~(0,{1)

1{(lijzLijzlikzLikzcikj

zcijkzmijzmik)Dtzo(Dt),
if (m,n)~(0,0)

o(Dt), else

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð6Þ

for azm§0, bzn§0, and for Dt sufficiently small. For the sake

of the simplicity of notation in (6), we have set transition rates,

lij(X (t))~lij , Lij(X (t))~Lij , cijk(X (t))~cijk, and mij(X (t))~mij ,

that are defined further by equations (2–4). We are interested in

the emergence time of a mutant pathogen that occurs on a host

receiving a multicomponent treatment:

S~ infft§0 : X2N 2N (t)w0g , ð7Þ

where X2N 2N (t) is the population size of pathogen type with N

mutations able to invade hosts carrying an N-component

treatment. Thus, the emergence time S represents the time during

which the multicomponent treatment is effective.

Model Analysis
In previous theoretical work, we analyzed the law of the

emergence time of a particular mutant in a Markov chain [29]. In

particular, we generalized conditions on the initial distribution

under which the emergence time of a particular individual follows

an exponential law. Here, to illustrate our theoretical findings, we

analyzed numerically the distribution law of the emergence time in

model (1–6). Simulations showed that, depending on the model

parameters and settings, the distribution law of the emergence

time can be closer either to an exponential or a normal law

(Supporting Information S1). If the host population includes

individuals carrying intermediate treatments, the emergence time

is well distributed around its mean as a normal law. In contrast,

the absence of intermediate treatments prolongs the emergence

time, resulting in an exponential law. The phenomenon intensifies

with the increase in the number of treatment components, N .

Moreover, to gain a deeper understanding of how the model

behaves, we carried out a global sensitivity analysis. The method

used and results obtained can be found in the Supporting

Information S2. Numerical simulations were then performed to

identify the conditions under which the pathogen adaptation to a

multicomponent treatment can be retarded.

Simulation Setup
The adaptive dynamics of the pathogen population is modeled

by tracking the population size of all pathogen types including the

appearances and disappearances during stochastic birth and death

processes. To perform numerical simulations, we used a range of

biologically-relevant parameter values corresponding to various

diseases (Table 1). Sensitivity analysis showed that the effects of

individual or joint variation of K and n on the pathogen dynamics

are predictable, and that their increase reduces the emergence

time. Thus, we fixed their values for the numerical simulations.

We varied the values of the other life-cycle parameters of the

pathogen population and properties of the management strategies.

Each simulation was run until an escape mutant emerged on a

host receiving the N-component treatment. In total, 1734

parameter sets were tested, and for each set, 1000 simulations

were run to estimate the mean emergence time. The estimation of

the confidence intervals of the emergence time means showed that

they were significantly different. Since both the error bars and the

confidence intervals were very small, they have been omitted in

the figures presenting simulation results.

The role of the proportion of the host treated in the

pathogen adaptive dynamics. To study the behavior of the

emergence time, we first estimated the waiting time for the first

emergence of a mutant pathogen individual on a monocomponent

treated host, N~1. At time t~0, the host population was split into

two different types: untreated hosts and treated hosts, while the

pathogen population at this time consisted of the resident type

only. We varied the proportion of treated hosts j [ f0:1,0:15,
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PLOS ONE | www.plosone.org 6 August 2013 | Volume 8 | Issue 8 | e71926



0:2,0:25,0:3,0:35,0:4,0:45,0:5,0:55,0:6,0:65,0:7,0:75,0:8g, the

pathogen growth rate r [ f0:3,0:4,0:5,0:6,1,2,3,6,12g, and the

migration rate D [ f0:05,0:75,0:1,0:125,0:15,0:175,0:2,0:225,
0:25,0:275,0:3g (Fig. 1). We fixed the mutation cost C~0:2, the

maximum pathogen population size K~10000 and the mutation

rate n~10{5. The initial population size of the resident type on

the untreated hosts was set to (1{j)K , while the sizes of the other

types were zeroed. Then, we studied the emergence time behavior

when the number of treatment components was increased (not

illustrated). We kept the management strategy and simulated

pathogen adaptation for N [ f2,3g, five proportions of treated

hosts, j [ f0:1,0:3,0:5,0:7,0:9g, the growth rate r~0:8, the

migration rate D~0:2, the mutation cost C~0:1, the maximum

pathogen population size K~10000, the mutation rate n~10{3,

and the same initial conditions.

The effect of management strategies on the durability of

the multicomponent treatment. To study the effect of the

management strategy of N-component treatment on its durability,

we varied the number of treatment components N [ f1,2,3,4g for

five distinct strategies, Str [fStr1, Str2, Str3, Str4, Str5g, and

for three couples (r,D) [ f(0:3,0:1),(0:3,0:2),(0:8,0:1)g (Fig. 2).

The first management strategy, Str1, splits the host population into

equal proportions of a maximum number of types, 2N (Fig. 2A). In

other words, the number of hosts receiving the multicomponent

treatment is reduced to 1=2N , and they are mixed with untreated

hosts and hosts receiving monocomponent and intermediate

treatments. It should be recalled that an intermediate treatment

includes only some of the available N treatment components. We

then progressively modified the conditions under which the

multicomponent treatment is used in the management strategy.

First of all, in Str2 we increased the proportion of hosts treated

with multicomponent treatment to 1=2 of the host population.

Next, in Str3, we assumed that monocomponent treatments had

already been overcome by the pathogen. In Str4, we eliminated

intermediate treatments in order to analyze their effect on the

pathogen adaptation rate. Finally, in Str5, we left only untreated

hosts and hosts receiving a multicomponent treatment in equal

proportions. We fixed the other parameter values as follows: the

mutation cost C~0:1, the maximum pathogen population size

K~10000, and the mutation rate n~10{3. The initial population

size of the resident pathogen on the untreated hosts was set to j1K
for all strategies. In Str3 and Str4, the population size of already-

adapted pathogen types was set to jiK , where i is the type of host

that has received a defeated treatment.

The role of the mutation cost. In the last part we studied

the effect of the mutation cost C [ f0,0:1,0:2,0:3,0:4,0:5,
0:6,0:8,0:9g on the emergence time at the following parameter

values: the number of component treatments N~1, the propor-

tion of hosts treated, j [ f0:2,0:5,0:8g, the growth rate,

r [ f0:3,12g, the migration rate, D [ f0:05,0:15,0:25g, the

maximum pathogen population size K~10000, and the mutation

rate n~10{5 (not illustrated). The mutation cost impact

C [ f0,0:1,0:2,g was also studied at the number of treatment

components N[f2,3g for the treatment strategy Str

[fStr2, Str5g, the growth rate, r~0:3, the migration rate,

D [ f0:05,0:25g, the maximum pathogen population size

K~10000, the mutation rate n~10{3, and the initial population

size of the resident pathogen type on the untreated hosts was set to

jK (Fig. 3).

Model implementation. We applied the Gillespie algorithm

[30] to track the exact trajectories of the population size of

pathogen types, Xij(t), driven by the birth and death process.

Since the algorithm is computationally expensive for large

populations, we used a Gillespie method up to a certain population

size and then, when the population size of any pathogen type

reached high values and approached its equilibrium, we used its

deterministic equilibrium calculated from the corresponding

system of differential equations:

dXij(t)

dt
~lijzLij{mij{

X
k=j

cijkz
X
l=j

cilj ,

for all i,j [ ½1,2N �2:
ð8Þ

Indeed, it has been shown that a birth and death process

converges to a continuous diffusion process when the population

size is high [31]. To test our algorithm, we compared it to some

exact trajectories using Student’s t-test. The model was imple-

mented in C++ using Code Blocks and GNU GCC compiler.

Results

Emergence Time as a U-shaped Function of the
Proportion of the Host Treated

Numerical simulations show that in the context of a two-type

host population including monocomponent, treated and untreated

individuals, the emergence time is a U-shaped function of the

proportion of the hosts treated, j (Fig. 1A). We see that at the fixed

value of r, the highest values of the emergence time function can

correspond to either low or high j values (Fig. 1A). The impact of

the proportion of the host treated on the emergence time depends

on both the migration, D, and growth, r, rates of the pathogen

population. Figure 1B summarizes the responses of the emergence

time to the variation of r, D and j. At most combinations of r and

D, the emergence time is longer when either low, jv0:3, or high,

jw0:7 proportions of the hosts were treated. However, when D
has a medium or high value, Dw0:1, and r are low, rv0:5, the

emergence of an escape mutant can be impeded only by treating

high proportions of the host. For low Dv0:1, and high rw1
values, small proportions provide a better control of emergence,

whereas for high Dw0:2, coupled with high rw1, at any

proportion the emergence time is short and we cannot therefore

impede rapid pathogen adaptation. If treated hosts are subjected

to a multicomponent treatment, the emergence time keeps its U-

shape versus j, but an increase in the component number prolongs

the emergence time. In contrast to the impact of migration and

growth rates on the emergence time, the maximum pathogen

population size, K , affects only the values of the emergence time

function, but not its shape. An increase in K speeds up the

pathogen adaptation.

Our model also demonstrates how mutation and migration

processes drive the emergence time (Fig. 1C). The proportion of

hosts treated, j, determines the importance of each process in

pathogen adaptation. When j is small, the time to mutation is

short and the time to migration is long. As j increases, the

mutation time grows, while the migration time decreases. If small

proportions of the hosts are treated, the emergence time is the sum

of the mutation time and the migration time, whereas for high

proportions the emergence time is greater than this sum.

Management Strategies and the Durability of the
Multicomponent Treatment

We then varied the treatment strategy and the values of

pathogen life-cycle parameters to three pairs of the growth and

migration rates and four different numbers of treatment compo-
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nents N[f1,2,3,4g. To investigate the impact of the management

strategy on the durability of the multicomponent treatment, we

considered five distinct management strategies, fStr1, Str2,
Str3, Str4, Str5g, that split the host population into different

proportions of various types, jj (Fig. 2A). The strategies were

designed to illustrate the effect of intermediate treatments and the

presence of already defeated treatments on the durability of N-

component treatment. We assume that this treatment can either

be deployed alone or used simultaneously with other treatments

involving various combinations of the same components (Fig. 2A).

Thus, a management strategy can deploy a N-component

treatment with monocomponent treatments, N~1, and various

intermediate treatments with combinations of 2 to N{1
components. Figure 2 shows that the emergence time increases

with the number of components in a treatment. Interestingly, the

deployment mode of a multicomponent treatment also has a major

impact on the rate of pathogen adaptation. As the proportion of

the hosts carrying N-component treatment increases, the emer-

gence time of an escape mutant increases progressively from Str1

to Str2. Nevertheless, the emergence time decreases if the

pathogen has already adapted to hosts receiving monocomponent

treatments, as in Str3. When there are no hosts receiving

intermediate treatments, Str4, the emergence time increases if

the number of components is equal to or greater than 3.

Treatment strategy Str5, which only divides the host population

into two types: untreated hosts and treated hosts receiving

multicomponent treatment, is the most durable. The increase in

the growth rate raises the probability of mutation, and thus

shortens the emergence time in any strategy, especially if the

pathogen has accumulated several mutations on the same hosts

(Fig. 2D). Figure 2C shows that the migration rate has a more

complicated impact on the emergence time than the growth rate:

the increase in the migration rate prolongs the emergence time if

the degree of host diversification is high, as in strategies Str1, Str2

and Str3.

Impact of the Mutation Cost on the Emergence Time
We finally varied the mutation cost value for two management

strategies, Str2 and Str5, two migration rates and two numbers of

component treatments (Fig. 3). The model shows that an increase

in the mutation cost increases the time to emergence, but that the

intensity of the impact of the mutation cost depends on the

migration rate (Fig. 3A). Indeed, the higher migration rate, the

slower the increase in the emergence time with the increase in

mutation cost. It is easy to see from Fig. 3A that the effect of an

increase in the migration rate becomes more pronounced when

the number of treatment components increases from N~2 to 3.

For a monocomponent treatment, N~1, the mutation cost has

almost no effect on the emergence time at high values of the

migration rate (not illustrated). However, this can be altered by the

deployment mode of the multicomponent treatment. Figure 3B

demonstrates that we can observe a delay in the emergence time at

high migration rates, if the management strategy divides the host

population in many types, e.g. as Str2 (Fig. 2A). As before, the

effect of an increasing migration rate intensifies with the number of

treatment components.

Discussion

In this article, we have developed a stochastic framework for

estimating the speed of pathogen adaptation in response to a

population-wide management strategy deploying a multicompo-

nent treatment in a host population, such as combination

therapies, combination vaccines/chemicals and cultivars carrying

multiple resistance genes. Our model provides a basic under-

standing of how life-cycle parameters of the pathogen population

and controllable parameters of a management strategy affect the

speed of pathogen adaptation to a multicomponent treatment.

Our results reveal the importance of coupling stochastic mutation

and migration processes, and illustrate how their stochasticity can

alter our view of the principles of the management of the pathogen

adaptive dynamics at the population level.

Multi-type birth and death processes are a powerful tool for

modelling adaptive pathogen dynamics, since they can easily be

adapted to many biological situations by adjusting the transition

rates [28,32]. This approach makes it possible to monitor the

stochastic dynamics of small populations, such as an escape

mutant. Moreover, the approach makes it possible to derive an

analytical estimation of the emergence time [33] to study the

treatment durability. Note that the model results can be affected

by transition functions. However, a comparative analysis of the

impact of various transition functions on the model dynamics was

beyond the scope of our study. Nevertheless, our choice of

transition functions allowed us to track the pathogen adaptive

dynamics using just a small number of parameters. Moreover,

parameters can easily be assessed from epidemiological data on the

pathogen dynamics, for instance the dynamics of its population

size, pathogen dispersal, and using information about the

treatment used, such as the probability that a pathogen will

mutate in order to escape the treatment, and the mutation cost per

mutation. Note that mutation probability and pathogen popula-

tion size, should be estimated most precisely, since the model is

sensitive to their variations (see Supporting Information S1). It is

also known that the pattern of a spatially heterogeneous treatment

can have an impact on the pathogen adaptive dynamics

[12,16,34]. Since our model is non-spatial, it can only be applied

when a treatment-diversified host population is well-mixed, and its

spatial structure can be ignored. To preserve the simplicity of the

model and the coherence of the results, we did not consider either

compensatory mutations or recombinations that could accelerate

the emergence of mutants escaping a multicomponent treatment

[4,18,35,36].

The Proportion of the Host Treated and the Speed of
Pathogen Adaptation

Our model shows that the optimum proportion of hosts treated

in order to impede the adaptation of the pathogen population

depends on the interplay between the intensity of pathogen

reproduction and the migration processes. If both processes have

high rates, then durable control is impossible, and the treatment

will soon be overcome. This finding is consistent with empirical

results showing that plant pathogens, such as rust and mildew,

which have a high gene flow and large population size, have a long

history of defeating major resistance genes and their pyramids [1].

If the migration rate prevails over the pathogen growth rate, then

the proportion of hosts treated should be high enough to reduce

the size of the resident pathogen population on the untreated

hosts, and thus to reduce the probability of mutation. Conversely,

when growth rate dominates over migration rate, the proportion

of the host treated should be low in order to reduce the probability

of migration. Overall, the proportion of hosts treated should be

adjusted to control the recessive process: mutation or migration. If

the two processes are equivalent, the rate of pathogen adaptation

to treatment can be slowed down by treating either small or high

proportions of the host. This conclusion is the same as that

reached from the fundamentally different model of van den Bosch

and Gilligan [13], which is deterministic and it does not take the

mutation cost into account. However, the extension of our model
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to a multicomponent treatment showed that the result can be

generalised: when the number of treatment components increases,

the emergence time function keeps its U-shaped form. In the

context of adaptation to a multicomponent treatment, an

individual pathogen has to cope with more than one mutation,

which makes the emergence of an escape mutant on untreated

hosts a rare event, especially when the size of the untreated host

subpopulation is small. Because of the additive mutation cost,

mutants do not live for long on the untreated hosts, which reduces

the probability of the successive migrations onto the treated host,

especially when the frequency of treated hosts is low.

To be sustainable, a treatment strategy has to control not only

the spread of the epidemic, but also the adaptive dynamics of the

pathogen. Theoretical studies of epidemiology and biological

invasions focusing on the control of population spread demon-

strate that there is a lower limit for the proportion of treated hosts

that can minimize this population expansion, which is claimed to

be about seventy percent [37–40]. Our results suggest that this

proportion does not offer a durable control strategy for a pathogen

population with high reproduction and low migration rates, since

it would simply accelerate its adaptation. Epidemiological models

that ignore pathogen migration and the stochasticity of pathogen

dynamics show that the optimal vaccination coverage that

prevents the emergence of a drug resistant pathogen strain is

about 1{1=R0 [41], where R0 is the basic reproductive number.

Note that this estimation includes intermediate proportions of

treated hosts that, according to our results, can accelerate

pathogen adaptation and thereby reduce the vaccine life span.

In plant epidemiology, Ohtsuki and Sasaki [39] concluded that if

there is a high risk of the development of virulent pathogen that

can infect the resistant host, the fraction of resistant crop should

never exceed about twenty-five percent for any pathogen having

R0w1. Linking the characteristics of the plant resistance level with

the epidemic dynamics, Fabre et al. [17] have shown that low

cropping ratios of a resistant plant can prolong its durability.

However, our model suggests that small fractions of the resistant

crop can speed up pathogen adaptation if the pathogen population

with the low growth rate is easily able to migrate. Thus, we can

conclude that accounting for the stochastic migration process in

modelling pathogen adaptive dynamics alters the extant criteria

for the critical proportion of treated hosts that could impede

pathogen adaptation. Superimposing our results over epidemiol-

ogy criteria suggests the conditions required for the optimum

proportion of the treated hosts leading to the control of both the

evolutionary and invasive dynamics of epidemics.

Deployment of a Multicomponent Treatment in a
Population-wide Management Strategy

It is commonly thought that the number of components in a

treatment has a significant impact on the speed of pathogen

adaptation [42–45]. Our model shows that in fact the adaptation

speed depends on a population-wide management strategy of the

multicomponent treatment, i.e. on the proportion of hosts treated

and on the presence of hosts receiving intermediate treatment.

Intermediate treatments, including only some of the components,

make it possible for an escape mutant to establish an abundant

population and to accumulate the number of mutations required

to overcome a multicomponent treatment. Our results demon-

strate that the deployment of a purely multicomponent treatment

is the most effective strategy for impeding pathogen adaptation,

but if we cannot guarantee that no hosts receive intermediate

treatments, it is better to deploy treatment components separately,

thereby diversifying the host population.

Our model suggests that if a multicomponent treatment is

deployed simultaneously with treatments that have already been

overcome, the adaptation rate increases greatly. Indeed, fewer

mutations are needed to create an escape mutant able to invade

hosts receiving the multicomponent treatment. However, deploy-

ing treatments involving three or more defeated components and

their combinations can still be effective, on condition that they

have been overcome independently, and if no hosts receive

intermediate treatments. The absence of intermediate treatments

slows down pathogen adaptation, since the pathogen has to

accumulate all the necessary mutations and then migrate

successfully, whereas if some hosts receive the defeated mono-

component treatment, this limits the emergence of an escape

mutant.

Our results explain the empirical observations of the stimulation

of rapid pathogen adaptation as a result of using intermediate

treatments. Despite the fact that our results correspond to

instantaneous host diversification in response to treatment, we

can draw an analogy with situations in which various treatments

are deployed successively, thus diversifying the host population

over time. For instance, to control Bremia lactucae, breeders add a

new resistance gene to the lettuce cultivar after each rather rapid

breakdown of lettuce resistance by the pathogen [46]. In other

words, a new lettuce cultivar carrying several defeated resistance

genes and one undefeated resistance gene is deployed just after a

cultivar has lost its resistance. This can be viewed as corresponding

to an intermediate treatment, and it allows the pathogen to

overcome a new resistant cultivar by just a single mutation. Since

our model links pathogen adaptive dynamics to controllable

parameters of treatment strategies, it can be applied to the design

of sustainable strategies for the selection and deployment of new

multigene resistant plants, even if they carry defeated resistance

genes.

Mutation Cost and Treatment Durability
Our model confirms the fact that the mutation cost increases the

emergence time [4,47–49], and that it is not the only parameter

controlling the emergence of an escape mutant [50]. Moreover,

our model shows that a high migration rate can mitigate the

impact of the mutation cost on the emergence time. Indeed, the

mutation cost essentially determines the intensity of the compe-

tition between resident and mutant pathogen types on the

untreated hosts. When the migration rate is high, mutants more

easily escape the fate to be outcompeted by resident individuals.

When the migration rate is low, the probability of escaping is low,

since a mutant outcompeted by a resident type is not able to

develop an abundant population to produce a migration event.

Interestingly, management strategies that split up the host

population into numerous types can enhance the impact of the

mutation cost on the pathogen adaptation speed, even if the

pathogen has a high migration rate. In the diversified host

population, the number of suitable hosts for intermediate mutants

is greatly reduced, and high migration rates increase the

probability of migrating onto unsuitable hosts resulting in

extinction, thereby increasing the emergence time. We conclude

that we should abandon the generally-accepted belief that

mutation cost determines treatment durability [51], since, as we

have seen, the biological context can greatly alter the impact of the

mutation cost on the adaptation rate.

Conclusions
In this paper we show that considering the interactions between

two stochastic evolutionary forces, mutation and migration, can

increase our understanding of the adaptation process at the
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population level. Since our model is appropriate for diseases with

both direct and vector-borne transmission, it can be applied to

designing sustainable, population-wide management strategies for

a large class of harmful organisms. The model can be easily

extended to the description of progressive pathogen adaptation,

such as declining efficacy of imperfect vaccines or the erosion of

partial cultivar resistance. Moreover, due to its simple structure,

the model can be modified to account for the interactions between

treatment components in order to study their effects on the speed

of pathogen adaptation.

Supporting Information

Supporting Information S1 The distribution law of the
emergence time S (7). The model shows that for strategies Str5

and Str4, when the number of treatment components, N,

increases, the law of the emergence time approaches an

exponential one. Conversely, when the number of treatment

components is small, the law moves away from an exponential

distribution and towards a normal one.

(PDF)

Supporting Information S2 A variance-based global
sensitivity analysis of model (1–6). We find that all

parameters and almost all the interactions between them have a

significant effect on the emergence time S.

(PDF)
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