Bicovariograms and Euler characteristic I. Regular sets

Abstract : We establish an expression of the \EC~of a $r$-regular planar set in function of some variographic quantities. The usual $\mathcal{C} ^{2}$ framework is relaxed to a $\mathcal{C} ^{1,1}$ regularity assumption, generalising existing local formulas for the \EC. We give also general bounds on the number of connected components of a measurable set of $\mathbb{R}^{2}$ in terms of local quantities. These results are then combined to yield a new expression of the mean \EC~of a random regular set, depending solely on the third order marginals for arbitrarily close arguments. We derive results for level sets of some moving average processes and for the boolean model with non-connected polyrectangular grains in $\mathbb{R}^{2}$. Applications to excursions of smooth bivariate random fields are derived in the companion paper \cite{LacEC2}, and applied for instance to $\C^{1,1}$ Gaussian fields, generalising standard results.
Type de document :
Pré-publication, Document de travail
MAP5 2015-29. 2015
Liste complète des métadonnées
Contributeur : Raphael Lachieze-Rey <>
Soumis le : jeudi 9 mars 2017 - 16:17:37
Dernière modification le : dimanche 12 mars 2017 - 01:05:20


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01207501, version 3
  • ARXIV : 1510.00501



Raphaël Lachièze-Rey. Bicovariograms and Euler characteristic I. Regular sets. MAP5 2015-29. 2015. <hal-01207501v3>



Consultations de
la notice


Téléchargements du document