E. Allwein, R. Schapire, and Y. Singer, Reducing multiclass to binary: A unifying approach for margin classiers, J. Mach. Learn, vol.1, p.113141, 2001.

R. Babbar and I. Partalas, On Flat versus Hierarchical Classication in Large-Scale Taxonomies, Neural Inf. Process. Syst. pp, vol.19, 2013.

S. Bengio, J. Weston, and D. Grangier, Label embedding trees for large multi-class tasks, Adv. Neural Inf. Process. Syst, vol.23, issue.1, p.163171, 2010.

A. Berg and J. Deng, Imagenet large scale visual recognition challenge, Challenge, pp.2010-2012, 2010.

A. Beygelzimer, J. Langford, Y. Lifshits, G. Sorkin, and A. Strehl, Conditional Probability Tree Estimation Analysis and Algorithms, Uncertain. Artif. Intell, 2009.

S. Bubeck, R. Munos, and G. Stoltz, Pure Exploration in Multi-armed Bandits Problems, Algorithmic Learn. Theory, vol.58, issue.1, pp.978-981, 1007.
DOI : 10.1090/S0002-9904-1952-09620-8

S. Chen, T. Lin, I. King, M. Lyu, and W. Chen, Combina- torial Pure Exploration of Multi-Armed Bandits, Neural Inf. Process. Syst. pp, vol.19, 2014.

A. Choromanska and J. Langford, Logarithmic Time Online Multiclass prediction pp, p.113, 2014.

M. Cissé, T. Artières, and P. Gallinari, Learning compact class codes for fast inference in large multi class classication, Eur. Conf. Mach. Learn, vol.10, pp.978-981, 1007.

C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, vol.1, issue.3, p.273297, 1995.
DOI : 10.1007/BF00994018

K. Crammer and Y. Singer, On the learnability and design of output codes for multiclass problems, Mach. Learn. pp, p.2012331013637720281, 1995.

K. Crammer and C. Gentile, Multiclass classication with bandit feedback using adaptive regularization, Mach. Learn, vol.90, p.347383, 2013.

J. Deng, S. Satheesh, A. Berg, and L. Fei-fei, Fast and Balanced: Ecient Label Tree Learning for Large Scale Object Recognition, Neural Inf. Process. Syst, 2011.

T. Dietterich and G. Bakiri, Solving multiclass learning problems via error-correcting output codes. arXiv Prepr, 1995.

T. Dietterich and G. Bakiri, Solving multiclass learning problems via error-correcting output codes, J. Artif. Intell. Res, 1995.

G. Dulac-arnold, L. Denoyer, P. Preux, and P. Gallinari, Datum-wise classication. A sequential Approach to sparsity, p.375390, 2011.
DOI : 10.1007/978-3-642-23780-5_34

URL : http://arxiv.org/abs/1108.5668

Y. Even-zohar and D. Roth, A sequential model for multi-class classication, EMNLP, 2001.

T. Gao and D. Koller, Discriminative learning of relaxed hierarchy for large-scale visual recognition, ICCV, 2011.

G. Grin and P. Perona, Learning and using taxonomies for fast visual categorization, Comput. Vis. Pattern Recognit. pp, p.18, 2008.

C. S. Jr and A. Freitas, A survey of hierarchical classication across different application domains, Data Min. Knowl. Discov, vol.44, issue.0, 2011.

. Kosmopoulos, E. Gaussier, G. Paliouras, and S. Aseervatham, The ECIR 2010 large scale hierarchical classication workshop, ACM SIGIR Forum, vol.44, issue.23, 2010.

B. Liu, F. Sadeghi, M. Tappen, O. Shamir, and C. Liu, Probabilistic label trees for ecient large scale image classication, Comput. Vis. Pattern Recognit, p.843850, 2013.

A. Passerini, M. Pontil, and P. Frasconi, New Results on Error Correcting Output Codes of Kernel Machines, IEEE Transactions on Neural Networks, vol.15, issue.1, 2004.
DOI : 10.1109/TNN.2003.820841

F. Perronnin, Z. Akata, Z. Harchaoui, and C. Schmid, Towards good practice in large-scale learning for image classication, IEEE Conf. Comput. Vis. Pattern Recognit, p.34823489, 2012.

R. Rifkin and A. Klautau, In defense of one-vs-all classication, J. Mach. Learn. Res, vol.5, p.101141, 2004.

R. Schapire, Using output codes to boost multiclass learning problems, 1997.

S. Wang, R. Jin, and H. Valizadegan, A potential-based framework for online multi-class learning with partial feedback, J. Mach. Learn. Res, vol.9, issue.900907, 2010.

K. Weinberger and O. Chapelle, Large margin taxonomy embedding with an application to document categorization. Adv. Neural Inf, p.18, 2008.

J. Weston, A. Makadia, and H. Yee, Label partitioning for sublinear ranking, Int. Conf. Mach. Learn, vol.28, 2013.

B. Zhao and E. P. Xing, Sparse Output Coding for Large-Scale Visual Recognition, 2013 IEEE Conference on Computer Vision and Pattern Recognition, p.33503357, 2013.
DOI : 10.1109/CVPR.2013.430