C. S. Jr and A. Freitas, A survey of hierarchical classification across different application domains, Data Mining and Knowledge Discovery, vol.44, issue.0, 2011.

R. Babbar and I. Partalas, On Flat versus Hierarchical Classification in Large-Scale Taxonomies, Neural Information Processsing Systems, pp.1-9, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01118815

F. Perronnin, Z. Akata, Z. Harchaoui, and C. Schmid, Towards good practice in large-scale learning for image classification, 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.3482-3489, 2012.
DOI : 10.1109/CVPR.2012.6248090

URL : https://hal.archives-ouvertes.fr/hal-00690014

T. Dietterich and G. Bakiri, Solving multiclass learning problems via error-correcting output codes, Journal of Artificial Intelligence Research, 1995.

R. Schapire, Using output codes to boost multiclass learning problems, International Conference on Machine Learning, pp.1-9, 1997.

A. Passerini, M. Pontil, and P. Frasconi, New Results on Error Correcting Output Codes of Kernel Machines, IEEE Transactions on Neural Networks, vol.15, issue.1, pp.45-54, 2004.
DOI : 10.1109/TNN.2003.820841

D. Hsu, S. Kakade, J. Langford, and T. Zhang, Multi-Label Prediction via Compressed Sensing, Neural Information Processsing Systems, pp.1-16, 2009.

S. Escalera, O. Pujol, and P. Radeva, On the Decoding Process in Ternary Error-Correcting Output Codes, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.1, pp.120-134, 2010.
DOI : 10.1109/TPAMI.2008.266

G. Zhong and M. Cheriet, Adaptive error-correcting output codes, International Joint Conferences on Artificial Intelligence, pp.1932-1938, 2013.

M. Cissé, T. Artières, and P. Gallinari, Learning Compact Class Codes for Fast Inference in Large Multi Class Classification, European Conference on Machine Learninga, 2012.
DOI : 10.1007/978-3-642-33460-3_38

K. Weinberger and O. Chapelle, Large margin taxonomy embedding with an application to document categorization, Neural Information Processsing Systems, pp.1-8, 2008.

S. Bengio, J. Weston, and D. Grangier, Label embedding trees for large multi-class tasks, Advances in Neural Information Processing Systems, pp.163-171, 2010.

J. Platt, N. Cristianini, and J. Shawe-taylor, Large margin DAGs for multiclass classification, Neural Information Processsing Systems, pp.547-553, 2000.

R. Puget, N. Baskiotis, and P. Gallinari, Scalable Learnability Measure for Hierarchical Learning in Large Scale Multi-Class Classification Web Search and Data Mining Workshop Web-Scale Classification: Classifying Big Data from the Web Learning and using taxonomies for fast visual categorization, Computer Vision and Pattern Recognition, pp.1-8, 2008.

J. Deng, S. Satheesh, A. Berg, and L. Fei-fei, Fast and Balanced: Efficient Label Tree Learning for Large Scale Object Recognition, Neural Information Processsing Systems, pp.1-9, 2011.

D. Koller and M. Sahami, Hierarchically Classifying Documents Using Very Few Words, International Conference on Machine Learning, pp.170-178, 1997.

S. D. 'alessio, K. Murray, R. Schiaffino, and A. Kershenbaum, The Effect of Using Hierarchical Classifiers in Text Categorization, 2000.

P. Hao, J. Chiang, and Y. Tu, Hierarchically SVM classification based on support vector clustering method and its application to document categorization, Expert Systems with Applications, vol.33, issue.3, pp.627-635, 2007.
DOI : 10.1016/j.eswa.2006.06.009

K. Wang, Building Hierarchical Classifiers Using Class Proximity Very Large Data Bases, pp.363-374, 1999.

L. Cai and T. Hofmann, Hierarchical document categorization with support vector machines, Proceedings of the Thirteenth ACM conference on Information and knowledge management , CIKM '04, p.78, 2004.
DOI : 10.1145/1031171.1031186

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

X. Qiu, W. Gao, and X. Huang, Hierarchical multi-class text categorization with global margin maximization, Proceedings of the ACL-IJCNLP 2009 Conference Short Papers on, ACL-IJCNLP '09, 2009.
DOI : 10.3115/1667583.1667634

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Tang, H. Liu, J. Zhang, N. Agarwal, and J. J. Salerno, Topic taxonomy adaptation for group profiling, ACM Transactions on Knowledge Discovery from Data, vol.1, issue.4, pp.1-28, 2008.
DOI : 10.1145/1324172.1324173

K. Nitta, Improving taxonomies for large-scale hierarchical classifiers of web documents, Proceedings of the 19th ACM international conference on Information and knowledge management, CIKM '10, p.1649, 2010.
DOI : 10.1145/1871437.1871695

T. Li, S. Zhu, and M. Ogihara, Topic hierarchy generation via linear discriminant projection, Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval , SIGIR '03, pp.421-422, 2003.
DOI : 10.1145/860435.860531

T. Li, S. Zhu, and M. Ogihara, Hierarchical document classification using automatically generated hierarchy, Journal of Intelligent Information Systems, vol.1, issue.2, pp.211-230, 2007.
DOI : 10.1007/s10844-006-0019-7

J. Weston, A. Makadia, and H. Yee, Label partitioning for sublinear ranking, International Conference on Machine Learning, p.2013

B. Liu, F. Sadeghi, M. Tappen, O. Shamir, and C. Liu, Probabilistic Label Trees for Efficient Large Scale Image Classification, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.843-850, 2013.
DOI : 10.1109/CVPR.2013.114

T. Gao and D. Koller, Discriminative learning of relaxed hierarchy for large-scale visual recognition, International Conference on Computer Vision, 2011.

S. Liu, H. Yi, L. Chia, and D. Rajan, Adaptive Hierarchical Multiclass SVM Classifier for Texture-based Image Classification, International Conference on Multimedia and Expo, pp.3-6, 2005.

L. Zhigang, S. Wenzhong, Q. Qianqing, L. Xiaowen, and X. Donghui, Hierarchical support vector machines, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05., 2005.
DOI : 10.1109/IGARSS.2005.1526138

A. Beygelzimer, J. Langford, Y. Lifshits, G. Sorkin, and A. Strehl, Conditional Probability Tree Estimation Analysis and Algorithms, Uncertainty in Artificial Intelligence, 2009.

A. Choromanska and J. Langford, Logarithmic Time Online Multiclass prediction, pp.1-13, 2014.

A. Mccallum and K. Nigam, A Comparison of Event Models for Naive Bayes Text Classification, AAAI/ICML-98 Workshop on Learning for Text Categorization, pp.41-48, 1998.

I. Partalas, A. Kosmopoulos, N. Baskiotis, T. Artieres, G. Paliouras et al., LSHTC : A Benchmark for Large-Scale Text Classification, pp.1-9, 2015.

E. Allwein, R. Schapire, and Y. Singer, Reducing multiclass to binary: A unifying approach for margin classifiers, The Journal of Machine Learning, vol.1, pp.113-141, 2001.

K. Dellschaft and S. Staab, On How to Perform a Gold Standard Based Evaluation of Ontology Learning, 2006.
DOI : 10.1007/11926078_17