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Abstract—The analysis of social networks is a challenging
research area, in particular because of their dynamic features. In
this paper, we study such evolving graphs through the evolution
of their community structure. More specifically, we build on
existing approaches for the identification of stable communities
over time. This paper presents two contributions. We first propose
a new way to compute such stable communities, using a different
time scale, called intrinsic time. This intrinsic time is related
to the dynamics of the graph (e.g., in terms of link appearance
or disappearance) and independent from traditional (extrinsic)
time units, like the second. We then show how visualization both
at intrinsic and extrinsic time scales can help validating and
interpreting the obtained communities. Our results are illustrated
on a social network made of contacts among the participants of
the 2006 edition of the Infocom conference.

Keywords—intrinsic time, temporal networks, stable communi-
tites, visualization

I. INTRODUCTION

The growth of social networks has raised new challenges
for the complex network research community. The interactions
of their members (virtual in online networks or physical
in contact networks) are indeed extremely dynamic and the
structure of the corresponding graphs keeps evolving quickly
over time. Detecting communities in complex networks is a
usual approach to gain insight about their structure, however in
the case of dynamic networks, community detection remains
a widely open research topic despite promising approaches.
Good techniques for computing evolving communities in dy-
namic networks would give a set of (overlapping) communities
at each time step but also a mapping between the similar
communities computed at different time slots. Both problems
are difficult, especially for large or highly dynamic networks.
Figure 1 illustrates the decomposition into communities of a
small evolving network and their evolution (mapping) over
time.

Rather than proposing another technique to compute com-
munities on evolving networks or to map communities between
consecutive time steps, we propose to study the evolving
community structure using a rescaling of time. Instead of using
only the natural notion of time (the second and its derivatives)
in a classic way, we use a different concept to measure time
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Fig. 1. Communities computed at three consecutive time steps with a possible
mapping between the found communities.

in order to gain a different and complementary insight on the
community structure and its evolution.

Our proposal consists in making the dynamics of the
network more regular by considering an alternative time unit,
called intrinsic time. This new time is obtained through a
non linear rescaling of usual (extrinsic) time unit such as the
second. Using this new notion of time, we then search for
periods of intrinsic time over which the community structure of
the network remains stable enough. Our second contribution is
the use of visualization technique to interpret and validate the
resulting time periods and corresponding stable communities.

This paper is organized as follows. After a presentation
of the state of the art on dynamic community detection in
complex networks, we detail the rescaling of time that forms
the base of our methodology in Section II. Section III is then
dedicated to the evaluation of our proposal through a global
experimentation conducted on the social network made of
contacts among participants of the 2006 Infocom conference.
Then, we deepen the evaluation on two specific time windows
in section IV to enlighten the difference between the different
notions of time. We also use some classical graph visualization
techniques, and a more complex version of the algorithm used
to detect stable community structure over time. We finally
conclude and present the perspectives of our work on this topic.



II. BACKGROUND AND METHODOLOGY

In this section we first present classical community de-
tection algorithms for evolving networks. Then, we detail the
algorithm we use to compute communities and a hierarchical
clustering of time. Finally, we present the notion of intrinsic
time and the way classical extrinsic time can be rescaled in
intrinsic time.

A. State of the art on evolving communities detection

Most approaches for community detection in evolving
networks can be classified in two distinct classes. First, some
techniques compute communities at every time step of the
evolution before mapping communities found at consecutive
time steps. Since many algorithms have been defined to
extract communities in static networks, the main problem of
these approaches resides in mapping communities found at
consecutive time steps. The second class consists in computing
communities directly on the evolving network. In the following
we only present some of the existing techniques, and for
a more extensive presentation of the field, we refer to [1]
which surveys most approaches for evolving communities
computation.

Concerning the mapping problem, the first issue to be
resolved concerns the instability of algorithms. Indeed, most
algorithms defined to compute communities on static graphs
are either non deterministic or very sensitive to modifications
of the topology: very small modifications (or even no mod-
ification) can greatly modify the community structure. As a
consequence, trying to map communities makes no sense if
the stability problem has not been considered. Indeed most
changes will not be related to actual modifications of the
network, but rather to artefact of the algorithm.

In [2], the authors propose to follow communities by
associating each community at time ¢ to its most likely
successor at time t + 1, i.e., the community with which it
shares the highest number of nodes. A restriction is made to
compensate the instability issue. This approach has been gener-
alized in [3] to account for more complex evolution rules such
as splitting, merge, etc. Other very similar techniques have
been introduced in [4]-[8] using various ways to compute the
similarity between communities. Another technique, developed
in parallel in many papers [9]-[12] consists in identifying
core nodes and following them as the network evolves. A
related, yet different technique, consists in creating a network
between the communities found at different time steps which
is, in turn, decomposed using classical community detection
algorithms [13]-[15]. These meta communities give a natural
mapping between communities.

The second research direction consists in computing com-
munities directly on evolving networks. A solution consists
in modifying the quality function to ensure that a partition
computed at time ¢ + 1 is both good in terms of quality
of the partition and similar to the partition found at time
t (measured by any distance between partitions) [16]-[18].
Another direction consists in adding temporal links between
every node at time ¢ and its counterpart at time ¢+ 1 [19], [20].
This leads to a larger graph where the evolution is somehow
encoded in classical links and classical community detection
algorithms can be used. Finally, some techniques are trying

to reflect each modification of the network on the community
structure [21]-[24].

B. Detection of stable communities

A very promising method has been proposed by [25]. The
basic principle is that if a partition in communities has been
found at time ¢ and that the network barely evolves between
time ¢ and time ¢ + 1, then the partition found at time ¢ is
certainly still valid at time ¢ + 1 (without any modification).
The authors then generalize this idea and attempt to find time
ranges of two or more consecutive time steps so that a single
community partition can adequately represent the communities
over the full time range.

To achieve this goal, the authors define the average mod-
ularity of a partition 7 of an evolving graph G over a set of
time steps 1" of size n as

Qavg (G,’]T,T) = %Z Q (Gta ’/T)

teT

and then try to find partitions and sets of time steps for which
the average modularity is good.

The search for such time windows and partition is done
by the definition of a similarity between time windows which
rely on the associated partitions. The idea is that if the
graph is similar over two time steps or two time windows,
then the average community decomposition of one will also
be a good decomposition for the other and conversely. The
authors evaluate this, for two time windows T; and T); whose
associated partitions are m; and 7, by the similarity

S’Lm(ﬂ,j}) = Qaug(G77Ti7Tj) + Qavg(Ga 7Tj7T'1',)-

Finally, the proposed algorithm defined by the authors
of [25] that we will use in the following is described in
Algorithm 1. If the evolving graph is made of n time steps, the
algorithm requires that n community detections are performed,
one for each time step. Then, the two most similar time
steps (given the similarity function Sim) are searched for,
aggregated (if their modularity is higher than a given threshold)
and a new average partition associated is computed (using
Qavg)- This procedure is repeated as long as the modularity
remains higher than the threshold and provides a hierarchical
clustering of time steps.

Algorithm 1 Hierarchical time window merge algorithm.

1: G the initial network

2: L the list of potential snapshots, initially empty
. for all snapshots ¢ of G do

4:  Compute the communities 74, on the snapshot ¢
5:  Insert {t} in L

6: end for
7

8

9

w

: while L not empty do
Find t; and ¢; in L which maximizes Sim(T;, T;)
: Remove t; and t; of L
10: Addt=t;Ut;in L
11:  Output that #; and ¢; have been merged
12z Compute 7; the communities of G on the window ¢
13: end while




The algorithm used here does not require to make as-
sumption on the graph. Nodes and links can appear and
disappear during graph evolution. This algorithm can merge
any pair of time windows and not only consecutive ones. The
result of this algorithm is a tree of time periods. At the top
of the tree, there are the longest time windows. According
to the window size needed, it possible to consider different
heights (or levels) in the tree. A more simple version of the
algorithm only allows merges if time steps or time windows are
consecutive. This version is more simple and faster to compute
since the maximization of the similarity has to be computed
only for pairs of consecutive time windows and not for all
pairs. However, if communities can disappear and reappear
later then a non adjacent version is necessary to identify such
resurgence of communities. In the following we will mainly
use the adjacent version for efficiency reasons but we will also
present some results using the non-adjacent version.

This algorithm, in both the simple and non adjacent ver-
sions, suffers from several limitations. The first one is the
choice of the appropriate level in the resulting hierarchical
clustering of time periods. At the lower levels, only few merges
have been performed and time windows are therefore small.
On the contrary at the higher levels many merges have been
made which results in fewer periods but the corresponding
community structure may not be stable enough, and therefore
not meaningful enough. The choice of the threshold for the
modularity value below which we consider communities are
not stable enough is therefore a problem. This value has been
set to 0 in the original version of the algorithm, i.e. we stop
merging time periods when the obtained average modularity
becomes negative. This value is not always restrictive enough;
in particular, when the dynamics of the network is very high,
the algorithm sometimes keeps merging time periods when it
should not. We decided not to focus on this problem and to
keep the original value of O for the experiments in this paper.
The direct consequence is that the algorithm does not produce
a hierarchical tree of time windows but a forest. We will mainly
focus on the highest levels of the trees of this forest.

Another problem comes from the fact that the algorithm for
detecting stable communities over time is not deterministic,
since it is based on the Louvain method described in [26].
Two computations on the same dataset can therefore provide
different results. The use of non deterministic algorithms for
community detection is by itself a research domain and we
have no objective reason to prefer a given execution rather than
another one, we therefore chose to take a random output of the
algorithm. This means that we could have obtained better (or
maybe worse) results using another output. Note that the work
of [27] extended to the case of networks in [28] or others gives
hints to deal with this non-determinism by combining multiple
executions.

To conclude, the results presented in this paper correspond
to one execution of Algorithm 1. We performed more than one
execution and we validated that the results do not qualitatively
vary much. Indeed, out of ten executions of the algorithm, we
observed almost the same time windows (with modifications
of a few minutes for some windows).

C. Different notions of time

The study of dynamic phenomena requires the use of a
time scale. In most cases, time is an abstraction and can be
considered as absolute, i.e., changes happen independently
from the flow of time [29], [30]. However, if we consider
time as a relative concept, time then depends on space and
many techniques exist to measure it. The unit adopted by the
International System of Units is the second, which is defined as
the transition between two states of the caesium-133 atom [31].
This unit is therefore related to movements measured in the
physical space.

In this paper we use a concept of relative time based on
a network perspective, called intrinsic time of the network,
as opposed to extrinsic time, measured with the second (or
its derivative units like days or years). We call it extrinsic
because its flow is independent from the changes that occur
in the network. On the contrary, let the intrinsic time of the
network be the time measured by the transition between two
states of the network. The unit is thus the (spatial) change
of the network, i.e., the addition or removal of one node or
one link for instance. We call it infrinsic time because it is
strongly related to network dynamics. Since the notion of
change in the network is quite general, it allows for many
different definitions of intrinsic time.

This notion of intrinsic time is not a new concept: discrete
time Markov chains can be seen in the same manner. When
something happens (a random event), the chain changes its
state. In our graph, the event is not random, but when it
occurs, we increment the intrinsic time. Asynchronous clocks
use exactly the same concept as the notion of intrinsic time:
when an event occurs, the time is incremented. It does not
depend on the classical flow of time.

Whereas extrinsic time is broadly used without notice,
previous works have shown that the choice between extrinsic
and intrinsic time has a very significant impact both on the
measurement of statistical properties of temporal networks
and on observation of diffusion processes [32], [33]. Previous
results on social networks suggest that intrinsic time is better
at characterizing the endogenous dynamics of the network,
because extrinsic time is more likely to capture exogenous
patterns like day-night activity of users. In the case of diffusion
processes, the use of intrinsic time allows to isolate in some
way the network dynamics from the diffusion dynamics. In this
paper, we use the concept of intrinsic time to study dynamic
communities over time and in particular to compute stable
communities more efficiently than with extrinsic time.

D. Rescaling extrinsic time into intrinsic time

Most networks are naturally measured or presented using
extrinsic time in order to synchronize different measurements.
In general we know, for each link, the times (in second) of its
appearance and disappearance. In order to convert this extrinsic
time into intrinsic time, we need first to define which evolution
of the network topology will be representative of the network
dynamics. In our case, we decided to use the simplest notions
which are the appearance and disappearance of links. This is
indeed a simple, yet efficient, measure for capturing topology
evolution. Other simple notions could be used, for instance
considering nodes instead of links. However in most datasets
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Fig. 2. Comparison between intrinsic and extrinsic times. Appearing links
and nodes are dotted, disappearing links are dashed.

nodes are quite stable and this choice would not capture all
dynamics of the network. More complex notions can also be
relevant, for instance the creation or destruction of triangles
which are very commonly studied in social sciences (’any
friend of yours is a friend of mine”). However, as we want in
this case to understand the relations between notions of time
and the evolution of the community structure, using a simple
definition of intrinsic time is a good starting point.

Figure 2 illustrate the relations between extrinsic and
intrinsic time. In this case the time unit in intrinsic time is the
appearance or disappearance of a link. In extrinsic time, there
is no modification between time ¢t = 1s and ¢ = 2s, therefore
in intrinsic time, there is no new time step. Then, there is a
link creation at time ¢ = 3s in extrinsic time which in return
creates a new time step ¢ = 2 in intrinsic time. Finally, at
extrinsic time ¢ = 4s, there is a node and link creation, and
also a link disappearance. This corresponds to two time steps
in intrinsic time, therefore intrinsic time ¢ = 3 does not exist,
unless we can order the appearance and disappearance of links.

Note that the rescaling made to convert extrinsic time to
intrinsic time is not linear. Indeed, when there are many link
appearances and disappearances during a short extrinsic time
range, there will be many corresponding intrinsic time steps.
Therefore, a burst of activity in a short extrinsic time will
correspond to a long intrinsic time period. On the contrary, a
long extrinsic time range with very little activity will be very
short in intrinsic time.

III. EXPERIMENTS
A. Dataset

We experiment our methodology on a social network
dataset. This dataset is a contact network measured during the
2006 Infocom conference!. Participants volunteered to wear an
RFID equipment. When two people wearing this equipment
have been close enough, the RFID device has recorded this
contact as a link between the two persons. In the dataset, nodes
represent the participants of the experiment, and links therefore
represent a contact (physical proximity) between participants.

Thttp://www.ieee-infocom.org/2006/

700

600
0 500
~
£
W 400
o
[ -
[}
0 300
£
S
2 200
100
% "10000 20000 30000 40000 50000 60000 70000 80000 90000
Extrinsic Time
Fig. 3. Number of links as a function of (aggregated) extrinsic time in the

Infocom 2006 network.

We know the instants (in seconds) when each link appears and
disappears. The experiment lasted for nearly 4 days (334 015
seconds) with a total of 78 participants and 2953 different links
on the aggregated graph, i.e., 2953 recordings of proximity
between distinct participants. If two persons have been close
during one hour then far away and close again later on, this
counts for only one link. This means that nearly all of potential
interactions have been observed at least one.

As the algorithm we use here is costly in terms of compu-
tation, we have reduced the number of extrinsic time steps by
aggregating 4 consecutive time steps: seconds 1, 2, 3 and 4 are
aggregated into instant 1, seconds 5, 6, 7 and 8 are aggregated
into instant 2, etc.

Figure 3 shows the number of links as a function of
(aggregated) extrinsic time in the Infocom 2006 network. We
see that this network is very dynamic: there are many variations
in the number of links. The measurement started at the end of
the first day of the conference, and is followed by the first
night, which is clearly visible (between approximately time
5000 and time 10 000) since it contains very few links which
certainly corresponds to roommates. After the first night, we
observe a burst of activity, corresponding to the second day
(between time 10 000 and 20 000): during the second day,
the number of links varies a lot, but is always quite high,
with more than 3 contacts per individual on average. The
burst at the beginning of the second day corresponds to the
keynote session. At the end of the same day, the burst is
due to the social event. The sudden increases during the days
correspond to lunch break and coffee breaks. This day/night
pattern is repeated on the whole dataset: night phases are very
stable, with only a few links, and day phases are much more
active, with many variations. Moreover, the number of links
progressively decreases during the experiment: this decrease
is induced by some people leaving before the end of the
conference. The last day of the conference was dedicated to
the workshops.

Overall, this network is very dynamic, with different
phases. On this type of network, the detection of a single



community structure without taking the evolution into account
makes no sense because the aggregated graph lacks a lot of
information. For instance, links present during a given day are
rarely present the other days. Therefore, the graph structure is
completely different from one day to another, since they have
very few links in common.

On the opposite, detecting stable communities on time win-
dows can be very relevant here, since there are clearly different
phases in the dynamics. Furthermore, the number of links as
a function of extrinsic time gives us a good understanding of
the dynamics of the network. Therefore, using the appearance
and disappearance of links for the definition of intrinsic time
should capture well enough the evolutions of the topology.

B. Stable communities computed and observed in extrinsic
time

We use the algorithm detailed in section II to find extrinsic
time windows over which communities are stable. This means
that we can compute a single partition of the graph which
makes sense for the whole time window. In this paper, we
want to validate and interpret these windows using different
(extrinsic and intrinsic) time scales.

To achieve this goal, we compute evolving communities on
the original graph as well as on the graph where time has been
converted from extrinsic to intrinsic time. On this converted
graph, we use the same community detection algorithm to
detect meaningful time windows. We do not expect to obtain
the same number of time windows in extrinsic and in intrinsic
time. Indeed, as the intrinsic time slows down bursty events,
and aggregates stable periods, the natural intuition is to think
there will be a higher number of time windows in intrinsic
time during phases with many bursts.

A simple computation of stable communities in extrinsic
time returns 9 large time windows at the top level of the tree.
We removed all time windows whose duration is smaller than
500 time steps, i.e., 33 minutes.

Figure 4 represents these nine time windows, together
with the number of links as a function of extrinsic time.
The first and the fourth windows correspond to the first two
nights. We expected the algorithm to detect these windows, as
they correspond to long periods with very little activity and,
furthermore, these periods are very different from the days
before and after, which are very active. The third and fourth
nights are not clearly detected which can be due to the fact
that the day in between is less active and the algorithms fails
to detect the difference, at least in the upper level of the tree.

During phases which correspond to days, there is much
more activity, and since the graph structure evolves more
quickly, we expect the time windows to be smaller. The second,
third, fifth and sixth time windows are indeed much shorter,
which confirms this intuition. On the opposite, the seventh
window is very large, and a night phase (third night) is grouped
with the following day. This result is quite surprising, because
the number of links seems to vary enough to change the
graph structure. The absence of separation is due to a problem
of modularity threshold in the algorithm. If we take a low
threshold, we may group windows during which the graph
structure evolves a lot. On the contrary, using a high threshold,
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Fig. 4. Number of links as a function of (aggregated) extrinsic time in the
Infocom 2006 network. Top level stable communities are represented with
grey stripes.

we may miss some relevant grouping of time windows which
would be relevant. We can also observe that bursts at the end
of the first day, the beginning and the end of the second day
(corresponding to keynote session and social event) are not
included in the time windows. During these events, the graph
structure changes a lot during very short periods of time, and
the algorithm cannot detect a stable community structure over
time.

The hierarchical structure of time windows given by the
algorithm is shown in Figure 5 (the four highest levels) for the
windows 2 and 7. For the window 2 (on the left of the Figure),
the upper three levels contain windows of very short durations:
on the first level, there is only one time step separated from
the initial window (instant 15931) and, on the second level,
the new window (between instants 15871 and 15930) has a
size of less than a hundred time steps. The only meaningful
division is on the fourth level, with the windows from 12917 to
14700 and from 14701 to 15870 (relevant windows are colored
in green). If we compare these results with the evolution of
the number of links shown in Figure 4, we see that there are
many bursts, which are not found in the tree divisions. If we
consider the bursty period covered by the extrinsic window 2,
the fact that we do not find more significant divisions means
that the algorithm has difficulty to compute stable community
structure over this kind of network dynamics.

For the window 7 (on the right of the Figure), we observe
similar results: the left branch of the tree consists only in small
divisions. On the right branch, there is a significant division
at time step 64374 (colored in green). When we look at this
instant on the Figure with the number of links (Figure 4), it
corresponds to the beginning of the night phase. The others
divisions are too small to be relevant.

The algorithm using extrinsic time returns interesting re-
sults, but the tree division given by the algorithm shows that
the windows we expect to find cannot be seen even in lower
levels. But even if we consider all windows on a given level of
the tree, there are not all relevant, and it is therefore complex
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night and day phases. Moreover, they divide the day periods
more precisely: there are more intrinsic windows than extrinsic
windows on each day.

The computation of stable communities over intrinsic time
gives us very different results from the computation over
extrinsic time. In the following section, we compare the
computations over extrinsic and intrinsic times more easily
on a single figure.

D. Comparison of time notions

We have seen in the previous sections that intrinsic time
slows down bursty events, and aggregates stable periods, and
therefore, there are more different time windows in intrinsic
time. To validate this intuition, we compare the results obtained
with both methods: on a curve, we represent intrinsic time as
a function of extrinsic time. For each time scale, we plot the
times windows. Therefore, we can compare the windows ob-
tained in both scales. Figure 7 contains a cross-representation

Fig. 5. Hierarchical structure for extrinsic windows 2 (on the left) and 7 (on the right).
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Fig. 6. Number of links as a function of (aggregated) intrinsic time in the

Infocom 2006 network. Top level stable communities are represented with
grey stripes.

to select the right windows. We expect that using intrinsic
time will allow us to obtain directly relevant windows at the
upper level of the tree, given that the intrinsic time makes the
network dynamics more regular. We thus expect to get more
detailed divisions for the windows identified above.

C. Stable communities computed and observed in intrinsic
time

We now convert the evolution of the graph into intrinsic
time, and then compute the stable communities and the asso-
ciated time windows in intrinsic time. This conversion should
give us more information on phases with a lot of activity, since
it stretches them. We obtain 19 large time windows (of more
than 500 intrinsic time steps) at the top level of the tree.

Figure 6 represents these time windows, superposed with
the number of links as a function of intrinsic time. First, we can
see that the number of links represented in intrinsic time has
a very different behavior from its representation in extrinsic
time. Night phases are naturally shortened, while day phases
with a lot of activity occupy most of the intrinsic time span.

Furthermore, the meaningful windows in intrinsic time
cover fewer time steps than in extrinsic time: more time
windows are extracted but they are shorter. The first window
covers the first night of the conference. After that, most
windows correspond to day phases, with a lot of variation
in the activity level. The end of the measure is covered by a
lot of little time windows, while there was only one window
in extrinsic time. Generally, the intrinsic time windows are
more relevant than extrinsic ones, since they do not group

of curves presented in Figures 4 and 6, i.e., a representation
of intrinsic time time windows as a function of extrinsic time.

First, we can see on this figure that the intrinsic rescaling
of time is not homogeneous at all. Some phases are really
shortened, while others become very long. In particular, the
four plateaux in the curve correspond to the nights: in extrinsic
time, the night lasts a long time (around 28 800 seconds
which corresponds to 7200 time steps), so it spreads on many
time steps but, in intrinsic time, the night is much shorter
as there is very little activity (around 500 time steps). On the
opposite, day phases are longer in intrinsic time, because of the
important activity during conference days. This corresponds to
the steepest portions of the curve

This figure also give us the possibility to compare the
time windows computed in extrinsic and intrinsic times. For
instance, we see that the first extrinsic window and the first
intrinsic window fit quite well as both span the entire first
plateau, which corresponds to the first night of the conference.

With this method, we can analyze each time window for
both time scales, as we can distinguish four types of crossing.
First, some windows cover the same period, as it is the
case for the first and eighth extrinsic time windows and the
eighth intrinsic one. In this situation, both notions of time
give the same information which confirms the relevance of
these windows and of the associated partitions of the network.
In these cases, the threshold used by the algorithm to stop
merging time windows is therefore well adapted.

Second, one extrinsic time window can be divided into
several intrinsic time windows. It is the case for extrinsic
windows 2 (divided in 4 intrinsic windows), 5 (divided in 2), 6
(divided in 4), 7 (divided in 5) and 9 (divided in 2). Extrinsic
windows 2, 5 and 6, are all during day phases, while window
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7 regroups a night phase and a day phase. This division during
day phases is very interesting. Indeed during a day, there is a
lot of activity, and the community structure is likely to evolve
quickly. The division into several intrinsic time windows can
give us a more detailed information on community evolution.
For the extrinsic time window 7, this division is also potentially
relevant since the extrinsic window covers a night phase and
a day phase. In section IV, we study the period covered by
this window in more details. We also study further the period
covered by the window 2, because it is quite short in extrinsic
time, but still divided in four intrinsic windows.

For windows 2 and 7, the intrinsic time divides our extrinsic
periods in many intrinsic windows. We have explained before
that the algorithm used to detect stable communities returns
a hierarchy of time windows: at the top of the tree, there are
the biggest windows. It is therefore natural to think that the
extrinsic windows we have found may be divided in the tree in
the same manner as the intrinsic windows. If we compare our
results obtained with the intrinsic time to the tree structure
(Figure 5), we see that in the tree, the sub-windows do not
appear clearly. For the extrinsic window 2, in the tree, the only
division corresponding to intrinsic time is on the fourth level
(around time 14 700). The other windows in the tree only split
in very short periods. The 3 other intrinsic windows cannot
be found in the tree. The case of extrinsic window 7 is very
similar: we cannot find in the tree a division that corresponds
to an intrinsic time window. All windows in the tree are very
short. We see in these two cases that considering a lower level

Intrinsic time represented as a function of extrinsic time. Light grey vertical stripes represent extrinsic time windows, while dark grey horizontal ones

in the tree gives us less relevant results than directly computing
stable communities over intrinsic time. Indeed, by stretching
the events, the rescaling in intrinsic time allows the algorithm
to compute better windows than in extrinsic time, when the
dynamics of the network is too irregular.

The third possibility is to have an extrinsic time window
larger than the crossing intrinsic time window. This is the case
for the extrinsic window 4. In this case, the algorithm gives us
a better result in extrinsic time than in intrinsic time: indeed,
in intrinsic time, the night is grouped with the beginning of
the following day, in spite of important topology changes.

The last possibility observed on the figure is a window
with no corresponding window in the other time scale. The
extrinsic window 3 has no corresponding meaningful intrinsic
window. It corresponds to a period with a lot activity (as shown
on Figure 4). As it is not covered by any large intrinsic time
window, the quality of the stable community structure detected
by the algorithm would need to be studied further.

In conclusion of this analysis, we see that in many cases,
the computation in intrinsic time windows is very relevant,
especially when extrinsic windows are divided into many in-
trinsic windows. Moreover, there are a few windows for which
the crossing invalidates the computation: when a window does
not cross another for instance (like extrinsic time window 3).
And finally, for some windows, intrinsic time gives identical
results as extrinsic time, and shows that the community struc-
ture on this period is relevant. The computation in intrinsic



time can therefore be used as a first step for validating the
results found by the algorithm.

In the following, we will study in more depth the behavior
of the algorithm on the extrinsic time windows 2 and 7.

IV. FOCUS ON SPECIFIC WINDOWS
A. Interpretation and validation using visualization

After computing time windows in both time scales and
comparing them, we want to interpret them further. For
instance, why can we observe five intrinsic time windows
during the extrinsic window 7? Does this correspond to a
major topology change? To answer these questions, we use
visualization techniques on our graph.

We consider here the case of an extrinsic time window
corresponding to several intrinsic ones (but our visualization
method also works the other way). We first visualize the graph
aggregated on the extrinsic time window. Then we plot the
graph aggregated on each intrinsic time window (which are
all smaller than the global one). In this way, we can see if
there are major changes between two windows. We can also
compare each little intrinsic window to the extrinsic window,
and see if the division in many smaller windows is meaningful.

The validation of stable communities by visualization is
only efficient when the graph is not too big: otherwise, the
visualization would be cluttered. For larger graphs, it would
certainly more efficient to use statistical values, like the
distance between two aggregated graphs.

We have seen in the previous section that time windows
computed in extrinsic or intrinsic times are often very different.
In this section, we study these differences further for two
extrinsic windows, the second and the seventh.

1) Extrinsic window 2: In section III, we have shown that
the extrinsic window 2 was divided in four intrinsic windows.
Moreover, we have seen that during the time period covered
by this window (which corresponds to a day phase), there are
many bursts in the number of links. We want to see if the
intrinsic time windows found previously are relevant. Figure 8
represents the graph aggregated on the whole extrinsic window
(top), then aggregated only on each intrinsic window (windows
3,4, 5 and 6).

The graph aggregated on the extrinsic window is very
dense, which is natural since it covers a day phase. We see
that each graph for the intrinsic windows is very different
from the extrinsic graph. Between intrinsic windows 3 and 4,
we can observe a lot of differences in the graph structure: on
the window 3, the graph is more dense. It corresponds to the
window which contains the highest amount of links (Figure 6).
We can also see that a part of the graph which is very dense
on the first intrinsic visualization (at the top left) becomes very
sparse during the second window. On the other hand, the part
on the bottom right becomes a little less dense, but still quite
connected.

Graphs of windows 4 and 5 are slightly more similar, but
they still exhibit important differences. The part on the bottom
right becomes more dense again, but the part at the top left
does not evolve a lot. Finally, between graphs of windows
5 and 6, the bottom right part does not change, but in the
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Fig. 8. Graph aggregated on extrinsic time window 2, and graph aggregated
on each crossing intrinsic time window (from 3 to 6).

rest of the graph, there are many link creations, which can
explain the change of the community structure between these
two windows.

This visualization shows us that all the intrinsic windows
found during extrinsic window 2 are relevant. Between each of
them, we observe a lot of differences in the graph structure,
and we see that the intrinsic division allows us to make a
more detailed analysis of the evolution of community structure
than in extrinsic time. On a short time period (corresponding
to extrinsic window 2), the intrinsic time can still allow a
meaningful time division in the community structure.

2) Extrinsic window 7: As we have seen in section III,
the meaning of extrinsic window 7 was not clear in our
previous results, because it groups a night phase with a day
phase. Moreover, this window is divided in five intrinsic time
windows. We study here if these windows are relevant. We
first visualize the graph aggregated on the whole extrinsic time
window, then aggregated only on each intrinsic time window.
These visualizations are shown in Figure 9.

On this figure, the aggregated graph over extrinsic time is
on the top. Then we see aggregated graphs on each intrinsic



Intrinsic time window 18

Fig. 9. Graph aggregated on extrinsic time window 7, and graph aggregated
on each crossing intrinsic time window (from 14 to 18).

time window. We observe on this figure that the graph aggre-
gated over extrinsic time window is very dense: except for two
nodes which have a degree equal to 1, all nodes have many
neighbors. In spite of the very small size of the graph, this
visualization is very confusing. There are too many links, and
we cannot see anything except that the graph is dense.

On each intrinsic time window, aggregated graphs are more
readable. The first graph corresponds to the night phase, and is
therefore quite sparse. On the three following graphs (intrinsic
time windows 15, 16 and 17), there are more links. The
difference between the two first intrinsic time windows is very

clear, and validates the relevance of splitting these two periods.

Windows 15, 16 and 17 are all quite dense, but every
one is different from the others. High degree nodes change
between each windows, and some connected nodes become
almost inactive. It is therefore not surprising that community
structure changes between each of these windows. Indeed, the
graph topology exhibits important evolutions and differences.
Window 18 is a special case: it is very sparse, and different
from every other window. This is because this window is
between extrinsic windows 7 and 8. On the visualization, it
covers only the end on the window 7, and is cut before the
end.

We have seen with this visualization that the extrinsic
time window can be cut in a more subtle and meaningful
manner using intrinsic time. The graph conversion, and the
new computation of time windows is therefore very relevant
in this case. Visualization for both extrinsic windows confirms
the value of the intrinsic time to compute stable communities
on time windows.

B. Non adjacent time windows

In the previous section, we have detailed the interpretation
of the division of an extrinsic time window into several smaller
intrinsic windows. We have shown that the algorithm can be
easily enhanced by using intrinsic time. In this section, we
carry on our analysis of the same two extrinsic windows, but
this time, we use the non-adjacent version of the algorithm:
we allow the merging of time steps or time windows which
are not consecutive. We study if this version of the algorithm
can be useful to complete the use of intrinsic time. This non-
adjacent version is useful to regroup phases that are similar, but
not close in time, like for instance, the night phases. However,
the complexity of the non-adjacent version of the algorithm is
much greater than the consecutive version, and is too high to
compute community structure on the whole graph. Therefore,
we apply the algorithm only on the extrinsic windows 2 and
7, to complete the study of these time periods.

The trees obtained in this way are shown on Figure 10:
the tree for the window 2 is on the left, and the tree for the
window 7 is on the right. For the window 2, on the right
branch of the tree, we see that at each level, only one time
step is separated from the rest. We want to know if the graph
structure at this time step is different from the rest. We compute
the percentage of common links between the isolated time step
and the surrounding time steps. We find that there are between
99% and 100% of common links between a single time step
and those around it. Moreover, it is the case for every isolated
time step in the tree (and it is the same for the window 7).
These divisions are therefore not relevant for the community
structure. On the left branch of the tree, the divisions are a
little longer (around 20 time steps), but they are also very
similar to the time steps around, if we look at the percentage
of common links. In this non-adjacent computation of time
windows for stable communities, we do not obtain relevant
windows. In particular, we do not find anything close to the
intrinsic division, neither do we find meaningful time windows.

For the tree of the time window 7, we have quite the same
scenario: each window is separated with only one excluded
time step. The similarity between this time step and the rest
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Fig. 10. Hierarchical strucutre for extrinsic windows 2 (on the left) and 7 (on the right)

is very high, and the separation of these windows does not
give us information about the community structure. Like the
case of the extrinsic window 2, the non-adjacent version of
the algorithm does not help us to distinguish meaningful time-
windows, whereas during the time period under study, there
are clearly several different phases. In intrinsic time, we can
finally easily compute relevant and detailed time windows, but
the non-adjacent algorithm is very costly, and does not provide
a good time division. This confirms the interest of the intrinsic
time notion, which is both very light and more relevant.

V. CONCLUSION

In this article, we have proposed an efficient method
for detecting stable communities in dynamic networks, by
extending an existing algorithm with the notion of intrinsic
time. We have converted the time in our dataset in a non linear
way, and we have used this rescaling with the algorithm. This
rescaling allows to ”smooth” the graph dynamics, by stretching
the bursts, and shortening stable phases. With this method, we
obtain very promising results: the time windows found are at
least as meaningful as in the extrinsic case, and very often with
the adequate level of detail compared to extrinsic ones. We
have proposed an easy and efficient methodology to compare
the results obtained with both time scales. We have described
a way to confirm the relevance of the time windows obtained
in intrinsic time by using a visualization method. Finally, we
have compared our results with a more elaborate version of the
community detection algorithm, which allows grouping non-
consecutive time windows (this version is very costly in terms
of computation).

In our future work, we will study further the definition of
intrinsic time. In this article, we have associated the appearance
or disappearance of a link to a new time step. For our dataset,
this definition is very relevant, since it captures adequately the
dynamics of the network. But we can easily imagine other
graphs, where it would not be adequate. For instance, in a
graph with many triangles, the number of links is not enough
to characterize the topology evolutions. The observation of
stable community structure over intrinsic time is a good way
to validate or invalidate the definition of intrinsic time used.

The study of the intrinsic time definition goes along with
the study of stable community structure on other datasets. As
the intrinsic time definition is based on a topology change,
like the appearance or disappearance of a link for instance,
the dataset must have a detailed time step (like the second).
Indeed, if we have bigger time steps (like a day), there would
be a lot of activity during a single time step and it would imply
an artificial scheduling of links. Therefore, to be relevant, the
dataset must be a link stream. Moreover, there must be a
community structure in it (which is the case in most complex
networks). The study of stable community structure on other

datasets will show the interest and the limits of this approach
according to different dataset types (social contact network,
internet graph, etc.)

In this paper, for all our computations of community
structure, we have used the Louvain method, which is not
deterministic. Therefore, by applying the same method used
here on the same dataset, we will observe differences, even
if the consistency of the result have been studied. In a future
work, we will combine the approach described here through
multiple executions with the notion of community cores: the
idea is to compute many times community structure with the
Louvain method, and to place a node into a community if it
was present in the community more than a given threshold.

Generally, the intrinsic time can be used for any dynamical
processes: in our previous work, we have shown its interest
with diffusion phenomena, and in this article, we have seen that
it is also very useful for the computation of stable community
structure in a dynamic network. It is therefore legitimate
to think that it will give promising results in the study of
dynamical processes in general, which is an open and strategic
issue.
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