
HAL Id: hal-01208330
https://hal.science/hal-01208330v1

Submitted on 2 Oct 2015 (v1), last revised 18 Jul 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revealing contact patterns among high-school students
using maximal cliques in link streams

Tiphaine Viard, Matthieu Latapy, Clémence Magnien

To cite this version:
Tiphaine Viard, Matthieu Latapy, Clémence Magnien. Revealing contact patterns among high-school
students using maximal cliques in link streams. First International Workshop on Dynamics in Networks
(DyNo), 2015, Paris, France. �hal-01208330v1�

https://hal.science/hal-01208330v1
https://hal.archives-ouvertes.fr

Revealing contact patterns among high-school
students using maximal cliques in link streams

Jordan Viard∗, Matthieu Latapy∗, Clémence Magnien∗
∗Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606,

4 place Jussieu 75005 Paris

Abstract—Interaction traces between humans are usually rich
in information concerning the patterns and habits of individuals.
Such datasets have been recently made available, and more and
more researchers address the new questions raised by this data.
A link stream is a sequence of triplets (t, u, v) indicating that an
interaction occurred between u and v at time t, and as such is a
natural representation of these data. We generalize the classical
notion of cliques in graphs to such link streams: for a given ∆,
a ∆-clique is a set of nodes and a time interval such that all
pairs of nodes in this set interact at least every ∆ during this
time interval. We proceed to compute the maximal ∆-cliques on
a real-world dataset of contact among students, and show how it
can bring new interpretation to patterns of contact.

I. INTRODUCTION

Understanding the dynamics behind human interactions
has a wide range of applications, from epidemic diffusion to
mobility patterns modelling [13]. Recent advances in technol-
ogy have allowed real-time tracking of interactions between
groups of individuals, with RFID sensors, giving the scientific
community a plethora of datasets to explore.

To study contact traces, it is natural to see such data
as graphs where nodes are individuals and edges indicate
that two individuals were in contact together. It is possible
to obtain large graphs, enclosing much information on the
structure of the interactions, and network science is a natural
framework for studying them [9]. A common approach relies
on sequences of graphs: for a given ∆, one considers the
graph Gt induced by the interactions that occurred from time
t to t + ∆, then the graphs Gt+∆, Gt+2∆ and so on. Many
variants exist, but the baseline remains that one splits time into
(possibly overlapping) slices of given (but possibly evolving)
duration ∆ [12], [10]. Of course, an important problem with
this approach is the (partial, or complete) destruction of the
temporal dynamics. This is especially costly in contact traces,
where interactions have been shown to be bursty, thus leading
to graphs that are either densely connected or too small to
analyze [4].

A link stream L = (T, V,E) with V a set of nodes, T =
[α, ω] a time interval and E ⊆ T ×V ×V models interactions
over time: l = (t, u, v) in E means that an interaction occurred
between u ∈ V and v ∈ V at time t ∈ T . Link streams, also
called temporal networks or time-varying graphs depending on
the context, model many real-world data like contacts between
individuals, email exchanges, or network traffic [3], [19], [8],
[16].

For a given ∆, a ∆-clique C of L is a pair C = (X, [b, e])
with X ⊆ V and [b, e] ⊆ T such that for all u ∈ X , v ∈ X ,

0 8642 0 8642

0 86420 8642

∆ = 3

a

b

c

a

b

c

a

b

c

a

b

c

Fig. 1: Examples of ∆-cliques. We consider
the link stream L = ([0, 9], {a, b, c}, E) with
E = ((3, a, b), (4, b, c), (5, a, c), (6, a, b)) and ∆ = 3.
There are four maximal 3-cliques in L: ({a, b}, [0, 9]) (top
left), ({a, b, c}, [2, 7]) (top right), ({b, c}, [1, 7]) (bottom left),
and ({a, c}, [2, 8]) (bottom right). Notice that ({a, b, c}, [1, 7])
is not a ∆-clique since during time interval [1, 4] of duration
∆ = 3 there is no interaction between a and c. Notice also
that ({a, b}, [1, 9]), for instance, is not maximal: it is included
in ({a, b}, [0, 9]).

and τ ∈ [b, e − ∆], there is a link (t, u, v) in E with t ∈
[τ, τ + ∆].

More intuitively, all nodes in X interact at least once with
each other at least every ∆ from time b to time e. A clique C
is maximal if it is included in no other clique, i.e. there exists
no clique C ′ = (X ′, [b′, e′])) such that C ′ 6= C, X ⊆ X ′ and
[b, e] ⊆ [b′, e′]. See Figure 1 for an example.

In real-world situations like the ones cited above, ∆-
cliques are signatures of meetings, discussions, or distributed
applications for instance. Moreover, just like cliques in a
graph correspond to its subgraphs of density 1, ∆-cliques in
a link stream correspond to its substreams of ∆-density 1,
as defined in [16]. Therefore, ∆-cliques in link streams are
natural generalizations of cliques in graphs.

In this paper, we propose a first algorithm for listing
all maximal ∆-cliques of a given link stream, and illustrate
the relevance of the concept and algorithm by computing
maximal ∆-cliques of a real-world dataset of contacts between
students. The results obtained shed new light on the nature of
the interactions between students, and show new patterns of
contact.

Notice that we consider here undirected links only: given
a link stream L = (T, V,E), we make no distinction between
(t, u, v) ∈ E and (t, v, u) ∈ E. Likewise, we suppose that
there is no self-loop (t, v, v) in E, and no isolated node (∀v ∈
V, ∃(t, u, v) ∈ E).

We finally define the first occurrence time of (u, v) after
b as the smallest time t ≥ b such that (t, u, v) ∈ L, and we
denote it by fbuv . Conversely we denote the last occurrence
time of (u, v) before e by leuv . We say that a link (t, u, v) is
in C = (X, [b, e]) is u ∈ X , v ∈ X and t ∈ [b, e].

II. ALGORITHM

One may trivially enumerate all maximal cliques in a graph
as follows. One maintains a set S of previously found cliques
(maximal or not). Then for each C in S, one removes C from
S and searches for nodes outside C connected to all nodes in
C, thus obtaining new cliques (one for each such node) larger
than C. If one finds no such node, then C is maximal and
it is part of the output. Otherwise, one adds the newly found
cliques to S. The set S is initialized with the trivial cliques
containing only one node, and all maximal cliques have been
found S is empty. [11] uses this framework to enumerate all
the maximal cliques of a graph in lexicographic order.

Our algorithm for finding ∆-cliques in link stream L =
(T, V,E) (Algorithm 1) relies on the same scheme. We ini-
tialize the set S of found ∆-cliques with the trivial ∆-cliques
({a, b}, [t, t]) for all (t, a, b) in L (line 2). Then, until S is
empty (while loop of lines 3 to 18), we pick an element
(X, [b, e]) in S (line 4) and search for nodes v outside X
such that (X ∪ {v}, [b, e]) is a ∆-clique (lines 6 to 8). We
also look for values b′ < b such that (X, [b′, e]) is a ∆-clique
(lines 9 to 12), and likewise values e′ > e such that (X, [b, e′])
is a ∆-clique (lines 13 to 16). If we find such a node, such a
b′ or such an e′, then C is not maximal and we add to S the
new cliques larger than C we just found (lines 8, 12 and 16).
Otherwise, C is maximal and it is part of the output (line 18).

Algorithm 1 Maximal ∆-cliques of a link stream
input: a link stream L = (T, V,E) and a duration ∆
output: the set of all maximal ∆-cliques in L

1: S ← ∅, R← ∅
2: for (t, u, v) ∈ E: add ({u, v}, [t, t]) to S
3: while S 6= ∅ do
4: take and remove (X, [b, e]) from S
5: set isMax to True
6: for v in V \X do
7: if (X ∪ {v}, [b, e]) is a ∆-clique then
8: add (X∪{v}, [b, e]) to S and set isMax to False

9: f ← maxu,v∈X fbuv . latest first occurrence time of a link
in (X, [b, e])

10: if b 6= f −∆ then
11: let b′ be f −∆
12: add (X, [b′, e]) to S and set isMax to False
13: l← minu,v∈X leuv . earliest last occurrence time of a link

in (X, [b, e])

14: if e 6= l + ∆ then
15: let e′ be l + ∆
16: add (X, [b, e′]) to S and set isMax to False
17: if isMax then
18: add (X, [b, e]) to R
19: return R

Let us explain the choice of b′ (lines 10 to 12) in details,
the choice of e′ (lines 14 to 16) being symmetrical. Intuitively,

2 4 6

c

b

a

c

b

a a

b

2 4 6

c

b

a

2 4 6

c

b

a

2 4 6 2 4 6

c

Fig. 2: A sequence of ∆-cliques built by our algorithm to find
a maximal ∆-clique (bottom row) from an initial trivial ∆-
clique (top-left) in the link stream of Figure 1 when ∆ = 3.
From left to right and top to bottom: the algorithm starts with
({a, b}, [6, 6]), and finds ({a, b}, [3, 6]) thanks to lines 9 to 12
of the algorithm. It then finds ({a, b, c}, [3, 6]) thanks to lines 6
to 8. It finds ({a, b, c}, [3, 7]) from lines 13 to 16, and finally
({a, b, c}, [2, 7]) from lines 9 to 12.

we choose b′ as small as possible, provided we do not miss any
maximal ∆-clique. Therefore, for a given ∆-clique (X, [b, e]),
we set b′ to the smallest time such that (X, [b′, e]) is a ∆-
clique. This leads to the constraint of line 10: f is the latest of
the first occurrence times of all links in the clique. If it is equal
to b+∆ (line 10), then there is no b′ < b such that (X, [b′, e])
is a ∆-clique. If it is different, then such a b′ exists, and we
set it to f −∆: by definition of f , all links in X ×X appear
at least once in [b; f −∆]. If there is a node u ∈ V \X such
that (X∪{u}, [b, e]) is a ∆-clique but (X∪{u}, [b′, e]) is not,
(X ∪ {u}, [b, e]) will be found separately; otherwise, all links
in {u} ×X exists in [b; f −∆], by definition of a ∆-clique.

We display in Figure 2 an example of a sequence of such
operations from an initial trivial clique to a maximal clique
in an illustrative link stream. The algorithm builds this way a
set of ∆-cliques of L, which we call the configuration space;
we display the configuration space for this simple example in
Figure 3 together with the relations induced by the algorithm
between these ∆-cliques.

To prove the validity of Algorithm 1, we must show that all
the elements it outputs are cliques (1), that they are maximal
(2), and that all maximal cliques are in its output (3). The full
proof is available in [18].

(1) is proved by induction on the iterations of the while
loop (lines 3 to 18). Initially, all elements of S are ∆-cliques.
We assume that at the i-th iteration, S only contains ∆-cliques.
The loop may add new elements to S at lines 8, 12 and 16. In
all cases, the added element is built from an element (X, [b; e])
of S (line 4), which is a ∆-clique (induction hypothesis). From
then on, it is easy to show that the elements added at lines 8,
12 and 16 are also ∆-cliques.

(2) is demonstrated by assuming that a non-maximal ∆-
clique (X, [b; e]) is added to R (line 18), and by subsequently
reaching a contradiction. Indeed, we show that from a ∆-clique
C taken from S (line 4), the conditions at lines 7, 10 and
14 respectively check the existence of a node u in V \ X , a
b′ < b or an e′ > e such that (X ∪ {u}, [b; e]), (X, [b′; e]) or
(X, [b; e′]) is a ∆-clique. If all these conditions are false, then
C is maximal.

Finally, we prove the claim (3) by building a sequence

a,b
6;6

a,b
6;9

a,b
3;6

a,b
3;9

a,b,c
3;6

a,b
0;6

a,c
5;5

a,c
5;8

a,c
2;5

a,c
2;8

a,b,c
4;7

a,b,c
3;7

b,c
4;4

b,c
4;7

b,c
1;4

b,c
1;7

a,b,c
2;7

a,b
0;9

a,b,c
2;5

a,b,c
2;6

a,b
3;3

a,b
0;3

Fig. 3: The configuration space built by our algorithm from the
link stream of Figures 1 and 2 when ∆ = 3. Each element is a
∆-clique and it is linked to the ∆-cliques the algorithm builds
from it (links are implicitely directed from top to bottom).
Plain links indicate ∆-cliques discovered by lines 9 to 12 or
lines 13 to 16 of the algorithm, which change the time span
of the clique. Dotted links indicate ∆-cliques discovered by
lines 6 to 8, which change the set of nodes involved in the
clique. The bold path is the one detailed in Figure 2. Colors
correspond to the maximal ∆-cliques displayed in Figure 1.

Cn, Cn−1, ..., C0, with Cn a maximal ∆-clique, such that
for all ∆-cliques in this sequence, we have Ci−1 → Ci,
meaning that if Ci−1 was in S, Ci was added to S later in
the execution of the algorithm by line 8, 12 or 16. Setting
C0 = ({u, v}, [t; t]) (line 2) proves the claim that all maximal
∆-cliques are in S at one point of the execution, and are
trivially added to R at line 18.

Enumerating maximal cliques in graph G = (V,E)
is equivalent to enumerating maximal ∆-cliques in L =
([0, 0], V, E′) where (0, u, v) ∈ E′ if and only if (u, v) ∈
E. Therefore, enumerating ∆-cliques in a link stream is
exponential (in particular the number of ∆-cliques may be
exponential). To this regard, our algorithm is optimal: the
number of elements of the configuration space built by the
algorithm is bounded by the number of subsets of the set of
links times the number of subsets of the set of link arrival
times, and the number of operations performed for each of
them is polynomial.

Still, several optimisations may speed up our algorithm
(without changing its worst-case complexity), and we discuss
some now.

First, Algorithm 1 may build and add to S the same ∆-
clique many times. To avoid redundancy of computations, one
may store the ∆-cliques seen so far. Then, a ∆-clique is added
to S only the first time it is seen. This ensures that the number
of runnings of the main loop is the number of links in the
configuration space; in the naive version presented above, this
number is the sum of the lengths of all paths from any initial
trivial ∆-clique to the maximal ones it can reach.

Notice also that f and l, computed in lines 9 and 13,
are necessarily in [b,min(e, b + ∆)] and [max(b, e − ∆), e],
respectively. One may therefore focus the search on these
intervals rather than [b, e].

Going further, let us notice that if V (C) is the set of
nodes satisfying condition of line 7, then the set V (C ′) of
nodes satisfying this condition for the cliques C ′ added to S
at lines 8, 12 and 16 is included in V (C). One may therefore
associate to each element of S a set of candidate nodes to be
considered at line 6 in place of V \X , thus drastically reducing
the number of iterations of this loop.

Finally, notice that Algorithm 1 makes no assumption on
the order in which elements of S are processed. This order
corresponds to the way we explore the configuration space. In
particular, if S is a first-in-first-out structure (like a queue), the
algorithm performs a BFS of the configuration space; if it is a
last-in-first-out structure (like a stack) then it performs a DFS.
The execution time is the same in all cases. The size of S may
vary, but the space complexity of the algorithm is dominated
by the size of the set of already seen cliques just discussed,
that does not change. Still, different exploration methods have
different advantages and drawbacks. A BFS rapidly discovers
all maximal cliques of small sizes and durations, which makes
it suitable for computing the clique size distribution, or if
one is interested in discovering as many maximal cliques as
possible as rapidly as possible, even if they are all small ones.
Conversely, a DFS first discovers large cliques and so it is
appealing if one searches for non-trivial cliques.

III. EXPERIMENTS

We implemented Algorithm 1 with all optimisations dis-
cussed above and provide the Python source code [17]. We
illustrate here its practical relevance by computing maximal
∆-cliques of a link stream representing real-world contacts
between individuals, captured with RFID sensors.

A. Dataset

This trace was collected at a french high school in 2012,
see [7] for full details. It induces a link stream of 181 nodes
and 45047 links, connecting 2220 distinct pairs of nodes over
a period of 729500 seconds (approximately 8 days).

Each link (t, u, v) means that the sensor carried by individ-
ual u or v detected the sensor carried by the other individual
at time t, which means in turn that these two individuals were
close enough from each other at time t for the detection to
happen. We call this a contact between individuals u and v.
It is also worth to note that the dataset provides us with the
classroom of each student. Also, the temporal resolution of
the sensors is 20 seconds. Finally, the students only kept the
sensors whilst inside the school, thus there are no contacts
during the night or the weekend, as explained in [7].

In the remainder of this paper, we chose to list the maximal
∆-cliques for different values of ∆, namely 60 seconds, 900
seconds (15 minutes), 3600 seconds (1 hour). We handpicked
these values after careful investigation regarding the rhythm
of school day: indeed, on a typical day, courses usually last
roughly two hours, with two 15 minutes breaks during the day,
and a longer 1 hour lunch break. We also computed the ∆-
cliques for ∆ = 10800 (3 hours) to have insight on a coarser
temporal scale.

B. Computing ∆-cliques

For all the chosen ∆s, a ∆-clique C = (X, [b, e]) means
here that the individuals in set X were pairwise in contact at
least once every 60, 900, 3600 or 10800 seconds from time b
to e. These four values of ∆ reveal different patterns among
students at different temporal scales.

Our Python implementation succeeds in finding all the
maximal ∆-cliques in this link stream in less than an hour on
a standard computer. Although many discovered cliques are
very small, we also find rather large and long cliques: more
information concerning the ∆-cliques found is presented in
table I.

∆
of

∆-cliques
Max
|X|

Max
e− b

Runtime
(standard
computer)

60 14664 5 6820 2 mn 30
900 (15 mns) 8214 7 17420 9 mn 15
3600 (1 hour) 7170 7 36340 18 mn 00

10800 (3 hours) 7416 7 59560 51 mn 40

TABLE I: Global information about the maximal ∆-cliques
found.

To gain insight on the role played by the parameter ∆ on
the found maximal ∆-cliques, we compute the complementary
cumulative distribution functions for the size of the ∆-cliques
(|X|) and their duration (e− b). The result is visible in figure
4. As one might expect, the value of ∆ positively correlates
with larger and longer ∆-cliques.

Intuitively, regarding the size of the ∆-cliques (figure 4,
left), a smaller ∆ will group links inside a burst, but not outside
of it, and as such the cliques tend to involve less nodes. This
intuition is also backed up by the fact that the smaller the ∆,
the more ∆-cliques are found, as we saw in table I. This is
because for a larger value ∆′ > ∆, small ∆-cliques tend to
merge together into one larger ∆′-clique.

For every ∆, a sharp drop can be observed in the distribu-
tion of the durations (figure 4, right); this corresponds to the
value 2 ·∆. This behaviour is typical of ∆-cliques involving
only two nodes (|X| = 2). When ∆ is larger, the proportion
of such ∆-cliques drops, as there are less ∆-cliques of size
2, which is confirmed in figure 4 (left). Conversely, the tails
of the distributions get longer, as there are more larger and
longer ∆-cliques.

Let us define the surrounding stream of a ∆-clique. For
a maximal ∆-clique (X, [b, e]) and a stream L = (T, V,E),
the surrounding stream is the substream L′ = (T, V,E′), with
E′ = {(t, u, v) : t ∈ [b, e], u ∈ V, v ∈ V }. Intuitively, the
surrounding stream contains all the links (t, u, v) having t ∈
[b, e]. We show in figure 5 two typical ∆-cliques found in the
contact trace, along with their surrounding stream. The tool
for drawing link streams is available online [15]. It gives us
an intuitive lookup onto the behaviours of the nodes involved
in the ∆-cliques we found.

The 60-clique exhibited in figure 5 (left) is a clique between
5 students of different classrooms, the largest size found for
this ∆. The duration of this clique is very small (~3 minutes),
and converting the timestamps to dates show these students
were in contact during the lunch break (from 12:47 to 12:50).

It is likely to be a group of friends that gathered before the
beginning of the afternoon courses, or a meeting between the
classroom’s representatives.

The 60-clique shown in figure 5 (right) is the longest one
found by our algorithm: it lasts for 1080 seconds (18 min-
utes), and, surprisingly, involves two students from different
classrooms. Considering the short range of the sensors, it is
unlikely that this contact is due to students being close to each
other, but in different rooms. The timestamp of the 60-clique,
around 10am, likely points to an in-between courses discussion
between two students.

C. Comparison with cliques in the aggregated graph

In this section, we further investigate the descriptive role
of ∆-cliques as compared to cliques in the aggregated graph.
For a link stream L = (T, V,E), as defined in section I, we
define the aggregated graph G = (V, E), with V = V and
E = {(u, v) : ∃(t, u, v) ∈ E}. Intuitively, this is the graph
obtained by putting a link between two nodes u and v if and
only if there is at least one contact between u and v in the
link stream.

We then proceed to compute the maximal cliques of G.
This yields 1742 cliques, the largest one involving 14 nodes.
Many of these cliques have overlapping nodes.

Remember that in the aggregated graph, two nodes are
linked if there is at least one contact between these nodes,
regardless of the time and frequency of their interaction. As
such, cliques in G are typically linking students in the same
classroom. Most of the cliques (~70%) involve students of the
same class.

Considering ∆-cliques instead sheds light on different
patterns. Of course, the very definition of a ∆-clique involves
a clique in the corresponding aggregated graph. As such, it
is possible to find the students’ classrooms solely by looking
at the ∆-cliques. However, other patterns are also highlighted
in ∆-cliques. For instance, we found a 60-clique involving
4 students of different classrooms during roughly 5 minutes,
which is likely to be the signature of coffee breaks.

Considering the 3600-cliques, we notice that most of them
last a few hours. This is typically courses; our hypothesis is that
no more than 7 nodes are found interacting together because
of the sensor’s range (roughly 1 meter), meaning that students
sharing the same classroom will not all be pairwise in contact.
The daily lunch break provides an explanation for the fact that
few 3600-cliques last longer than 3 hours. Indeed, students
might eat outside (thus giving back the sensors), or eat with
friends from different classes (thus ending the previous 3600-
cliques).

The 900-cliques have an intermediary interpretation, allow-
ing us to clearly see the distinction between time in and out of
the classroom. Some cliques (usually involving students of the
same class) last during a few hours (up to 4 hours), whereas
others are much shorter (around 25 minutes), corresponding to
contacts in between classrooms.

The rhythm of the school day explains the large gaps
between the maximum durations found for different ∆s. Ef-
fectively, the students being in contact for 15 minutes long

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7

F
ra

ct
io

n
 o

f
cl

iq
u
e
s

h
a
vi

n
g
 |
X

|
≥
 x

x (in number of nodes)

60
900

3600
10800

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10000 20000 30000 40000 50000 60000

F
ra

ct
io

n
 o

f
cl

iq
u
e
s

h
a
vi

n
g
 e

 -
 b

 ≥
 x

x (in seconds)

60
900

3600
10800

Fig. 4: Left: the complementary cumulative distribution function of clique sizes for different values of ∆. Right: the
complementary cumulative distribution function of clique durations for different values of ∆. The sharp drop at 2 ·∆ is due to
∆-cliques involving only 2 nodes.

880

601

1144

889

660

854

690

691

695

1856

814

658

896

830

649

868

807

1629

864

641

803

824

827

826

681

804

627

628

609

663

660

832

1632

696

851

1618

1190

698

1613

1856

1672

692

678

635

1170

612

613

616

1492

661

1622

686

694

860

1628

1181

828

1686

827

826

681

683

Fig. 5: Two 60-cliques (in red) in their surrounding stream. Left: The 60-clique
({1144, 889, 660, 854, 690}, 1353325660, 1353325820). For scale, the time between the two first occurrences of the link
(1144, 690) corresponds to 20 seconds. Right: The 60-clique ({832, 692}, 1353920500, 1353921480). For scale, the time
between the two first occurrences of the link (832, 692) corresponds to 20 seconds.

are either during a 15 minute break or in the middle of a
2 hour course, and the condition of being in contact at least
once every 15 minutes is easily fulfilled. Such interactions are
likely to stop with lunch breaks or the end of the school day,
which explains that the maximum duration found for 900 is
4 hours. The maximal duration found for ∆ = 3600 (1 hour)
is likely to be due to students having a short lunch breaking,
thus perpetuating their 3600-clique through the school day.

These long ∆-cliques were not found for ∆ = 60; we
attribute this both to the short spatial resolution of the sensors
(~1 meter) and the short temporal scale (1 minute): a student

being called at the whiteboard, for instance, would easily break
the conditions to make a 60-clique.

A larger ∆ (for example 3 hours) exhibits other kinds of
behaviours, as it allows ∆-cliques to go through the 1 hour
long lunch break. Though obtaining a full result with such a
∆ is out of reach with the current state of our algorithm, we
managed to obtain a good estimation of the largest cliques
for ∆ = 10800. Indeed, as stated in section II, going through
the configuration space using a depth-first search allows us
to obtain maximal cliques faster. Plus, since long or large ∆-
cliques statistically involve more links in the corresponding

link stream, picking links randomly from the dataset results in
a higher likelihood of finding large or long ∆-clique quickly.
Indeed, this intuition is right, as ∆ = 10800 raise a much
longer ∆-clique, lasting 59560 seconds (approximately 16
hours) within a few minutes of computation. This ∆ is large
enough to embrace the whole school day (approximately 10
hours, from 9am to 6pm), but not enough to go through the
night.

It is interesting to note that looking at graph snapshots
over time, i.e. a sequence of graphs {Gt} induced by the
interactions that occurred from time t to t + ∆, then the
graphs Gt+∆, Gt+2∆ and so on, will yield different results.
Choosing where a snapshot starts and ends is arbitrary, and will
split cliques between two snaphots, making those undetected.
Instead, ∆-cliques consider time as a continuous value and
will raise all such structures.

As far as we know, the detection of such patterns that
involve both structure and time with one simple dedicated
notion is novel, and is not raised by classical clique detection.
Focusing solely on the temporal aspects (for instance, looking
at the intercontact distribution, as done in [7]), does not lead
to identifying those patterns between students of the same or
of different classrooms.

IV. CONCLUSION

We introduce the notion of ∆-clique in link streams as
a generalization of cliques in graphs. We provide a first
algorithm to list all the maximal ∆-cliques. Running it on
contact among high-school students revealed new patterns of
contact at different temporal scales, opening the way for a
better understanding of human contact patterns.

Clearly, our algorithm may be further improved. Trying
to adapt the Bron-Kerbosch algorithm [2] and some of its
variants [14], [5], [1], [6], the most widely used algorithms for
computing cliques in graphs, is particularly appealing. Indeed,
the configuration spaces built by these algorithms are trees, and
they are much smaller than our configuration spaces. This is
achieved by maintaining a set of candidate nodes that may be
added to previously discovered cliques, which does not directly
translate to our situation because of time in link streams. Still,
we believe that progress is possible in this direction.

Another perspective is to extract the maximal ∆′-cliques,
with ∆′ < ∆ and given the knowledge of the ∆-cliques (both
maximal and non-maximal). This is a significant improvement,
as one only needs to do a costly computation once (for a
sufficiently large ∆). This is possible because for a ∆′ < ∆,
all the maximal ∆′-cliques will be contained at one point in
the configuration space created for computing the ∆-cliques.

We also consider the case of links with duration as a
promising perspective: each link (b, e, u, v) means that u and
v are in continuous contact from time b to e. In this case
there is no need for a ∆ anymore, as density in this context
is nothing but the probability that two randomly chosen nodes
are linked together at a randomly chosen time. The definition
of cliques in link streams with durations follows directly, and
our algorithm may be extended to compute the maximal such
cliques.

Acknowledgments.

This work is supported in part by the french Direction Générale
de l’Armement (DGA), by the CODDDE ANR-13-CORD-0017-01
grant from the Agence Nationale de la Recherche, and by grant
O18062-44430 of the French program PIA – Usages, services et
contenus innovants.

REFERENCES

[1] David Avis and Komei Fukuda. Reverse search for enumeration.
Discrete Applied Mathematics, 65:21–46, 1996.

[2] Coen Bron and J Kerbosch. Algorithm 457: finding all cliques of an
undirected graph. Communications of the ACM, 16(9), 1973.

[3] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola
Santoro. Time-varying graphs and dynamic networks. CoRR,
abs/1012.0009, 2010.

[4] Ciro Cattuto, Wouter Van den Broeck, Alain Barrat, Vittoria Colizza,
Jean-François Pinton, and Alessandro Vespignani. Dynamics of person-
to-person interactions from distributed rfid sensor networks. PLoS ONE,
5(7):e11596, 07 2010.

[5] Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing
algorithms. SIAM Journal of Computing, 14(1):210–223, 1985.

[6] David Eppstein and Darren Strash. Listing all maximal cliques in large
sparse real-world graphs. Experimental Algorithms, pages 364–375,
2011.

[7] Julie Fournet and Alain Barrat. Contact patterns among high school
students. PLoS ONE, 9:e107878, 2014.

[8] Petter Holme and Jari Saramäki. Temporal networks. Physics Reports,
519:97–125, 2012.

[9] Theus Hossmann, Thrasyvoulos Spyropoulos, and Franck Legendre. A
complex network analysis of human mobility. In NETSCICOM 2011,
3rd IEEE International Workshop on Network Science for Communi-
cation Networks, in conjuction with IEEE INFOCOM 2011, April 15,
2011, Shanghai, China, Shanghai, CHINE, 04 2011.

[10] Theus Hossmann, Thrasyvoulos Spyropoulos, and Franck Legendre.
Putting contacts into context: Mobility modeling beyond inter-contact
times. In Proceedings of the Twelfth ACM International Symposium
on Mobile Ad Hoc Networking and Computing, MobiHoc ’11, pages
18:1–18:11, New York, NY, USA, 2011. ACM.

[11] David S. Johnson, Mihalis Yannakakis, and Christos H. Papadimitriou.
On generating all maximal independent sets. Information Processing
Letters, 27(3):119–123, 3 1988.

[12] Anna-Kaisa Pietilänen and Christophe Diot. Dissemination in op-
portunistic social networks: The role of temporal communities. In
Proceedings of the Thirteenth ACM International Symposium on Mobile
Ad Hoc Networking and Computing, MobiHoc ’12, pages 165–174,
New York, NY, USA, 2012. ACM.

[13] Michele Starnini, Andrea Baronchelli, and Romualdo Pastor-Satorras.
Modeling human dynamics of face-to-face interaction networks. Phys.
Rev. Lett., 110:168701, Apr 2013.

[14] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The worst-case
time complexity for generating all maximal cliques and computational
experiments. Theoretical Computer Science, 363:28–42, 2006.

[15] Jordan Viard. Source code in python for drawing link streams:
https://github.com/jordanV/LinkStreamViz, 2014.

[16] Jordan Viard and Matthieu Latapy. Identifying roles in an IP network
with temporal and structural density. In Computer Communications
Workshops (INFOCOM WKSHPS), pages 801–806, 2014.

[17] Jordan Viard and Matthieu Latapy. Source code
in python for computing cliques in link streams:
https://github.com/jordanV/delta-cliques, 2014.

[18] Jordan Viard, Matthieu Latapy, and Clémence Magnien. Computing
maximal cliques in link streams. submitted, February 2015.

[19] Klaus Wehmuth, Artur Ziviani, and Eric Fleury. A Unifying Model for
Representing Time-Varying Graphs. Research Report RR-8466, ENS
Lyon, 2014.

	Introduction
	Algorithm
	Experiments
	Dataset
	Computing -cliques
	Comparison with cliques in the aggregated graph

	Conclusion
	References

