J. F. Hainfeld, H. M. Smilowitz, M. J. Connor, F. A. Dilmanian, and D. N. Slatkin, Gold nanoparticle imaging and radiotherapy of brain tumors in mice, Nanomedicine, vol.8, issue.10, pp.1601-1609, 2013.
DOI : 10.2217/nnm.12.165

F. Lux, A. Mignot, P. Mowat, C. Louis, S. Dufort et al., Ultrasmall Rigid Particles as Multimodal Probes for Medical Applications, Angewandte Chemie International Edition, vol.30, issue.51, pp.12299-12303, 2011.
DOI : 10.1002/anie.201104104

URL : https://hal.archives-ouvertes.fr/inserm-00658275

S. Dufort, L. Sancey, and J. L. Coll, Physico-chemical parameters that govern nanoparticles fate also dictate rules for their molecular evolution, Advanced Drug Delivery Reviews, vol.64, issue.2, pp.179-189, 2012.
DOI : 10.1016/j.addr.2011.09.009

S. G. Han, J. S. Lee, K. Ahn, Y. S. Kim, J. K. Kim et al., Size-dependent clearance of gold nanoparticles from lungs of Sprague???Dawley rats after short-term inhalation exposure, Archives of Toxicology, vol.6, issue.7, pp.10-1007, 2014.
DOI : 10.1007/s00204-014-1292-9

W. M. Deen, What determines glomerular capillary permeability?, Journal of Clinical Investigation, vol.114, issue.10, pp.1412-1414, 2004.
DOI : 10.1172/JCI23577

M. Semmler-behnke, W. G. Kreyling, J. Lipka, S. Fertsch, A. Wenk et al., Biodistribution of 1.4- and 18-nm Gold Particles in Rats, Small, vol.115, issue.12, pp.2108-2111, 2008.
DOI : 10.1002/smll.200800922

J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz, Gold nanoparticles: a new X-ray contrast agent, The British Journal of Radiology, vol.79, issue.939, pp.248-253, 2006.
DOI : 10.1259/bjr/13169882

A. K. Gupta and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, vol.26, issue.18, pp.3995-4021, 2005.
DOI : 10.1016/j.biomaterials.2004.10.012

S. Laurent, D. Forge, M. Port, A. Roch, C. Robic et al., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications, Chemical Reviews, vol.108, issue.6, pp.2064-2110, 2008.
DOI : 10.1021/cr068445e

G. Morana, E. Salviato, and A. Guarise, Contrast agents for hepatic MRI, Cancer Imaging, vol.7, issue.Special Issue A, 2007.
DOI : 10.1102/1470-7330.2007.9001

H. Markides, M. Rotherham, and A. J. Haj, Biocompatibility and Toxicity of Magnetic Nanoparticles in Regenerative Medicine, Journal of Nanomaterials, vol.5, issue.9, p.614094, 2012.
DOI : 10.1155/2012/731592

J. T. Heverhagen, G. A. Krombach, and E. Gizewski, Application of Extracellular Gadolinium-Based MRI Contrast Agents and the Risk of Nephrogenic Systemic Fibrosis. R. College Radiol, pp.661-669, 2014.

G. Heinz-peer and P. Reimer, Nephrogenic Systemic Fibrosis and Gadolinium-Based Contrast Media

M. A. Perazella, Nephrogenic Systemic Fibrosis, Kidney Disease, and Gadolinium: Is There a Link?, Clinical Journal of the American Society of Nephrology, vol.2, issue.2, pp.200-202, 2007.
DOI : 10.2215/CJN.00030107

A. Deo, M. Fogel, and S. E. Cowper, Nephrogenic Systemic Fibrosis: A Population Study Examining the Relationship of Disease Development to Gadolinium Exposure, Clinical Journal of the American Society of Nephrology, vol.2, issue.2, pp.264-267, 2007.
DOI : 10.2215/CJN.03921106

N. Jalandhara, R. Arora, and V. Batuman, Nephrogenic Systemic Fibrosis and Gadolinium-Containing Radiological Contrast Agents: An Update, Clinical Pharmacology & Therapeutics, vol.130, issue.6, pp.920-923, 2011.
DOI : 10.1053/j.ajkd.2010.03.027

F. P. Advisory, Gadolinium-Containing Contrast Agents for MRI, 2006.

W. Rima, L. Sancey, M. T. Aloy, E. Armandy, G. B. Alcantara et al., Internalization pathways into cancer cells of gadolinium-based radiosensitizing nanoparticles, Biomaterials, vol.34, issue.1, pp.181-195, 2013.
DOI : 10.1016/j.biomaterials.2012.09.029

URL : https://hal.archives-ouvertes.fr/hal-00843773

J. L. Bridot, A. C. Faure, S. Laurent, C. Riviere, C. Billotey et al., Hybrid Gadolinium Oxide Nanoparticles:?? Multimodal Contrast Agents for in Vivo Imaging, Journal of the American Chemical Society, vol.129, issue.16, pp.5076-5084, 2007.
DOI : 10.1021/ja068356j

URL : https://hal.archives-ouvertes.fr/hal-00434120

D. Kryza, J. Taleb, M. Janier, L. Marmuse, I. Miladi et al., Biodistribution Study of Nanometric Hybrid Gadolinium Oxide Particles as a Multimodal SPECT/MR/Optical Imaging and Theragnostic Agent, et al. Biodistribution Study of Nanometric Hybrid Gadolinium Oxide Particles as a Multimodal SPECT/MR/Optical Imaging and Theragnostic Agent, pp.1145-1152, 2011.
DOI : 10.1021/bc1005976

URL : https://hal.archives-ouvertes.fr/hal-00673880

I. Miladi, G. L. Duc, D. Kryza, A. Berniard, P. Mowat et al., Biodistribution of ultra small gadolinium-based nanoparticles as theranostic agent: Application to brain tumors, Journal of Biomaterials Applications, vol.3, issue.2, pp.385-394, 2013.
DOI : 10.1002/smll.200900563

URL : https://hal.archives-ouvertes.fr/hal-01020860

H. S. Thomsen, Nephrogenic systemic fibrosis: a serious late adverse reaction to gadodiamide, European Radiology, vol.18, issue.12, pp.2619-2621, 2006.
DOI : 10.1007/s00330-006-0495-8

C. Truillet, F. Lux, O. Tillement, P. Dugourd, and R. Antoine, Coupling of HPLC with Electrospray Ionization Mass Spectrometry for Studying the Aging of Ultrasmall Multifunctional Gadolinium-Based Silica Nanoparticles, Analytical Chemistry, vol.85, issue.21, pp.10440-10447, 2013.
DOI : 10.1021/ac402429p

URL : https://hal.archives-ouvertes.fr/hal-00914866

A. Bianchi, S. Dufort, F. Lux, A. Courtois, O. Tillement et al., Quantitative biodistribution and pharmacokinetics of multimodal gadolinium-based nanoparticles for lungs using ultrashort TE MRI, Magnetic Resonance Materials in Physics, Biology and Medicine, vol.7, issue.1, pp.303-316, 2013.
DOI : 10.1007/s10334-013-0412-5

URL : https://hal.archives-ouvertes.fr/hal-01279126

V. Motto-ros, E. Negre, F. Pelascini, G. Panczer, and J. Yu, Precise alignment of the collection fiber assisted by real-time plasma imaging in laser-induced breakdown spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.92, pp.60-69, 2014.
DOI : 10.1016/j.sab.2013.12.008

V. Motto-ros, L. Sancey, Q. L. Ma, F. Lux, X. S. Bai et al., Mapping of native inorganic elements and injected nanoparticles in a biological organ with laser-induced plasma, Applied Physics Letters, vol.101, issue.22, p.223702, 2012.
DOI : 10.1063/1.4768777

URL : https://hal.archives-ouvertes.fr/hal-00797906

L. Sancey, V. Motto-ros, S. Kotb, X. C. Wang, F. Lux et al., Laser-induced Breakdown Spectroscopy: A New Approach for Nanoparticle's Mapping and Quantification in Organ Tissue, Journal of Visualized Experiments, issue.88, 2014.
DOI : 10.3791/51353

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences, Nature Biotechnology, vol.21, issue.11, pp.1369-1377, 2003.
DOI : 10.1038/nbt899

M. J. Pittet, R. Weissleder, and . Imaging, Intravital Imaging, Cell, vol.147, issue.5, pp.983-991, 2011.
DOI : 10.1016/j.cell.2011.11.004

M. A. Abdelhalim and S. A. Abdelmottaleb-moussa, The gold nanoparticle size and exposure duration effect on the liver and kidney function of rats: In vivo, Saudi Journal of Biological Sciences, vol.20, issue.2, pp.177-181, 2013.
DOI : 10.1016/j.sjbs.2013.01.007

V. Chromy, K. Rozkosna, and P. Sedlak, Determination of serum creatinine by Jaffe method and how to calibrate to eliminate matrix interference problems, Clinical Chemistry and Laboratory Medicine, vol.46, issue.8, pp.1127-1133, 2008.
DOI : 10.1515/CCLM.2008.224

S. L. Ashworth, R. M. Sandoval, G. A. Tanner, and B. A. Molitoris, Two-photon microscopy: Visualization of kidney dynamics, Kidney International, vol.72, issue.4, pp.416-421, 2007.
DOI : 10.1038/sj.ki.5002315

X. He, H. Nie, K. Wang, W. Tan, X. Wu et al., In Vivo Study of Biodistribution and Urinary Excretion of Surface-Modified Silica Nanoparticles, Analytical Chemistry, vol.80, issue.24, pp.9597-9603, 2008.
DOI : 10.1021/ac801882g

L. Duc, G. Roux, S. Paruta-tuarez, A. Dufort, S. Brauer et al., Advantages of Gadolinium Based Ultrasmall Nanoparticles vs Molecular Gadolinium Chelates for Radiotherapy Guided by MRI for Glioma Treatment, Cancer Nanotechnol, vol.5, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01115650

Y. Fujigaki, Different modes of renal proximal tubule regeneration in health and disease, World Journal of Nephrology, vol.1, issue.4, pp.92-99
DOI : 10.5527/wjn.v1.i4.92

J. J. Hagen and C. A. Monning, Method for Estimating Molecular Mass from Electrospray Spectra, Analytical Chemistry, vol.66, issue.11, pp.1877-1883, 1994.
DOI : 10.1021/ac00083a017