Agglomeration process engineering approach to evaluate the ability of different technologies to agglomerate food powder.

To cite this version:

Ines Hafsa, Sandra Mandato, Charleyne Lafond, Serge Mejean, Anne Dolivet, et al.. Agglomeration process engineering approach to evaluate the ability of different technologies to agglomerate food powder.. 5. International Symposium on Spray Dried Dairy Products, Jun 2012, Saint Malo, France. 2012. hal-01209387

HAL Id: hal-01209387
https://hal.archives-ouvertes.fr/hal-01209387

Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Agglomeration process engineering approach to evaluate the ability of different technologies to agglomerate food powder

HAFSA Ines (1), MANDATO Sandra (1), LAFOND Charline (1)
MEJEAN Serge (2), SCHUCK Pierre (2), JEANTET Romain (2), KIM Su Jin (3), CHEVALLIER Sylvie (3)
LE BAIL Alain (3), RUIZ Thierry (1), and CUQ Bernard (1)

(1) UMR IATE, Montpellier.
(2) UMR STLO, Rennes.
(3) UMR GEPEA, Nantes.
Summary

1. Product context
 - Food powders
 - Food powders **agglomeration**

2. Scientific contexts
 - Grains elaboration - Growth and drying
 - Elaboration **mechanisms**
 - Reactive food powders

3. Materials and Methods
 - Raw materials
 - Agglomeration **processes**
 - Product characterization

4. Results
 - Agglomeration yields
 - Agglomerates **characterization**

5. Conclusion
1. Product context

Context - Food Powders

- **Granulated sugar**
- **Table salt**
- **Cocoa**
- **Wheat flour**

Food powders

Food powders functionalities

- **Natural** powders (*flours*, *salt*, etc.)
- **Transformed** and formulated powders (*instant coffee*, *dried milk*)

- **Structuring** (*thickness*, *gelling agent*, etc.)
- **Organoleptic qualities** (*flavours*, *colouring agent*, *additives*, etc.)
- **Nutritional composition** (*vitamins*, *minerals*, etc.)
1. Product context

Context - Food Powders Agglomeration

Agglomerated food powders

- Couscous grains
- Instant coffee
- Food flavours
- Infant formula

Agglomeration

Process where fine particles are bound together into larger granules

Processes

- Spray drying
- Fluidized bed
- Low shear mixer
- High shear mixer

Objectives

- Dust free powders
- Particle design *(size, shape, porosity)*
- Flow properties
- Solubility
- Heat and mass transfer
- etc.
Summary

1. **Product context**
 - Food powders
 - Food powders agglomeration

2. **Scientific contexts**
 - Grains elaboration - Growth and drying
 - Elaboration mechanisms
 - Reactive food powders

3. **Materials and Methods**
 - Raw materials
 - Agglomeration processes
 - Product characterization

4. **Results**
 - Agglomeration yields
 - Agglomerates characterization

5. **Conclusion**
Grains elaboration - Growth & Drying

2. Scientific contexts

Primary particles → Sticky particles → Wet grains → Consolidated grains → Stable grains

Wetting → Nucleation → Growth → Coalescence → Consolidation → Attrition → Drying → Shrinkage

Energy → Water
2. Scientific contexts

Growth & Drying – Reactive food powders

- **Primary particles** → **Sticky particles** → **Wet grains** → **Consolidated grains** → **Stable grains**
 - **Wetting** → **Nucleation** → **Growth & Coalescence** → **Consolidation & Attrition** → **Drying & Shrinkage**

Mechanisms

- **Dispersion** → **Coating**
- **Droplets** → **Nucleation**
- **Collision/Friction** → **Breakage** → **Shrinkage**

Food powders

- **Adhesion (capillary force)**
 - **Viscous force & Plasticization**
 - **Mass transfer, soluble, Glass transition**
- **Heat & mass transfers**
 - **Glass transition**
Spray drying/ Fluidized bed: Semolina is agglomerated when tap water is sprayed under a flow of hot air.

[Hydration + Growth + Reaction + Drying]
2. Scientific contexts

Decoupled approach

Mechanical energy

Primary particles → Sticky particles → Wet grains → Consolidated grains → Stable grains

Thermal energy

Energy → Water → Energy

Horizontal/Vertical low shear mixer:
Spraying water on the semolina and mixing using a blade

[Hydration + Growth]

Air dryer:
Water removing with shrinkage

[Drying]
Decoupled approach

Mechanical energy
- Primary particles
- Sticky particles
- Wet grains

Thermal energy
- Energy
- Water
- Consolidated grains
- Stable grains

2. Scientific contexts

Horizontal/Vertical low shear mixer: Spraying water on the semolina and mixing using a blade

[Hydration + Growth]

Steam cooking: Starch gelatinization and reticulation

[Reaction]

Air dryer: Water removing with shrinkage

[Drying]
Summary

1. Product context
 - Food powders
 - Food powders agglomeration

2. Scientific contexts
 - Grains elaboration - Growth and drying
 - Elaboration mechanisms
 - Reactive food powders

3. Materials and Methods
 - Raw materials
 - Agglomeration processes
 - Product characterization

4. Results
 - Agglomeration yields
 - Agglomerates characterization

5. Conclusion
3. Materials and Methods

Coupled approach

Raw Materials: Durum wheat semolina - Industrial couscous samples (1 & 2)

Pneumatical energy – Thermal energy

Spray dryer *MSD 20, GEA- Niro (Bionov, Rennes)*

- 0.63 mm diameter nozzle/ Spraying rate = 61 L/h
- Two-fluid flat spray nozzle/ Spraying rate = 11 L/h
- Air temperatures: $T^\circ_{\text{inlet}} = 107^\circ C$/$T^\circ_{\text{outlet}} = 38^\circ C$
- Semolina flow rate = 30 Kg/h

[Hydration + Growth + Reaction + Drying]

Fluidized bed *ProCell 5, Glatt (Bionov, Rennes)*

- Two-fluid flat spray nozzle/ Spraying rate = 5.6 L/h
- Air Temperature : $T^\circ = 80^\circ C$
- Air flow rate : 60 m^3/h
- Semolina = 2 Kg

[Hydration + Growth + Reaction + Drying]
3. Materials and Methods

Decoupled approach

Raw Materials: Durum wheat semolina - Industrial couscous samples (1 & 2)

Mechanical energy – Thermal energy

Horizontal mixer *Sarcom (Supagro, Montpellier)* – **Air dryer** *Afrem (Supagro, Montpellier)*

- Primary particles
 - Mono-fluid flat spray nozzle/ Hydration = 40% db
 - Blade speed = 60 rpm
 - Semolina = 0.8 Kg

- [Hydration + Growth]

- Stable grains
 - Air temperature: $T = 50^\circ C$
 - Air Humidity: RH = 50%
 - Time = 90min

- [Drying]

Vertical mixer *VMI (Supagro, Montpellier)* – **Air dryer** *Afrem (Supagro, Montpellier)*

- Primary particles
 - Mono-fluid flat spray nozzle/ Hydration = 40% db
 - Blade speed = 80 rpm
 - Bowl speed = 9 rpm
 - Semolina = 1.5 Kg

- [Hydration + Growth]

- Stable grains
 - Air temperature: $T = 50^\circ C$
 - Air Humidity: RH = 50%
 - Time = 90min

- [Drying]
3. Materials and Methods

Decoupled approach

Raw Materials : Durum wheat semolina - Industrial couscous samples (1 & 2)

Mechanical energy – Steam cooking – Thermal energy

Vertical mixer VMI (Supagro, Montpellier) – Steam cooker – Air dryer Afrem (Supagro, Montpellier)

- **Hydration** = 35%db
 - Semolina = **1.5 Kg**
 - **Hydration + Growth**

- **Temperature** : T= 100°C
 - Pressure: P = 1bar
 - Time = 15min
 - **Reaction**

- **Air temperature** : T= 70°C
 - Air Humidity : RH = 80%
 - Time = 60min
 - **Drying**

Stable grains
3. Materials and Methods

Product characterization

- Molecular scale
 - Water content

- Macromolecular scale
 - Starch gelatinization (DSC)

- Microstructural scale
 - External microstructure (SEM)
 - Internal microstructure (XMT)
 - Compactness

- Functional attributes
 - Swelling capacity
 - Cohesion (FT4)
 - Coefficient of friction (FT4)
Summary

1. Product context
 - Food powders
 - Food powders agglomeration

2. Scientific contexts
 - Grains elaboration - Growth and drying
 - Elaboration Mechanisms
 - Reactive food powders

3. Materials and Methods
 - Raw materials
 - Agglomeration processes
 - Product characterization

4. Results
 - Agglomeration yields
 - Agglomerates characterization

5. Conclusion
4. Results

Results – Agglomeration yield

Agglomeration yield

<table>
<thead>
<tr>
<th>Process</th>
<th>Technology</th>
<th>Agglomeration yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupled process</td>
<td>Spray dryer</td>
<td>15.7</td>
</tr>
<tr>
<td></td>
<td>Fluidized bed</td>
<td>47.6</td>
</tr>
<tr>
<td>Decoupled process</td>
<td>Horizontal mixer - dryer</td>
<td>17.7</td>
</tr>
<tr>
<td></td>
<td>Vertical mixer - dryer</td>
<td>13.7</td>
</tr>
<tr>
<td>Decoupled & reaction process</td>
<td>Vertical mixer - cooker - dryer</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>Industrial 1</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>Industrial 2</td>
<td>?</td>
</tr>
</tbody>
</table>

- **Agglomerates were obtained** whatever the technology used.
- **It is possible** to produce couscous grains using a spray drying chamber!!!
- **Decoupled & reaction processes** show the lowest agglomeration yield: *The reaction step (steam-cooking) has no effect on the agglomeration yield.*
4. Results

Results – Agglomerates characterization

Molecular & macromolecular scales

<table>
<thead>
<tr>
<th>Process</th>
<th>Technology</th>
<th>Water content(%)db</th>
<th>Starch gelatinization (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupled process</td>
<td>Spray dryer</td>
<td>10.2 (0.1)<sup>c</sup></td>
<td>13.8 (1.9)<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>Fluidized bed</td>
<td>10.2 (0.1)<sup>c,b</sup></td>
<td>10.0 (0.9)<sup>a</sup></td>
</tr>
<tr>
<td>Decoupled process</td>
<td>Horizontal mixer - dryer</td>
<td>9.3 (0.1)<sup>a</sup></td>
<td>14.4 (1.3)<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>Vertical mixer - dryer</td>
<td>10.0 (0.1)<sup>b</sup></td>
<td>14.7 (1.3)<sup>b</sup></td>
</tr>
<tr>
<td>Decoupled & reaction process</td>
<td>Vertical mixer - cooker - dryer</td>
<td>9.4 (0.1)<sup>a</sup></td>
<td>100 (0.1)<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>Industrial 1</td>
<td>10.5 (0.1)<sup>d</sup></td>
<td>100 (0.1)<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>Industrial 2</td>
<td>10.8 (0.1)<sup>d</sup></td>
<td>100 (0.1)<sup>c</sup></td>
</tr>
</tbody>
</table>

- **No differences in water contents** between the products: all the technologies used are able to remove water.
- **Decoupled & reaction processes** induce the highest **starch gelatinization** values: the reaction step (steam cooking).
Results – Agglomerates characterization

Microstructural scale

<table>
<thead>
<tr>
<th>Process</th>
<th>Technology</th>
<th>Compactness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupled process</td>
<td>Spray dryer</td>
<td>0.856 (0.017)<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>Fluidized bed</td>
<td>0.810 (0.003)<sup>a</sup></td>
</tr>
<tr>
<td>Decoupled process</td>
<td>Horizontal mixer - dryer</td>
<td>0.817 (0.016)<sup>a,b</sup></td>
</tr>
<tr>
<td></td>
<td>Vertical mixer - dryer</td>
<td>0.794 (0.005)<sup>a</sup></td>
</tr>
<tr>
<td>Decoupled & reaction process</td>
<td>Vertical mixer - cooker - dryer</td>
<td>0.879 (0.021)<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>Industrial 1</td>
<td>0.866 (0.002)<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>Industrial 2</td>
<td>0.836 (0.010)<sup>b,c</sup></td>
</tr>
</tbody>
</table>

- Significant differences in compactness are observed.
- Decoupled & reaction processes induce the highest compactness values: the reaction step (steam cooking) generates a higher microstructural changes.
4. Results

Results – Agglomerates characterization

Microstructural scale (SEM)

- **Spray dryer** *(magnifications X50 and X150)*
- **Vertical mixer - Air dryer** *(magnifications X50 and X150)*

- **Differences** in the **shape and surface** of the grains.
- **Coupled processes** generate agglomerates formed with only large size primary particles: *(segregation effects).*
- **Decoupled processes** generate agglomerates formed with both large particles / small particles.
4. Results

Results – Agglomerates characterization

Microstructural scale (SEM)

- Decoupled & reaction processes induce **differences in the external surface**: *the reaction step (steam cooking) induce a partly melted semolina particles at the surface with a more regular faces.*
4. Results

Results – Agglomerates characterization

Microstructural scale (XMT)

- Agglomeration processes generate differences in voids distribution within the agglomerates.
Results – Agglomerates characterization

Functional attributes

<table>
<thead>
<tr>
<th>Process</th>
<th>Technology</th>
<th>Swelling capacity ml moist product/100g dry product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupled process</td>
<td>Spray dryer</td>
<td>241 (1)<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>Fluidized bed</td>
<td>250 (0)<sup>d</sup></td>
</tr>
<tr>
<td>Decoupled process</td>
<td>Horizontal mixer - dryer</td>
<td>231 (1)<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>Vertical mixer - dryer</td>
<td>234 (1)<sup>b</sup></td>
</tr>
<tr>
<td>Decoupled & reaction process</td>
<td>Vertical mixer - cooker - dryer</td>
<td>345 (0)<sup>e</sup></td>
</tr>
<tr>
<td></td>
<td>Industrial 1</td>
<td>325 (0)<sup>f</sup></td>
</tr>
<tr>
<td></td>
<td>Industrial 2</td>
<td>400 (0)<sup>g</sup></td>
</tr>
</tbody>
</table>

- **Decoupled & reaction processes** induce the highest swelling capacity values: The reaction step (steam cooking) leads to higher starch gelatinization levels which enhances water absorption and swelling capacity.
Functional attributes

<table>
<thead>
<tr>
<th>Process</th>
<th>Technology</th>
<th>Coefficient of friction μ (with standard deviation)</th>
<th>Cohesion C (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupled process</td>
<td>Spray dryer</td>
<td>0.294 (0.023)<sup>a,b</sup></td>
<td>0.297 (0.045)<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>Fluidized bed</td>
<td>0.324 (0.021)<sup>b</sup></td>
<td>0.316 (0.043)<sup>b</sup></td>
</tr>
<tr>
<td>Decoupled process</td>
<td>Horizontal mixer - dryer</td>
<td>0.351 (0.015)<sup>b</sup></td>
<td>0.340 (0.045)<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>Vertical mixer - dryer</td>
<td>0.268 (0.012)<sup>a</sup></td>
<td>0.266 (0.064)<sup>a,b</sup></td>
</tr>
<tr>
<td>Decoupled & reaction process</td>
<td>Vertical mixer - cooker - dryer</td>
<td>0.404 (0.028)<sup>c</sup></td>
<td>0.333 (0.034)<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>Industrial 1</td>
<td>0.438 (0.006)<sup>c</sup></td>
<td>0.366 (0.012)<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>Industrial 2</td>
<td>0.469 (0.043)<sup>c</sup></td>
<td>0.389 (0.119)<sup>b</sup></td>
</tr>
<tr>
<td>Semolina</td>
<td></td>
<td>0.600 (0.005)<sup>d</sup></td>
<td>0.191 (0.046)<sup>a</sup></td>
</tr>
</tbody>
</table>

- All the **processes** used reduce the frictional properties but slightly increase the cohesion values compared to native semolina particles.

\[\tau = \mu \sigma + C \]

Equation for Coulomb Law
Summary

1. Product context
 - Food powders
 - Food powders agglomeration

2. Scientific contexts
 - Grains elaboration - Growth and drying
 - Elaboration Mechanisms
 - Reactive food powders

3. Materials and Methods
 - Raw materials
 - Agglomeration processes
 - Product characterization

4. Results
 - Agglomeration yields
 - Agglomerates characterization

5. Conclusion
- All the investigated **processes** (coupled process, decoupled process, decoupled & reaction process) are **able to agglomerate** food powder to produce grains with different attributes.

- The **type and intensity of the energy** input (thermal energy, mechanical energy and pneumatical energy) affect the internal microstructure of the agglomerates (more or less compactness, differences in the voids distribution).

- The **reaction stage** (steam cooking) induces external and internal microstructure changes, because of the high gelatinization level of the starch granules.

- Semolina is a **reactive food powder** with low water solubility, different agglomeration results are expected with more soluble food powders (i.e milk powders).
Thank you for your attention