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WEIGHTED LEAST SQUARES ESTIMATION FOR THE

SUBCRITICAL HESTON PROCESS

MARIE DU ROY DE CHAUMARAY

Abstract. We simultaneously estimate the four parameters of a subcritical Heston pro-
cess. We do not restrict ourself to the case where the stochastic volatility process never
reaches zero. In order to avoid the use of unmanageable stopping times and natural
but intractable estimator, we propose to make use of a weighted least squares estimator.
We establish strong consistency and asymptotic normality for this estimator. Numeri-
cal simulations are also provided, illustrating the good performances of our estimation
procedure.

1. Introduction

Introduced in 1973, as an hedging tool, the Black-Scholes model uses a geometric Brow-
nian motion to represent asset prices. The implied volatility is supposed to be constant
over time, which turned out to be inaccurate to fit real market data, especially during the
crash in 1987, see [25]. Several alternative models have been constructed to take into ac-
count the so-called smile effect associated to deep in-the-money or out-of-money options.
A particular attention has been drawn to the study of stochastic volatility processes in
which the volatility is also given as a solution of some stochastic differential equation, see
[24], [21] and [14] for financial accuracy. Among them, Heston process [16] is one of the
most popular, due to its computational tractability. For example, [20] easily computes call
option prices using Fourier inversion techniques. Numerous results about the asymptotic
volatility smile can be found in the very recent literature: see e.g. [10], [11], [17].
We denote by Yt the logarithm of the price of a given asset and by Xt its instantaneous

variance, and we consider the following Heston process

(1.1)

#
dXt “ pa` bXtq dt` 2

?
Xt dBt

dYt “ pα ` βXtq dt` 2
?
Xt

´
ρ dBt `

a
1 ´ ρ2 dWt

¯

with a ą 0, pb, α, βq P R
3 and ρ Ps ´ 1, 1r, where pBt,Wtq is a 2-dimensional standard

Wiener process and the initial state px0, y0q P R
` ˆ R. In this process, the volatility Xt

is driven by a generalized squared radial Ornstein-Uhlenbeck process, also known as the
CIR process, firstly studied by Feller [9] and introduced in a financial context by Cox,
Ingersoll and Ross [7] to compute short-term interest rates. The asymptotic behavior of
this process has been widely investigated and depends on the values of both coefficients
a and b.
Once a model has been chosen for its realistic features, it needs to be calibrated before

being used for pricing. Our goal in this paper is to estimate parameters pa, b, α, βq at the
same time using a trajectory of pXtq and pYtq over the time interval r0, T s. Azencott and
Gadhyan [4] developed an algorithm to estimate some parameters of the Heston process
based on discrete time observations, by making use of Euler and Milstein discretization
schemes for the maximum likelihood. However, in the special case of an Heston process,
the exact likelihood can be computed. It allows us to construct the maximum likelihood
estimator (MLE) without using sophisticated approximation methods, which is necessary
for many stochastic volatility models, see [1]. The MLE of pa, b, α, βq has been recently
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2 MARIE DU ROY DE CHAUMARAY

investigated in [5], together with its asymptotic behavior in the special case where a ě 2.
Denote by τ0 the stopping-time given by

(1.2) τ0 “ inf

"
T ą 0

ˇ̌
ˇ̌
ż T

0

X´1

t dt “ 8
*
.

For any a ą 0, the MLE rθT “
´

raT ,rbT , rαT , rβT
¯
is given, for T ă τ0, by:

(1.3) rθT “
ˆ
G´1

T 0
0 G´1

T

˙ ˆ rUT
rVT

˙

where rUT “
´şT

0
X´1

t dXt,
şT
0
Xt dXt

¯⊺

, rVT “
´şT

0
X´1

t dYt,
şT
0
Xt dYt

¯⊺

and

GT “
˜şT

0
X´1

t dt T

T
şT
0
Xt dt

¸
.

One can observe that praT ,rbT q coincides with the MLE of the parameters pa, bq of the CIR
process based on the observation of pXT q over the time interval r0, T s. The asymptotic
behavior of this latter estimator is well-known, see for example [12], [23] and [6]. In the

supercritical case b ą 0, Overbeck [23] has shown that rbT converges a.s. to b whereas
there exists no consistent estimator for a. Hence, we will focus our attention on the
geometrically ergodic case b ă 0. Furthermore, the value of a governs the behavior at
zero of pXT q: for a ě 2, the process almost surely never reaches zero , whereas for
0 ă a ă 2, zero is quite frequently visited and

(1.4) P pτ0 ă 8q “ 1,

see for instance [19] or [23]. For a ą 2, the MLE converges a.s. to θ “ pa, b, α, βq and
satisfies the following Central Limit Theorem (CLT)

?
T

´
rθT ´ θ

¯
LÝÑ N p0, 4D´1q

where the block matrix D is given by

D “
ˆ
Σ ρΣ
ρΣ Σ

˙
with Σ “

ˆ ´b
a´2

1
1 ´a

b

˙
.

A large deviation principle for the couple praT ,rbT q was recently established in [8]. In
the particular case where one parameter is known and the other one is estimated, large
deviations can be found in [27], while moderate deviations are given in [13].

By contrast, in the case where 0 ă a ă 2, (1.4) implies the non-integrability of X´1

T for
large values of T so that the MLE does not converge for T going to infinity. Consequently,
this case has been less investigated even though it is often of interest in finance, to compute
long dated interest rates for instance, as explained in [3], or in FX-markets, see [18]. In the
case of the CIR process, Overbeck [23] used accurate stopping times to build a strongly
consistent estimator based on the MLE:

(1.5) 1lTăτ0

ˆraT
rbT

˙
` 1lτ0ďT

¨
˚̋

lim
tÑτ0

StΣ
´1

t

´şT
0
Xs ds

¯´1
ˆ
XT ´ T lim

tÑτ0
StΣ

´1

t

˙
˛
‹‚

where St “
şt
0
X´1

s dXs, Σt “
şt
0
X´1

s ds and τ0 is given by (1.4). The aim of this paper
is to investigate a new strongly consistent weighted least squares estimator (WLSE) for
the quadruplet of parameters θ (and for pa, bq as a consequence). The weighting allows us
to circumvent the explosion for XT reaching zero and consequently avoid us to make use
of stopping times, which are not easy to handle in practice. It generalizes to continuous



WLSE FOR THE SUBCRITICAL HESTON PROCESS 3

time the original work of Wei and Winnicki [26] for branching processes with immigration,
inspired by an analogy with first order autoregressive processes. Our results answer, by
the way, the question of Ben Alaya and Kebaier in the conclusion of [6] regarding the CIR
process.
Following the seminal work of [26], denote CT “ XT ` c where c is some positive

constant. Our new couple of weighted least squares estimator is given by

(1.6) pθT “
ˆ
Γ´1

T 0
0 Γ´1

T

˙ ˆ
UT
VT

˙

where UT “
´şT

0

1

Ct
dXt,

şT
0

Xt

Ct
dXt

¯⊺

, VT “
´şT

0

1

Ct
dYt,

şT
0

Xt

Ct
dYt

¯⊺

and

ΓT “
˜şT

0

1

Ct
dt

şT
0

Xt

Ct
dtşT

0

Xt

Ct

dt
şT
0

X2
t

Ct

dt

¸
.

We do not restrict ourselves to the case where c “ 1 as it may lower sometimes the
variance of the estimators. In the particular case where c “ 0, one can observe that the
new estimator coincides with the MLE.
The paper is organized as follows. The second section contains our main results: the

strong consistency of this new couple of estimators as well as its asymptotic normality.
The third section deals with a comparison with the MLE, while the remaining of the
paper is devoted to the proofs of our main results, as well as their illustration by some
numerical simulations.

2. Main results

Our main results are as follows.

Theorem 2.1. Assume that a ą 0 and b ă 0. Then, the four-dimensional WLSE pθT is
strongly consistent: for T going to infinity,

(2.1) pθT a.s.ÝÝÑ θ.

For T going to infinity, XT converges in distribution to a random variable X with
Gamma Γpa{2,´b{2q distribution, see Lemma 3 of [23] for instance. Additionally, we
denote by C the limiting distribution of XT ` c, as T goes to infinity.

Theorem 2.2. Assume that a ą 0 and b ă 0. Then, for T going to infinity, the estimator
pθT satisfies the following CLT

(2.2)
?
T

´
pθT ´ θ

¯
LÝÑ N p0, 4Λq ,

where the asymptotic variance Λ is defined as a block matrix by

(2.3) Λ “
ˆ
ALA ρALA

ρALA ALA

˙
,

with the matrix A and L respectively given by

A “ pE rCsE r1{Cs ´ 1q´1

ˆ
E rX2{Cs ´E rX{Cs
´E rX{Cs E r1{Cs

˙

and

L “
ˆ
E rX{C2s E rX2{C2s
E rX2{C2s E rX3{C2s

˙
.

We deduce from the previous theorems the following result for the MLE of the two
parameters of the CIR process pXT q.
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Corollary 2.1. Assuming that a ą 0 and b ă 0, the WLSE ppaT ,pbT q of parameters pa, bq
is strongly consistent for T going to infinity,

ˆpaT
pbT

˙
a.s.ÝÝÑ

ˆ
a

b

˙
.

and satisfies the following CLT

?
T

ˆpaT ´ a
pbT ´ b

˙
LÝÑ N p0, 4ALAq ,

Remark 2.1. In the remaining of this paper, we denote

(2.4) ψc “
ˆ

´bc

2

˙a{2
e´bc{2 Γ p1 ´ a{2,´bc{2q ,

where Γ is the upper incomplete gamma function defined for all y P R and α P R
`
˚ by

Γpα, yq “
ż `8

y

e´ttα´1 dt,

and extended, for y ‰ 0, to any real α by holomorphy. To simplify following expressions,
we also define

(2.5) ϕc “ ψc

´
1 ´ a

bc

¯
´ 1.

In the proof of Theorem 2.2, we evaluate the two matrices A and L involving c and we
obtain that

(2.6) A “ ϕ´1

c

ˆ
c pψc ´ 1q ´ a

b
ψc ´ 1

ψc ´ 1 ψc

c

˙

and

(2.7) L “ 1

2

¨
˝

a

c
ψc ` b p1 ´ ψcq pa` 2 ´ bcq p1 ´ ψcq ´ a

pa ` 2 ´ bcq p1 ´ ψcq ´ a ψcc pa` 4 ´ bq ´ 4c´ bc2 ´ 2a

b

˛
‚.

By a straightforward computation, we deduce that ALA “ pϕcq´2

ˆ
σ11 σ12
σ12 σ22

˙
where the

variances σ11 and σ22 are respectively given by

σ11 “ pψc ´ 1q2
ˆ
a

b
´ bc2 ` ψc

bc

2
pc ´ 1q

˙
´ a2

2b
ϕc

σ22 “
ˆ`
ψ2

c ´ 1
˘ b
2

` ψc

c

˙
ϕc ` ψc

2c

`
ψ2

c pa ´ bq ` ψc p2 ´ bcq ´ 2
˘
,

and the covariance σ12 is given by σ12 “ pψc ´ 1q2 ´ a
2
ϕc.

Remark 2.2. For c going to zero (for which we need a to be greater than 2) , we obtain the
same covariance matrix than for the MLE. Indeed, using well-known asymptotic results
about the incomplete Gamma function Γ, which could be found in [22], we have that, as
soon as a ą 2,

(2.8) Γ p1 ´ a{2,´bc{2q ÝÑ
cÑ0

0

and

(2.9) Γ p1 ´ a{2,´bc{2q
ˆ

´bc

2

˙a{2´1

ÝÑ
cÑ0

1

1 ´ a{2 “ 2

a ´ 2
.
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Thus ψc goes to zero for c tending to zero and ψc

c
converges to ´b

a´2
. Hence, we easily

obtain that, for c going to zero,

ALA ÝÑ
cÑ0

Σ´1 where Σ “
ˆ ´b
a´2

1
1 ´a

b

˙
.

3. Asymptotic variance

Even though we considered the weighted least squares estimators in order to investigate
the case 0 ă a ă 2 for which the MLE is not consistent, it is interesting to compare the
asymptotic variances in the CLT of this new estimators and of the MLE, in the case where
a ą 2. This comparison requires a lot of technical calculation as the asymptotic variances
depends on the value of a, b and c. However, it is quite easy to compare variances for
the MLE of the parameters of the CIR process in the case where we suppose one of the
parameter to be known and we estimate the other one, as it simplifies substantially the
expression of the estimators. On the one hand, if a is known, the MLE for b is given by

(3.1) qbT “ XT ´ aT
şT
0
Xt dt

and satisfies the following CLT
?
T

´
qbT ´ b

¯
LÝÑ N p0, 4{E rXsq

where E rXs “ ´a{b, see for instance [23]. On the other hand, if b is known, the MLE of
a is given by

(3.2) qaT “
şT
0
1{Xt dXt ´ bT
şT
0
1{Xt dt

and satisfies the following CLT
?
T pqaT ´ aq LÝÑ N p0, 4{E

“
X´1

‰
q

with E rX´1s “ ´b{pa ´ 2q. Whereas, the weighted least squares estimators are respec-
tively given by

pbT “
şT
0

Xt

Ct
dXt ´ a

şT
0

Xt

Ct
dt

şT
0

X2
t

Ct

dt
and paT “

şT
0

1

Ct
dXt ´ b

şT
0

Xt

Ct
dt

şT
0

1

Ct
dt

.

Proposition 3.1. Assume that a ą 0 and b ă 0. For T going to infinity, pbT satisfies the
following CLT:

(3.3)
?
T

´
pbT ´ b

¯
LÝÑ N

´
0, 4E

“
X3{C2

‰ `
E

“
X2{C

‰˘´2
¯
.

Proof. Replacing dXt by its expression (1.1), we easily get that

?
T

´
pbT ´ b

¯
“ 2

ˆ
1

T

ż T

0

X2

t

Ct
dt

˙´1

nT?
T

where nT is a martingale given by

nT “
ż T

0

Xt

?
Xt

Ct
dBt and xnyT “

ż T

0

X3

t

C2

t

dt.

Using the ergodicity of the process, we obtain for T going to infinity

(3.4)
xnyT
T

a.s.ÝÝÑ E
“
X3{C2

‰
.
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Thus, by the CLT for martingales, we obtain the following convergence in distribution

(3.5)
nT?
T

LÝÑ N
`
0,E

“
X3{C2

‰˘
.

Consequently, (3.3) follows from (3.5), Slutsky’s lemma and the fact that, by the ergodicity

of the process, 1

T

şT
0
X2

t {Ct dt converges a.s. to E rX2{Cs for T going to infinity. �

Proposition 3.2. Assume that a ą 0 and b ă 0. For T going to infinity, paT satisfies the
following CLT:

(3.6)
?
T ppaT ´ aq LÝÑ N

`
0, 4E

“
X{C2

‰
pE r1{Csq´2

˘
.

Proof. It works as in the previous proof. One can observe that

?
T ppaT ´ aq “ 2

ˆ
1

T

ż T

0

1

Ct
dt

˙´1

mT?
T

where mT is a martingale term given by

mT “
ż T

0

?
Xt

Ct
dBt and xmyT “

ż T

0

Xt

C2

t

dt.

Thus, for T going to infinity,

(3.7)
xmyT
T

a.s.ÝÝÑ E
“
X{C2

‰

which implies the following convergence in distribution

(3.8)
mT?
T

LÝÑ N
`
0,E

“
X{C2

‰˘
.

Finally, (3.8) leads to (3.6) thanks to the ergodicity of the process and Slutsky’s lemma.
�

Proposition 3.3. Assume that a ą 2 is known and b ă 0. Then, the MLE of b satisfies
a CLT with a smaller asymptotic variance than the weighted least squares estimator.

Proof. Using Cauchy-Schwarz Inequality, we notice that
`
E

“
X2{C

‰˘
2 “

´
E

”?
X ˆ X3{2{C

ı¯
2

ď E rXsE
“
X3{C2

‰

which immediately leads to the result. �

Proposition 3.4. Assume that a ą 2 and b ă 0 is known. Then, the MLE of a satisfies
a CLT with a smaller asymptotic variance than the weighted least squares estimator.

Proof. Using Cauchy-Schwarz Inequality, we notice that

pE r1{Csq2 “
`
E

“
X´1{2 ˆ X1{2{C

‰˘2 ď E r1{XsE
“
X{C2

‰

which immediately leads to the result. �

Remark 3.1. Thus, the weighted least squares estimator is less efficient than the MLE
in the case where this later is easily manageable. This could seem to be contradictory to
Remark 4.4 of [26] which deals with the discrete-time counterpart of the process. In fact,
they compare the weighted least squares with the conditional least squares estimator which
does not coincide with the MLE.

Remark 3.2. One could wonder how to choose which estimator to use, as the parameter
a is unknown. However, we suppose that we observe the whole trajectory of the process
over the time interval r0, T s. Thus, if we are able to detect some local time at level zero,
we know that a ă 2 and we should use the WLSE instead of the MLE.
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4. Technical Lemmas

In order to prove Theorem 2.1, we need to investigate the almost sure convergence of
all the integrals involved in the definition of the estimators. Overbeck recalls in Lemma
3(i) of [23] that, for T going to infinity, XT converges in distribution to X with Gamma
Γpa{2,´b{2q distribution, whose probability density function is given by

(4.1) fpxq “ pΓpa{2qq´1 p´b{2qa{2
xa{2´1exb{21xą0.

Thus, by Lemma 3(ii) of [23], for T going to infinity,

1

T

ż T

0

g pXtq dt
a.s.ÝÝÑ E rgpXqs “

ż `8

0

gpxqfpxq dx.

for any function g such that the right-hand side exists.
By an integration by part, we easily show the two following properties of the incomplete

gamma function, which will be very useful in the following proof:

(4.2) Γpα` 1, xq “ xαe´x ` αΓ pα, xq
and

(4.3) Γpα` 2, xq “ xαe´x px` α ` 1q ` α pα ` 1qΓ pα, xq .
We are now able to prove the following lemmas. The three first points give us the almost
sure limit of TΓ´1

T as T goes to infinity, while the remaining deals with the increasing
process of the right-hand side two-dimensional martingale of (1.6).

Lemma 4.1. With ψc given by (2.4), we have that

(i) E r1{Cs “ ψc

c
.

(ii) E rX{Cs “ 1 ´ ψc.
(iii) E rX2{Cs “ c pψc ´ 1q ´ a

b
.

(iv) E rX{C2s “ a
2c
ψc ` b

2
p1 ´ ψcq .

(v) E rX2{C2s “ 1

2
ppa ` 2 ´ bcq p1 ´ ψcq ´ aq.

(vi) E rX3{C2s “ c
2

pa` 4 ´ bqψc ´ 2c´ bc2

2
´ a

b
.

Proof. (i) We have

(4.4) E r1{Cs “
ż `8

0

1

x` c
fpxq dx,

where f is given by (4.1). Formula 3.38(10) of [15] gives that
ż `8

0

1

x ` c
xa{2´1exb{2 dx “ ca{2´1e´bc{2Γpa{2qΓp1 ´ a{2,´bc{2q,

which leads to

E r1{Cs “ 1

c

ˆ
´bc

2

˙a{2
e´bc{2 Γ p1 ´ a{2,´bc{2q

and ensures the announced result.
(ii) As in the previous proof, we have

(4.5) E rX{Cs “
ż `8

0

x

x` c
fpxq dx.

By formula 3.38(10) of [15], we know that

(4.6)

ż `8

0

1

x ` c
xa{2exb{2 dx “ ca{2e´bc{2Γpa{2 ` 1qΓp´a{2,´bc{2q.
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With formula (4.2), we easily obtain that

(4.7) Γp´a{2,´bc{2q “
ˆ

´2

a

˙ ˜
Γ p1 ´ a{2,´bc{2q ´

ˆ
´bc

2

˙´a{2
ebc{2

¸
.

Combining (4.5), (4.6), (4.7) and the fact that Γpa{2 ` 1q “ a{2 ˆ Γpa{2q, we deduce the
announced result.

(iii) We have

E

„
X2

C


“ E

«
pX ` c´ cq2

X ` c

ff
“ E rXs ´ c` c2 E

„
1

C


,

and we conclude using (i) and the fact that E rXs “ ´a{b.
(iv) By the very definition of f given by (4.1), we have

(4.8) E
“
X{C2

‰
“

ż `8

0

x

px` cq2
fpxq dx “ p´b{2qa{2

Γpa{2q

ż `8

0

xa{2

px ` cq2
exb{2 dx.

Integrating the right-hand side of (4.8) by part, we obtain that

E
“
X{C2

‰
“ p´b{2qa{2

Γpa{2q

„
a

2

ż `8

0

xa{2´1

x` c
exb{2 dx` b

2

ż `8

0

xa{2

x ` c
exb{2 dx


.

We have already computed both integrals in the proofs of respectively (i) and (ii), which
leads to

(4.9) E
“
X{C2

‰
“ a

2
E r1{Cs ` b

2
E rX{Cs “ a

2c
ψc ` b

2
p1 ´ ψcq .

(v) Integrating by parts and using (iii) and (iv),

E
“
X2{C2

‰
“ p´b{2qa{2

Γpa{2q

ż `8

0

xa{2`1

px ` cq2
exb{2 dx

“ p´b{2qa{2

Γpa{2q

„
a ` 2

2

ż `8

0

xa{2

x ` c
exb{2 dx ` b

2

ż `8

0

xa{2`1

x` c
exb{2 dx



“
`
pa ` 2q E rX{Cs ` bE

“
X2{C

‰˘
{2

“
´

pa ` 2q p1 ´ ψcq ` b
´
c pψc ´ 1q ´ a

b

¯¯
{2.

(vi) Noticing that X3 “ X pX ` cq2 ´ 2cX2 ´ c2X , we obtain that

E
“
X3{C2

‰
“ E rXs ´ 2cE

“
X2{C2

‰
´ c2 E

“
X{C2

‰

and we conclude using (iv) and (v).
�

5. Proof of the strong Consistency

We are now in the position to prove Theorem 2.1. We first rewrite (1.6) using (1.1):

(5.1) pθT “ θ `
ˆ
Γ´1

T 0
0 Γ´1

T

˙ ˆ
MT

NT

˙
,

where MT and NT are martingales respectively given by

MT “

¨
˚̊
˝

ż T

0

2
?
Xt

Ct
dBt

ż T

0

2
?
XtXt

Ct
dBt

˛
‹‹‚ and NT “

¨
˚̊
˝

ż T

0

2
?
Xt

Ct
d rBt

ż T

0

2
?
XtXt

Ct
d rBt

˛
‹‹‚
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with d rBt “ ρ dBt `
a

1 ´ ρ2 dWt. We denote by MT the martingale MT “ pMT , NT q.
As

A
dBt, d rBt

E
“ ρdt, we easily obtain that the increasing process of MT is given by

(5.2) xMyT “
ˆ

xMyT ρ xMyT
ρ xMyT xMyT

˙
.

Proof of Theorem 2.1. First of all, we have

1

T 2
det ΓT “ 1

T

ż T

0

1

Ct
dt ˆ 1

T

ż T

0

X2

t

Ct
dt ´

ˆ
1

T

ż T

0

Xt

Ct
dt

˙2

.

Thus, as the process is ergodic, we obtain for T going to infinity,

(5.3)
1

T 2
det ΓT

a.s.ÝÝÑ E r1{CsE
“
X2{C

‰
´ pE rX{Csq2

and

(5.4) TΓ´1

T

a.s.ÝÝÑ A

where A is given by

(5.5) A “ pE rCsE r1{Cs ´ 1q´1

ˆ
E rX2{Cs ´E rX{Cs
´E rX{Cs E r1{Cs

˙
.

A straightforward application of Lemmas 4.1 (i) to (iii) gives that

A “ 1

ψc
`
1 ´ a

bc

˘
´ 1

ˆ
c pψc ´ 1q ´ a

b
ψc ´ 1

ψc ´ 1 ψc

c

˙
.

Besides, the martingale MT satisfies for T going to infinity

(5.6)
MT

T

a.s.ÝÝÑ 0.

As a matter of fact, by convergences (3.4) and (3.7), we know that a.s. xnyT “ O pT q and
xmyT “ O pT q. It ensures that for T going to infinity,

nT

T

a.s.ÝÝÑ 0 and
mT

T

a.s.ÝÝÑ 0.

As NT and MT share the same increasing process, this result remains true by replacing
MT by NT . Finally, the almost sure convergence (2.1) follows from (5.1), (5.4) and (5.6).

�

6. Proof of the asymptotic normality

Proof of Theorem 2.2. First of all, we deduce from (5.1) that

(6.1)
?
T

´
pθT ´ θ

¯
“

ˆ
TΓ´1

T 0
0 TΓ´1

T

˙ ˆ
MT {

?
T

NT {
?
T

˙
,

We already saw that TΓ´1

T converges almost surely as T goes to infinity and its limit A is
given by (5.5). We now have to establish the asymptotic normality of MT?

T
. The increasing

process of MT is given by

xMyT “ 4

¨
˚̊
˝

xmyT
ż T

0

X2

t

C2
t

dt
ż T

0

X2

t

C2

t

dt xnyT

˛
‹‹‚
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where xmyT and xnyT are respectively given by (3.7) and (3.4). Thus, by the ergodicity
of the process, we obtain that

xMyT
T

a.s.ÝÝÑ 4L where L “
ˆ
E rX{C2s E rX2{C2s
E rX2{C2s E rX3{C2s

˙
.

As a straightforward consequence of Lemmas 4.1 (iv) to (vi), we obtain that

L “ 1

2

¨
˝

a

c
ψc ` b p1 ´ ψcq pa` 2 ´ bcq p1 ´ ψcq ´ a

pa ` 2 ´ bcq p1 ´ ψcq ´ a ψcc pa` 4 ´ bq ´ 4c´ bc2 ´ 2a

b

˛
‚.

We easily obtain the following a.s. convergence

xMyT
T

a.s.ÝÝÑ 4L

where L is a block matrix given by

L “
ˆ
L ρL

ρL L

˙
.

and we deduce from the CLT for martingales that

(6.2)
MT?
T

LÝÑ N p0, 4Lq ,

Finally, the asymptotic normality (2.2) follows from (6.1) and (6.2) together with Slutsky’s
Lemma. �

7. Numerical simulations

The efficient discretization of the CIR process is a challenging question, see for example
[3] and [2]. We choose to implement the QE-algorithm based on quadratic-exponential
approximations proposed in [3]. Andersen introduced this algorithm to deal with the case
a ă 2, for which common discretization schemes are not accurate.

7.1. Asymptotic behavior for c “ 1. The two following figures illustrate our main
results (strong consistency and asymptotic normality) in the case a “ 1 and b “ ´2, with
the weighting parameter c “ 1. The red curves in the second figure displays the standard
normal distribution.

0 2 000 4 0001 000 3 000 5 000500 1 500 2 500 3 500 4 500

0

−10

−12

−8

−6

−4

−2

2

4

6

Figure 1. strong consistency: ppaT q in black and ppbT q in blue.
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0e00

2e−01

4e−01
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3e−01

5e−01

0−6 −4 −2 2 4 6−5 −3 −1 1 3 5

0e00

2e−01

4e−01

1e−01

3e−01

Figure 2. Histograms of 3000 outcomes of
a
T {4σ11 ppaT ´ aq anda

T {4σ22ppbT ´ bq at time T “ 70 .

7.2. Choice of the constant c. We have chosen to introduce a constant c in our weight-
ing, instead of only considering the case c “ 1 (as done in the discrete-time case in [26])
with the aim of lowering the variance of the estimators. However, this raises the question
of the optimal choice of the constant c, which depends on the values of parameters a
and b. We set a “ 1 and b “ ´4 and simulate 500 trajectories of the process over the
time interval r0, 50s. We compute the empirical variance of the estimators given by each
trajectory for c varying between 10´10 and 1. It appears that one should choose a small
value of c. The value should not be to small to avoid the growth illustrated by the sec-
ond figure, which might however be a consequence of the discretized version of the CIR
process we used. For paT , there is a significant difference (factor 5) between the empirical

variances obtained with c “ 0.01 and c “ 1. However, for pbT both empirical variances do
not significantly differ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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2e−03
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6e−03

8e−03

1.2e−02

1.4e−02

3e−03

5e−03

7e−03

9e−03

1.1e−02

1.3e−02

Figure 3. Variance of pa50
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4.4e−01
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Figure 4. Variance of pb50
Empirical variances of the estimators
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Figure 5. Variance of pa50
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Figure 6. Variance of pb50
Empirical variances for very small values of c
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