Querying Temporal Drifts at Multiple Granularities

Abstract : There exists a large body of work on online drift detec- tion with the goal of dynamically finding and maintaining changes in data streams. In this paper, we adopt a query- based approach to drift detection. Our approach relies on a drift index, a structure that captures drift at different time granularities and enables flexible drift queries. We formalize different drift queries that represent real-world scenarios and develop query evaluation algorithms that use different mate- rializations of the drift index as well as strategies for online index maintenance. We describe a thorough study of the performance of our algorithms on real-world and synthetic datasets with varying change rates.
Type de document :
Communication dans un congrès
CIKM 2015, Oct 2015, Melbourne, Australia
Liste complète des métadonnées

Contributeur : Ahlame Douzal <>
Soumis le : vendredi 2 octobre 2015 - 15:18:43
Dernière modification le : jeudi 11 octobre 2018 - 08:48:05


  • HAL Id : hal-01208397, version 1


Sofia Kleisarchaki, Sihem Amer-Yahia, Ahlame Douzal-Chouakria, Vassilis Christophides. Querying Temporal Drifts at Multiple Granularities. CIKM 2015, Oct 2015, Melbourne, Australia. 〈hal-01208397〉



Consultations de la notice