Soil bioindicators: how soil properties influence their responses and to select them in function of the site issues?

To cite this version:

Benjamin Pauget, Laurence Rougé, Antonio Bispo, Cécile Grand, Thierry Béguristain, et al.. Soil bioindicators: how soil properties influence their responses and to select them in function of the site issues?. SETAC Europe 25th Annual Meeting, May 2015, Barcelone, Spain. hal-01209261

HAL Id: hal-01209261
https://hal.archives-ouvertes.fr/hal-01209261
Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Soil bioindicators: how soil properties influence their responses and how to select them in function of the site issues?

1: Laboratoire Chrono-environnement, UMR UFC/CNRS 6249, Place Leclerc, 25030 Besançon Cedex
2: ingénierie DURABLE, 7 rue Armand Herpin-Lacroix, CS 73902, 35039 Rennes cedex.
3: ADEME, 20 avenue du Grésillé, B.P 90 406, 49 004 ANGERS cedex 01, France
4: LIEC UMR 7360 CNRS-Université de Lorraine, 54506 Vandoeuvre-lès-Nancy Cedex
5: LEB Aquitaine Transfert – ADERA, LBM UMR 5200, Université Bordeaux, Bâtiment A3, INRA Bordeaux Aquitaine CS20032, 71 avenue Edouard Bourlaux 33140 Villenave D’Ornon cedex
6: Université de Rouen UMR CNRS 6143 M2C, Place Emile Blondel 76821 Mont Saint Aignan
7: INRA- LMSE, Université de Bourgogne, UMR MGE, 17 rue sully, BP 86510, 21065 Dijon Cedex, France.
8: PEASSAC UR 251, INRA Versailles-Grignon. Route de Saint Cyr 78000 Versailles France.
9: CEFE UMR 5175, Université Paul Valéry Montpellier III, route de Mende, 34199 Montpellier cedex 5
10: IMBE, UMR CNRS 7263 - IRD 237, Faculté des Sciences de Saint-Jérôme, Marseille 13397 cedex 20
11: LGSE, UMR 5600 (EVUS), ENS des Mines de St-Etienne, 158 Cours Fauriel, 42023 Saint-Etienne, France.
12: Estipa, 3 rue du Tronquet BP 40118 76134 Mont Saint Aignan Cedex, France.
13: Laboratoire de PBV - IUT de Clermont-Ferrand - Université d’Auvergne, 15000 Aurillac, France.
14: IRD Bondy, UMR 211 BIOEMCO, 32, avenue Henri Varagnat, 93143 Bondy Cedex, France.
15: LGCgE-Lille 1, ENE, Université Lille Nord de France, F -59650 Villeneuve d’Ascq cedex. France
16: ELISOL Environnement, 2 place Viala, 34060 Montpellier cedex, France.
17: Université Rennes 1, UMR CNRS “Ecobio” 6553, Station Biologique, 35380 Paimport, France.

E-mail contact: benjamin.pauget@univ-fcomte.fr

1. Introduction

Despite no European directive exists for soil protection, this key component of ecosystem needs to be protected. To fill the lack of tools to monitor the soil threats and to assess the impact of soil management, biological indicators have been developed in the French program Bioindicators 2 (ADEME) and a website allowing selection of relevant bioindicators depending on the question asked achieved. On the 47 plots of 13 sites (agricultural, industrial and forest), the influence of soil characteristics and soil use on the response of 80 biological parameters (fauna, flora and microorganisms) have been assessed by using linear multivariate regressions.

2. Materials and methods

In order to identify the parameters influencing the responses of bioindicators, multiple linear regressions were developed as (Eq 1)

\[\log(Y + 1) = \log(A + 1) + \log(B + 1) + \ldots + z \]

where \(Y \) is the response of the bioindicator, \(A, B, \ldots \) represent the characteristics of the soil (physicochemical measurements and use, Table 1).

<table>
<thead>
<tr>
<th>Biological Indicators</th>
<th>Soil characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiology</td>
<td>Flora</td>
</tr>
<tr>
<td>Com. Fung.</td>
<td>Phosphat.</td>
</tr>
<tr>
<td>Com. Bact.</td>
<td>Xylase</td>
</tr>
<tr>
<td>Microb. Mol. B.</td>
<td>ADN 18 S</td>
</tr>
<tr>
<td>Microb. B.</td>
<td>Total Ergo.</td>
</tr>
<tr>
<td>Arylsulfatase</td>
<td>Free Ergo.</td>
</tr>
<tr>
<td>Deshydro.</td>
<td>Biolog RF</td>
</tr>
<tr>
<td>Urease</td>
<td>AWCD</td>
</tr>
<tr>
<td>Galactosidase</td>
<td>PLFA</td>
</tr>
</tbody>
</table>

Table 1: Biological and physico-chemical parameters used for the multiple linear regressions
All combinations of the 18 available soil parameters were tested. Only models having a maximum of five independent variables and a ΔAICc <2 (Akaike criterion) were selected to choose a model from this selection, the indicator officials had a choice of three methods: (i) by default the selected model corresponded to the first model with the lowest number of explanatory variables (parcimony), (ii) the selected model corresponded to the model with the largest number of soil characteristics (explanatory variable) correlated to biological variable (response variable), (iii) if none of the above methods was selected, then the model chosen was based on the expertise of the scientist who have developed the indicator, identifying the most appropriate regression.

3. Results and discussion

3.1. Influence of soil parameters on the biological responses

The multiple linear regressions highlighted the influence of pool of soil parameters on the response of the bioindicators. By focusing on the occurrences of the parameters in equations, a clear influence of the soil texture (% clay, silt) and the rate of Corg is observed. Contaminants (metallic or organic) are also present in most equations. These strong influences of soil contaminants coupled to the soil parameters emphasize the need measure their bioavailability instead of total contents.

<table>
<thead>
<tr>
<th>Type of indicator</th>
<th>Biol. Use</th>
<th>Texture</th>
<th>Corg</th>
<th>C/N</th>
<th>pH</th>
<th>CEC</th>
<th>SEC</th>
<th>Metal Contam.</th>
<th>Organic Contam.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioaccumulation</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Effect: Biomarker</td>
<td>3</td>
<td>0</td>
<td>33</td>
<td>0</td>
<td>33</td>
<td>67</td>
<td>33</td>
<td>100</td>
<td>33</td>
</tr>
<tr>
<td>Effect: biomass and abundance</td>
<td>15</td>
<td>27</td>
<td>87</td>
<td>47</td>
<td>33</td>
<td>27</td>
<td>20</td>
<td>33</td>
<td>80</td>
</tr>
<tr>
<td>Effect: Functional diversity</td>
<td>17</td>
<td>35</td>
<td>59</td>
<td>59</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>35</td>
<td>53</td>
</tr>
<tr>
<td>Effect: Genetic diversity</td>
<td>4</td>
<td>75</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>25</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Effect: Community</td>
<td>38</td>
<td>24</td>
<td>76</td>
<td>32</td>
<td>21</td>
<td>11</td>
<td>34</td>
<td>18</td>
<td>55</td>
</tr>
</tbody>
</table>

Table 2: Occurrence (%) of the parameter identified as modulating the biological responses

3.2. Implementation of web site devoted to the bioindicators

Following requests from potential users of bioindicators, a web site has been created (Fig 1). In this interface is listed all Bioindicators 2 program information. Another request was to have access to the program results. Thus, a component of the interface has been dedicated to the presentation of indicator results. Thus, users have access to “benchmarks” and can compare these values with the data generated on their own site. To allow users to select the bioindicator which best fits their site problematic, a screening tool has been developed based on scientific and technical (cost, standardization of the indicator, ease of implementation and ease of interpretation) criteria. With these criteria a scoring assigning a score to each tool for each of the four criteria has been achieved. The user can choose his site problematic, the type of indicator that wishes to use (indicator of accumulation, effect ...) and prioritize the four criteria. Then, user can have access to a set of detailed information on the selected bioindicator.

![Figure 1: menu of the web site](image)

4. Conclusions

For the first time, the soil properties influence on the response of 80 bioindicators was characterized under similar environmental conditions. As each bioindicator is influenced by a specific pool of soil parameter, chemical measures cannot be used as a surrogate of biological measures. This program has provided usable tools for a biologically-based site management. The operational structures to implement bioindicators coupled with the web site will simplify the use of bioindication by end-users.

Acknowledgement - The authors thank ADEME for finacial support and the site managers of the Bioindicators 2 program