Classifying Global Scene Context for On-line Multiple Tracker Selection

Salma Moujtahid 1 Stefan Duffner 1 Atilla Baskurt 1
1 imagine - Extraction de Caractéristiques et Identification
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : In this paper, we present a novel framework for combining several independent on-line trackers using visual scene context. The aim of our method is to decide automatically at each point in time which specific tracking algorithm works best under the given scene or acquisition conditions. To this end, we define a set of generic global context features computed on each frame of a set of training videos. At the same time, we record the performance of each individual tracker on these videos in terms of object bounding box overlap with the ground truth. Then a classifier is trained to estimate which tracker gives the best result given the global scene context in a particular frame. We experimentally show that such a classifier can predict the best tracker with a precision of over 80% in unknown videos with unknown environments. The proposed tracking method further filters the classifier responses temporarily using a Hidden Markov Model in order to avoid rapid oscillations between different trackers. Finally, we evaluated the overall tracking system and showed that this scene context-based tracker selection considerably improves the overall robustness and compares favourably with the state-of-the-art.
Type de document :
Communication dans un congrès
British Machine Vision Conference (BMVC), Sep 2015, Swansea, United Kingdom. 2015
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01208200
Contributeur : Salma Moujtahid <>
Soumis le : vendredi 2 octobre 2015 - 10:30:59
Dernière modification le : jeudi 19 avril 2018 - 14:38:05
Document(s) archivé(s) le : dimanche 3 janvier 2016 - 10:35:15

Fichier

bmvc_CRC(official).pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01208200, version 1

Citation

Salma Moujtahid, Stefan Duffner, Atilla Baskurt. Classifying Global Scene Context for On-line Multiple Tracker Selection. British Machine Vision Conference (BMVC), Sep 2015, Swansea, United Kingdom. 2015. 〈hal-01208200〉

Partager

Métriques

Consultations de la notice

290

Téléchargements de fichiers

233