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Bijactions in Cataland

Nathan Williams∗

LaCIM, Montréal, Québec, Cananda

Abstract. In this abstract, I will survey the story of two enumerative miracles that relate certain Coxeter-theoretic
objects and other poset-theoretic objects. The first miracle relates reduced words and linear extensions, while the
second may be thought of as relating group elements and order ideals. The purpose of this abstract is to use a
conjecture from my thesis to present both miracles in the same light.

Résumé. Dans ce résumé, j’étudie l’histoire de deux miracles énumératifs qui relient certains objets de la théorie
de Coxeter et d’autres objets de la théorie des posets. Le premier miracle relie des mots réduits et des extensions
linéaires, tandis que le second relie des éléments du groupe et des idéaux d’ordre. Le but de ce résumé est d’utiliser
une conjecture de ma thèse afin de présenter les deux miracles sous la même lumière.
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1 Introduction
In this abstract, I will survey the story of two enumerative miracles that relate certain Coxeter-theoretic
objects and other poset-theoretic objects. The first miracle relates reduced words and linear extensions,
while the second may be thought of as relating group elements and order ideals. The purpose of this
abstract is to use a conjecture from my thesis to display both miracles in the same light [W].

The remainder of this introductory section is used to motivate the plausibility of such relationships by
recalling a case for which the correspondences are immediate [Stem]. Section 2 is then devoted to defining
the Coxeter-theoretic objects using the braid arrangement, while Section 3 similarly interprets the poset-
theoretic objects in the Shi arrangement. These two sections are wedded in Figure 3. The punchline of
this abstract lies in the tantalizing and explicit analogy drawn in Theorem 4.1 and Conjecture 4.4.

Let (W,S) be a finite Coxeter system and forw ∈W letR(w) be the set of reduced words in the simple
generators S for w. If w,w′ ∈ R(w), we say that w and w′ lie in the same commutation class if one
may be transformed into the other using only commutations. An element w ∈ W is fully commutative
if all reduced words for w are in the same commutation class. Such elements enjoy many delightful
properties—for example, the weak order interval Weak(W,w) := [e, w]S is a distributive lattice for w
fully commutative [Stem].

Let w = s1 · · · sk be a reduced S-word for a fully commutative element w. Define a partial order ≤
on [k] by the transitive closure of the relations i ≺ j if i < j and si and sj don’t commute. This partial
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ordering defines a “root poset” Φ+(W,w) on [k] called a heap, which for W crystallographic coincides
with the restriction of the root poset Φ+(W ) to the inversions of w. If w,w′ are two reduced words for
a fully commutative element w, then it is not hard to see that Φ+(W,w) and Φ+(W,w′) are isomorphic.
We may therefore refer to the heap Φ+(W,w) for w fully commutative.
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Fig. 1: The heap for the fully commutative element w =
s2s1s3s2 ∈ A3 is isomorphic to the poset [2] × [2].
Weak(A3, w) ∼= J ([2]× [2]) is pictured above.

We writeL(P) for the set of linear extensions of
a poset P and J (P ) for its set of order ideals. The
entire structure of the interval Weak(W,w) is now
described by Φ+(W,w), as illustrated in Figure 1.

Theorem 1.1 ( [Stem])
For w fully commutative,

1. |L(Φ+(W,w))| = |R(w)|; and

2. |J (Φ+(W,w))| = |Weak(W,w)|.
Note that when w is fully commutative, inver-

sion sets for elements in Weak(W,w) are order
ideals in Φ+(W,w).

It seems nothing short of a miracle, then, that
the root poset Φ+(W ) often behaves like a heap
for the longest element w0 ∈ W (definitions are
given in Section 3.1 and 2.2). That is, not only
does the equality |L(Φ+(W ))| = |R(w0)| hold
in many types, but there is also a subset of el-
ements of W—N. Reading’s sortable elements,
Sort(W, c), defined in Section 2.3—for which |J (Φ+(W ))| = |Sort(W, c)|.

More precisely, we state a companion theorem to Theorem 1.1.

Theorem 1.2 ( [Stan84, EG, Hai92, W, Rein, Read])

1. |L(Φ+(W ))| = |R(w0)| for W of type An, Bn, H3, or I2(m); and

2. |J (Φ+(W ))| = |Sort(W, c)| for W not of type H4,

The remainder of this abstract will be devoted to unravelling these two statements in tandem.

2 Coxeter-theoretic objects
On the Coxeter-theoretic side, we require two sets of objects: reduced words for the longest element and
sortable elements. Both sets of objects have natural cyclic actions, which turn out to be related. Using the
braid arrangement, I will describe these objects and their cyclic actions geometrically.

2.1 The braid arrangement
Let (W,S) be a finite Coxeter system—a group W with presentation

〈S : (ss′)m(s,s′) = e〉,

where m(s, s′) = 1 iff s = s′, m(s, s′) = m(s′, s) ∈ N ∪ {∞}, and e is the identity.
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We quickly review the geometric representation of finite Coxeter systems. Let V be a vector space over
R with basis ∆(W ) := {αs : s ∈ S}; these αs are called simple roots. Define a symmetric bilinear
form B on V by B(αs, αs′) = − cos

(
π

m(s,s′)

)
. For each s ∈ S, define a reflection s : V → V by

s(β) := β− 2B(αs, β)αs. This extends uniquely to an injective homomorphism from W to GL(V ). The
root system for W is defined by

Φ(W ) := {w(αs) : w ∈W, s ∈ S}.

Any α ∈ Φ(W ) may be written uniquely in the form α =
∑
s∈S csαs, where either each cs ≥ 0 or each

cs ≤ 0. The positive roots Φ+(W ) are those roots that may be expressed as a nonnegative sum of the αs,
and are in bijection with the reflections T := {wsw−1 : w ∈W, s ∈ S}. We write αt for the positive root
corresponding to the reflection t. For α ∈ Φ(W ) and p ∈ Z, define the hyperplane

Hα,p := {v ∈ V : B(α, v) = p}.

Definition 2.1 The braid arrangement is the set of hyperplanes

Braid(W ) := {Hα,0 : α ∈ Φ+(W )}.

The connected regions or chambers of V \∪α∈Φ+(W )Hα,0 are in bijection with the elements ofW . The
fundamental chamber A is chosen to correspond to the identity element; the element w then corresponds
to the chamber wA.

Semisimple Lie algebras provide one motivation for the geometric representation. A root system is
associated to each semisimple Lie algebra, and the hyperplanes perpendicular to the roots divide the space
V into chambers; the reflections in these hyperplanes generate a group that permutes the chambers. Such
groups are a subset of the finite irreducible Coxeter groups called Weyl groups or crystallographic Coxeter
groups, because their root systems satisfy the additional hypothesis that 2(β,α)

(α,α) ∈ Z for α, β ∈ Φ(W ).
The non-crystallographic finite irreducible Coxeter groups are H3, H4, and I2(m) for m 6= 2, 3, 4, 6.

2.2 Reduced words
Definition 2.2 Define a gallery in a hyperplane arrangementH to be a sequence of chambers

(C0, C1, . . . , C`) ,

whereCi andCi+1 share the bounding hyperplaneHi+1. Let Path(C,C ′,H) be the set of minimal-length
galleries from C to C ′ inH.

When H = Braid(W ), a gallery w ∈ R(w) := Path(A,wA,Braid(W )) spells out a reduced word
for w in the simple reflections S, where we abbreviate w = (A, si1A, si1si2A, . . . , si1si2 · · · si`A) as
w = si1si2 · · · si` ; we definew’s length `S(w) := `. The inversion sequence inv(w) := (α1, α2, . . . , α`)
records the order in which the hyperplanes Hαi,0 are crossed by w ∈ R(w). The unordered set of
traversed hyperplanes is independent of the gallery w and is called w’s inversion set.

Definition 2.3 Finite Coxeter groups have a unique longest element w0 whose inversion set is all of
Φ+(W ). The inversion sequence of w0 ∈ R(w0) imposes a total ordering <w0 on all positive roots
called a root order.
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Root orders are often given in the literature as certain tableaux: they correspond with the notion of P.
Edelman and C. Greene’s balanced tableaux in type An [EG].

We define an action on a reduced word w0 ∈ R(w0), denoting conjugation by w0 by w := w0ww0.

Definition 2.4 Let N := `S(w0) = |Φ+(W )|. Define Pro : R(w0)→ R(w0) by

Pro (s1s2s3 · · · sN ) := s2s3 · · · sNs1.

If we let the W -permutahedron be the adjacency graph of chambers in the braid arrangement for W ,
then w0 ∈ R(w0) is a path from e to w0 and w0 may be drawn as the complementary path back from w0

to e. Their concatenation w0w0 traces out a loop around the W -permutahedron; acting by Pro is simply
a rotation of this loop. As `S(w0) = N , Pro has order N if s = s for s ∈ S and order 2N otherwise.

We may rephrase Definition 2.4 in terms of Hurwitz operators on inversion sequences, thereby sacrific-
ing efficiency for homology with Definition 3.4. The definition

Proi(inv(w0)) = Proi
(
αt1 , . . . , αti , αti+1

, . . . , αtN
)

:=
(
αt1 , . . . , ti(αti+1

), αti , . . . , αtN
)
,

allows us to factor Definition 2.4 as inv(Pro(w0)) =
(
ProN−1 · · ·Pro2Pro1

)
(inv(w0)).

2.3 Sortable elements
In light contrast to the theory of fully commutative elements summarized in Section 1, we must restrict
our attention from all elements of W to the subset consisting of N. Reading’s c-sortable elements. For a
generalization that includes these two extremes as special cases, see Chapter 5 of [W].

Let n := |S| and let π be a permutation on [n]. A Coxeter element c = sπ1
sπ2
· · · sπn is a product of

the simple reflections in any order. Fix a Coxeter element c and choose any reduced word c ∈ R(c) (this
choice is immaterial, since any two such words will agree up to commutations). The c-sorting word w(c)
of w is the lexicographically first (in position) reduced S-subword of w of the word

c∞ =
(
sπ1

sπ2
· · · sπn | sπ1

sπ2
· · · sπn | sπ1

sπ2
· · · sπn | · · ·

)
.

An elementw ∈W is c-sortable if its c-sorting word defines a decreasing sequence of subsets of positions
in c. We denote the set of c-sortable elements by Sort(W, c).

The W -Catalan number is the uniform formula

Cat(W ) :=
n∏
i=1

h+ di
di

,

where the di are the degrees of W and the Coxeter number h := 2N/n is the order of a Coxeter element
c. For the symmetric group W = Sn, it is easy to check that Cat(W ) specializes to the classical Catalan
number Cat(Sn) = 1

n+1

(
2n
n

)
. Of the over two hundred objects counted by Cat(Sn) that R. Stanley has

compiled, one example is D. Knuth’s stack-sortable (231-avoiding) permutations, which coincide with
the c-sortable elements when W = Sn and c = (123 . . . n). The c-sortable elements therefore generalize
the stack-sortable permutations in two directions simultaneously: from Sn to an arbitrary Coxeter group,
and from the cycle (123 . . . n) to an arbitrary Coxeter element [Read]. Remarkably, the Catalan number is
robust enough to survive this generalization—just as stack-sortable permutations are counted by Cat(Sn),
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the number of c-sortable elements is counted by Cat(W ). The proof of this enumeration has so far resisted
a uniform treatment and to date remains case-by-case.

To bridge the gap between reduced words for the longest element and sortable elements—and to draw
tight the analogy at the heart of this abstract—we use a marvelous description of clusters due to C. Cebal-
los, J.-P. Labbé, and C. Stump [CLS], building on work of A. Woo. N. Reading has shown that sortable
elements and clusters are in bijection.

Definition 2.5 ([CLS]) Fix the word in simple reflections Q = (Q1,Q2, . . . ,QN+n) := cw0(c). The
(W, c)-subwords are the elements of the set

S(W, c) := {(i1 ≤ i2 ≤ · · · ≤ iN ) : Qi1Qi2 · · ·QiN = w0}.

We now extend the cyclic action Pro fromR(w0) to S(W, c). Shift a subword in S(W, c) one position
to the left to obtain a subword of Q′ = sπ2

· · · sπnw0(c)s (the leftmost letter s is sent to the rightmost let-
ter s). If c′ = s−1cs then, up to commutations, sπ2

· · · sπnw0(c)s = c′w0(c′), so that the resulting sub-
word corresponds to a subword in S(W, c′) [CLS]. This defines a map Cambs : S(W, c)→ S(W, s−1cs).

Definition 2.6 Let c = sπ1
sπ2
· · · sπn be a reduced S-word for c. Define the c-Cambrian rotation Cambc :

S(W, c)→ S(W, c) by
Cambc := Cambsπn · · ·Cambsπ2Cambsπ1 .

As withR(w0), we find it convenient to complete the word Q to the word QQ, so that Cambc becomes
a simple rotation of the longer word. It is essential to note here that, up to commutations,

QQ = cw0(c)cw0(c) = ch+2.

It follows that an (h+ 2)-fold application of Cambc is the identity. Let the (W, c)-Cambrian graph be the
graph with vertices the positions in S(W, c) and edges between the subwords (i1 ≤ i2 ≤ · · · ≤ iN ) and
(j1 ≤ j2 ≤ · · · ≤ jN ) if |{i1, i2, . . . , iN} \ {j1, j2, . . . , jN}| = 1. Cambrian rotation is an automorphism
of the Cambrian graph.

3 Poset-theoretic objects
There are two combinatorial structures on arbitrary posets that we will consider: linear extensions and
order ideals. Each of these has a natural cyclic action whose orbit structure is wild in general, but well-
behaved for root posets. As the Coxeter-theoretic objects of Section 2 were defined using the braid ar-
rangement, we similarly interpret the poset-theoretic objects in the Shi arrangement (when possible).

3.1 The Shi arrangement and root posets
Definition 3.1 ([Shi]) The W -Shi arrangement is the set of hyperplanes

Shi(W ) := {Hα,i : α ∈ Φ+(W ) and i = 0, 1}.

For W crystallographic, J.-Y. Shi proved that Shi(W ) has (h + 1)n regions by showing that the inverses
of the elements of the affine group labeling the minimal alcoves of the Shi(W ) regions coalesce into a
(h+1)-fold dilation of the fundamental alcove [Shi]. While regions of the braid arrangement are naturally
labeled by elements of W , regions of Shi(W ) are called the W -parking functions.
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An order ideal of a poset P is a set I ⊆ P such that if p ∈ I and p′ ≤ p, then p′ ∈ I . We write J (P)
for the set of all order ideals of P , which forms a distributive lattice under inclusion. The root poset for a
Coxeter group W is a partial order on positive roots given by α ≤ β ∈ Φ+(W ) if β − α is a nonnegative
sum of positive roots. Order ideals of the root poset may be used to label the regions of Shi(W ) in the
following way (i).

Theorem 3.2 ([Shi]) For crystallographic W , the regions of Shi(W ) in the chamber wA are in bijection
with order ideals in the subposet of Φ+(W ) consisting of the non-inversions of w.

1 2 3

212 232

12121 32123

121 3121213

12321 231212132

12312121321

2123121213212

2123212

123121321

1 2

121

12121

1212121

212

Φ+(H3) Φ+(I2(m))

Fig. 2: D. Armstrong’s surrogate root posets of types H3

and I2(m), labeled by reflections.

Root posets (as defined above) for non-
crystallographic W do not enjoy the same prop-
erties as their crystallographic brethren. Neverthe-
less, in types H3 and I2(m), D. Armstrong con-
structed surrogate root posets with desirable be-
havior [Arm]. These posets are given in Figure 2,
and we will refer to them as the root posets of
types H3 and I2(m). In type I2(m), these are nat-
ural generalizations of the root posets for the crys-
tallographic dihedral types A2, B2, and G2, and
may be labeled by reflections in an obvious way.
The root poset for H3 may be explained through
a folding of D5, but it also arises from the fully
commutative quotient (H3, I2(5)). M. Cuntz and
C. Stump have computed that there is no fully sat-
isfactory poset for H4.

3.2 Linear extensions
Let P be a poset with N elements and let

s1

s1s2

s1s2s1

Fig. 3: Galleries in Shi(A2) from A0 (middle, in dark
gray) to N (top right) and from A0 to P (bottom left).

[N ] = {1, 2, . . . , N}. A linear extension of P is
a bijection L : P → [N ] such that if p < p′, then
L(p) < L(p′). We write L(P) for the set of linear
extensions of P . Just as reduced words for the
longest element are galleries in Braid(W ), linear
extensions of the positive root poset may be seen
as galleries in Shi(W ).

To see both simultaneously in Shi(W ), we iden-
tify three regions: the fundamental alcove A0 :=
{x : B(α, x) ≥ 0 for α ∈ ∆ and B(−α0, x) ≤
1} (where α0 is the highest root in Φ+(W )), the
region P := {x : B(α, x) ≥ 1 for α ∈ ∆},
and the region N := {x : B(α, x) ≤ 0 for α ∈
∆}. The following proposition follows from The-
orem 3.2 and the discussion above, and is illus-
trated in Figure 3.
(i) I thank B. Rhoades for explaining this to me.
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Proposition 3.3 For W crystallographic,

• Path(A0, N, Shi(W )) = R(w0); and

• Path(A0, P, Shi(W )) = L(Φ+(W )).

The required cyclic action on linear extensions is M.-P. Schützenberger’s ubiquitous promotion. R.
Stanley has written an excellent survey article on the theory [Stan09].

Definition 3.4 Let L be a linear extension of a poset P with N elements, and let Proi(L) be the linear
extension obtained from L by switching the labels i and i + 1 if L−1(i) and L−1(i + 1) do not have a
covering relation. Define promotion Pro : L(P)→ L(P) by

Pro := ProN−1ProN−2 · · ·Pro1.

This definition should be digested along with the discussion following Definition 2.4. Note that promo-
tion is often equivalently defined using jeu-de-taquin.

3.3 Order ideals
Similarly to how the sortable elements may be seen as certain regions in Braid(W ), Theorem 3.2 states
that order ideals of the root poset are in bijection with regions of Shi(W ) that lie in the chamber A. We
emphasize these objects with their own definition.

Definition 3.5 ForW a crystallographic Coxeter group,H3, or I2(m), the nonnesting partitions NN(W )
are the order ideals in the root poset Φ+(W ).

The nonnesting partitions are so named because of their combinatorial model in type An, where they
are realized as set partitions of [n + 1] avoiding “nesting” configurations (in reference to this model, we
use the symbol for a particular nonnesting partition, while reserving for a noncrossing partition).
The nonnesting partitions are intrinsically quite different from the sortable elements and subwords of Sec-
tion 2.3: they do not depend on a Coxeter element and the extension toH3 and I2(m)—though undeniably
correct—is strangely artificial. Most importantly, the nonnesting partitions have been uniformly counted
by Cat(W ), while the noncrossing partitions, sortable elements, and clusters have not [CP].

We act on order ideals using P. Cameron and D. Fon-der-Flaass’s toggles [CF].

Definition 3.6 For each p ∈ P , define Togp : J (P)→ J (P) by

Togp(I) :=

 I ∪ {p} if p /∈ I and if p′ < p then p′ ∈ I;
I \ {p} if p ∈ I and if p′ > p then p′ /∈ I; and
I otherwise.

That is, Togp acts by toggling the element p if possible. These operators are immediately seen to satisfy
Tog2

p(I) = I and (TogpTogp′)
2(I) = I when p and p′ do not have a covering relation. Given a sequence

of poset elements (p1, p2, . . . , pi), we abbreviate Togp1p2···pi := Togpi · · ·Togp2Togp1 .
In [SW], J. Striker and I interpreted promotion of linear extensions of certain posets as an element

of a toggle group acting on columns; for such posets, there was a conjugate action given by acting on
rows which we called rowmotion. An extension of this idea was used in [RS] to uniformly prove a CSP
for all minuscule posets. H. Thomas remarked to me that the column order of toggles given in [SW]
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corresponded to a root order in type An, and suggested that a nonnesting c-Kreweras complement be
defined by Toginv(w0(c)). But it is well-known that there are two natural actions on W -Catalan objects:
the Kreweras complement (corresponding to rotation of noncrossing matchings in type A) and Cambrian
rotation (corresponding in type A to rotation of triangulations). Drawing on H. Thomas’s observation, I
was able to find the following definition. It is not much of an exaggeration to say that the entire worth of
this abstract is contained in it and Conjecture 4.4. For further discussion, see Section 4.4 of [W].

Definition 3.7 Define the nonnesting c-Cambrian rotation Cambc : NN(W )→ NN(W ) by

Cambc := Toginv(w0(c))Tog+
inv(w0(c)),

where Tog+
α ( ) :=

{
Togα( ) if α 6∈ ∆(W );

otherwise, and Tog+
α1α2···αi := Tog+

αi · · ·Tog+
α2

Tog+
α1
.

Just as Definitions 2.4 and 3.4 were twisted into similar forms, it is possible to factor Definition 2.6 as
a walk on the (W, c)-Cambrian graph in the order suggested by Definition 3.7 [W].

4 Miracles
With four cyclic actions in our quiver—Pro on L(Φ+(W )), Pro on R(w0), Cambc on S(W, c), and
Cambc on NN(W )—we fix our sights on Theorem 1.2. In this section, we show how these actions
induce the two bijections of Theorem 1.2; we call the two resulting maps bijactions, as they are bijections
induced by actions. Caution: Theorem 1.2 has been proven, the induced map for Part 1 of Theorem 1.2
has been proven to be a bijection, but the induced map for Part 2 of Theorem 1.2 is, for now, conjectural.

4.1 Theorem 1.2, Part 1: Galleries

Theorem 4.1 ForW a Coxeter group of typeAn, Bn, H3, or I2(m), there is a bijaction betweenL(Φ+(W ))
under Pro andR(w0) under Pro.

As stated, this theorem is false in other types (other than the redundancy incurred by D3). For example,
in D4 we have |L(Φ+(D4))| = 2400 and |R(w0)| = 2316, while in F4, |L(Φ+(F4))| = 2311020 =
22 · 32 · 5 · 37 · 347 and |R(w0)| = 2144892 = 22 · 3 · 47 · 3803. (ii)

In the crystallographic types An, Bn, and G2, Section 3.1 implies that Part 1 of Theorem 1.2 may
be rephrased as the equality |Path(A0, P, Shi(W ))| = |Path(A0, N, Shi(W ))|. It is tempting—though
almost certainly overly bold—to use this language to generalize to the m-Shi arrangement.

Before revealing the promised bijaction, we briefly review some history. Based on computations by
P. Edelman, J. Goodman, and R. Pollack, R. Stanley observed the surprising coincidence that |R(w0)| in
typeAn and |L(Φ+(An))| both begin 1, 2, 16, 768, . . . [Stan84]. He was able to prove this equinumeration
with symmetric functions [Stan84]. P. Edelman and C. Greene later produced a gorgeous bijection from
L(Φ+(An)) toR(w0) using equivariance of Pro and Pro [EG]. M. Haiman proved that an analogous map
was a bijection from L(Φ+(Bn)) to R(w0), confirming a conjecture of R. Proctor [Hai92]. Theorem 4.1
is therefore only a tiny extension of these spectacular results.

(ii) I thank R. Edman for computing |R(w0)| in F4.
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Bijaction 4.2 The Edelman-Greene bijection from L(Φ+(W )) to R(w0) is given as follows. Beginning
with L ∈ L(Φ+(W )), compute the orbit(

ProN−1(L),ProN−2(L), . . . ,L
)
.

The corresponding reduced word is then given by replacing each linear extension Prok(L) in this se-

quence by the simple reflection si such that
(

Prok(L)
)

(αsi) = N .

As mentioned above, this is proven for typesA andB in [EG] and [Hai92], respectively. For I2(m), the
correspondence between the two reduced words for w0 and the two linear extensions of D. Armstrong’s
“positive root poset” of Table 2 is immediate. Lastly, there are 286 linear extensions of the “positive root
poset” of type H3, divided as 2 ∗ 3, 2 ∗ 5, and 18 ∗ 15 under Pro (where i ∗ j is short for i orbits of size
j). These orbits equivariantly map to orbits of reduced words for the longest element under Pro.

Example 4.3 In type H3 =
1 2 3

5 , there are five elements in the Pro-orbit of

13 15 14

11 12

10 9

8 7

5 6

4

3

2

1

.

These map to the reduced word s3s1s2s1s2 s3s1s2s1s2 s3s1s2s1s2, as illustrated in the table below.
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15 14 13

12 11

9 10

7 8

6 5

4

3

2

1

13 15 14

11 12

10 9

8 7

5 6

4

3

2

1

14 13 15

12 10

11 8

9 7

6 5

4

3

2

1

s3 s1 s2 s1 s2

4.2 Theorem 1.2, Part 2: Regions
Conjecture 4.4 For W a Coxeter group not of type H4, there is a bijaction between J (Φ+(W )) under
Cambc and S(W, c) under Cambc.

We again review some history. The precursor to Conjecture 4.4 is a conjecture of D. Panyushev [Pan],
which was refined by D. Bessis and V. Reiner [BR]. D. Armstrong, C. Stump, and H. Thomas proved
this conjecture by expertly exploiting a coincidence between the Kreweras complement on noncrossing
partitions and rowmotion on nonnesting partitions. Using parabolic induction, this coincidence allowed
them to uniformly characterize a bijection between the two sets [AST]. The advantage of Cambrian
rotation over the Kreweras complement is that we are able to avoid all inductive unpleasantness.

Bijaction 4.5 The bijaction from J (Φ+(W )) to S(W, c) is given as follows. As remarked after Defini-
tion 2.5, we may use commutations to write a subword of Q in S(W, c) as a subword of QQ = ch+2.
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Beginning with a nonnesting partition , compute the orbit(
,Cambc( ),Camb2

c( ), . . . ,Cambh+1
c ( )

)
.

The subword of ch+2 is given by replacing each nonnesting partition Cambkc ( ) in this sequence by a
copy of c, marking those simple roots that lie in Cambkc ( ).

Conjecture 4.4 has been verified in all types of rank less than or equal to 8 using Bijaction 4.5. Observe
that Bijactions 4.2 and 4.5 have a very similar flavor.

Example 4.6 In type D4 = 1 2

3

4

with c = s1s2s3s4, inv(w0(c)) is the root order

1 5 11

2 8

3

12

7

4 10

9

6

.

One four element Cambc-orbit is illustrated below, along with the subword of Q = cw0(c) it determines.

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

5 Conclusion
In this section, we return to the fully commutative motivation from the Introduction and tie Theorems 1.1
and 1.2 together with four pairs of identities. I apply some reasonable conclusions from these identities to
Part 1 of Theorem 1.2, but I am unable to offer any explanation for the generality of Part 2.

Define the posets n := [n] × [n], n = J ([2] × [n]), and n := J n([2] × [2]). These are
the (Gaussian) root posets for certain maximal parabolic quotients W J whose longest element wJ0 is
fully commutative. All such parabolic quotients were classified by J. Stembridge in [Stem], and their
root posets coincide in crystallographic type with the minuscule posets. The following theorem relates
Theorems 1.1 and 1.2.

Theorem 5.1 We have the following equalities:

|L(Φ+(An))| = 2n(n−1)/2|L( n)|, 2n|J (Φ+(An)× [k])| = |J ( n × [2k + 1])|;
|L(Φ+(Bn))| = |L( n)|, |J(Φ+(Bn)× [k])| = |J( n × [k])|;
|L(Φ+(H3))| = |L( 5)|, |J (Φ+(H3)× [k])| = |J ( 5 × [k])|; and

|L(Φ+(I2(2m)))| = |L( m−2)|, |J (Φ+(I2(2m))× [k])| = |J ( m−2 × [k])| for m ≥ 2.
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We will refer to an equation in Theorem 5.1 by its row (A,B,H, or I) and its column (L or J ). The
hook-length and shifted hook-length formulas prove AL and BL. R. Proctor simultaneously established
BL and BJ with a representation-theoretic proof of BJ [Pro83], while K. Purbhoo in unpublished work
and M. Haiman in [Hai92] found beautiful jeu-de-taquin bijections forAL andBL, respectively. I believe
that the remaining equalities are new or trivial. (iii)

Given the appearance of jeu-de-taquin, it is perhaps not surprising that BL, HL, and IL can be re-
fined to say that the linear extensions on either side of the equals sign have the same orbit structure
under Pro. As for AL, if we define L (P, i) :=

{
L ∈ L(P) : Proi(L) = L

}
, then I showed in [W]

that L
(

Φ+(An), n(n+1)
d

)
is nonempty for d odd with d|n or d|(n + 1), and computations suggest that∣∣∣L(Φ+(An), n(n+1)

d

)∣∣∣ = 2d
n(n−1)

2d e
∣∣∣L( n,

n(n+1)
2d

)∣∣∣. An accompanying CSP is conjectured in [W].
By virtue of J. Stembridge’s classification [Stem], there can be no analogue of Theorem 5.1 in other

types. This offers at least a partial explanation for the disappointing failure of Edelman-Greene maps in
general type, suggesting that the existence of an Edeman-Greene map is contingent on the existence of
an underlying fully commutative poset. We also obtain a reason that there are no known enumerative
formulas for general multi-triangulations as either subword complexes or as the order ideals J (Φ+(W )×
[k])—the known formulas are really disguised formulas for the Gaussian posets on the right-hand sides of
AJ , BJ , HJ , and IJ [CLS]. These failures place Part 1 of Theorem 1.2 in good company with at least
fifteen other phenomena that correlate with being of type An, Bn, H3, and I2(m), the most elementary
being that the degrees d1 ≤ d2 ≤ . . . ≤ dn of W form an arithmetic sequence [Mil].

The generality of Part 2 of Theorem 1.2—especially in the face of the narrowness of Part 1—remains a
mystery.

Acknowledgements
This abstract is based on parts of my thesis, which was completed in September 2013 under Dennis
Stanton at the University of Minnesota. I am grateful to my former advisor Dennis Stanton and to Vic
Reiner for their guidance and support. I am indebted to Hugh Thomas for his insight and generosity. I
thank Drew Armstrong, François Bergeron, Cesar Ceballos, Alejandro Morales, Brendon Rhoades, Jes-
sica Striker, and Christian Stump for helpful conversations, and I thank Vincent Pilaud for suggesting that
I compile this story here.

(iii) A. Morales, G. Panova, and I have a simple representation-theoretic proof of AJ , but I don’t know of any such proof for HJ .
It would be nice to complete the picture with a jeu-de-taquin bijection for HL.



608 Nathan Williams

References
[Arm] D. Armstrong. Generalized noncrossing partitions and combinatorics of Coxeter groups. Amer. Math. Soc.,

2009.

[AST] D. Armstrong, C. Stump, and H. Thomas. A uniform bijection between nonnesting and noncrossing partitions.
Tran. Amer. Math. Soc., 365(8):4121–4151, 2013.

[BR] David Bessis and Victor Reiner. Cyclic sieving of noncrossing partitions for complex reflection groups. Annals
of Combinatorics, pages 1–26, 2009.

[CF] P. Cameron and D. Fon-Der-Flaass. Orbits of antichains revisited. Europ. J. Combin., 16(6):545–554, 1995.
ISSN 0195-6698.
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