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Abstract

In this article we present a 2D conservative remapping method which relies on exact polygonal mesh in-
tersection, high accurate polynomial reconstruction (up to degree 5) and a posteriori stabilization based on
MOOD paradigm [19, 29, 30, 70]. This paradigm does not compute any sort of a priori limiter for the poly-
nomial reconstructions. Instead it rather observes if the candidate solution after remapping does not fulfill
user-given criteria, and, in this case, locally to some so-called problematic cells, the method decrements
the polynomial degree for the reconstructions. These problematic cells are then recomputed. Next they
are again tested against the validity criteria and, possibly, some decrementation is applied. Such iterative
procedure always ends either with a valid remapped solution obtained from polynomial degrees greater than
0, or, in the worst case scenario, with a cell remapped without polynomial reconstruction (formally with a
first order accurate remap scheme). Numerical results assess the behavior of such remapping method on
pure advection equations and on some emulation of system of equations.

Key words: Remapping, polynomial reconstruction, a posteriori stabilization, high accuracy, ALE,
MOOD paradigm, mesh intersection, hyperbolic conservation laws

1. Introduction

In this paper we focus on the development of a new class of genuine high accurate remapping methods.
In all generality a remapping method is devoted to to accurately transfer discrete data defined on one generic
“Original/old” mesh O onto another possibly uncorrelated “Target/new” mesh T .

A remap scheme may be used to initialize a Finite Volume (FV) simulation code. For instance if initial
data are only known from a Computer Aided Design (CAD) technology, or from exact functional, some
remapping method can provide the piece-wise constant data per cell needed to start a FV simulation. To be
more specific, in a Volume-Of-Fluid (VOF) context one may need to initialize volume fractions in mixed
cells by intersecting a given shape and a computational mesh. Usually a large sampling of random points
is picked and each point is determined to be inside or outside the shape leading to approximate volume
fractions. A well designed remapper could overcome this approach by exactly intersecting the shape and
the mesh.
However an efficient (accurate and cheap) remapping method could be extremely appreciated in the context
of indirect ALE scheme (Arbitrary-Lagrangian-Eulerian) solving a system of non linear PDEs [51, 12, 86].
In this introduction we will consider that the hydrodynamics system of PDEs is solved. For such an indirect
ALE scheme a Lagrangian scheme evolves the physical variable on a moving mesh during the time step, a
rezone strategy computes a new mesh with a better geometrical quality, and a conservative remap method
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transfers the data from the Lagrangian mesh onto the rezoned one. The purpose of the remap scheme is
to provide on the rezoned mesh data which represent accurately the state variables hold on the Lagrangian
mesh. Under the term “accurately” are gathered several notions: accuracy (in the sense of a decreasing
error in a Taylor expansion), monotonicity (no spurious numerical oscillation), physical admissibility (no
nonphysical state), etc. In fact there is no clear agreement on what should be a “good remapped solution”
when a system of non-linear PDEs is solved. Classically conservative (primitive or sometimes characteris-
tics) variables are piece-wise linearly reconstructed onto the Lagrangian mesh. These reconstructions are
supplemented with a slope limiter based on a Discrete Maximum Principle (DMP) of the reconstructed
variable. Such piece-wise linear limited representations are further integrated during the remap stage to
obtain the remapped data. Depending on the Lagrangian engine used, conservation of momentum and to-
tal energy are sometimes not ensured. For instance some staggered Lagrangian non compatible schemes
are not conservative per se but, instead, they praise positivity preservation and entropy dissipation. Con-
versely for some cell-centered [27, 84, 85] or staggered compatible [16, 18, 17, 11] Lagrangian schemes,
mass, momentum and total energy are reconstructed and limited, ensuring their conservation by construc-
tion. However the positivity of remapped specific internal energy is rarely ensured by construction and may
require more advanced technologies. Already we can see that the conservation laws along with the admis-
sibility of the remap state variables are important properties that a Lagrangian scheme may try to ensure.
So must the remapper.

For any general system of PDEs, the overall accuracy of a remap scheme is limited by three types of
cumulative errors.

Representation error. This corresponds to the difference between the exact profile of the current vari-
able and its polynomial/functional reconstruction that the developer has chosen to employ: P0 or P1
reconstructions with or without slope limiter, etc. Limiters may or may not magnify such an error.

Geometrical error. This error is due to the inaccuracy of the method used to intersect the two meshes O
and T . If the exact geometrical intersection between a new cell of T and the old mesh O is computed
then this error is zero by definition. (Remark that in 1D this error is by construction null.) If the
intersection is approximated (swept region remapping [38, 37, 64, 62]) then, at minima, a second
order geometrical error is produced. For such approximation methods, like the swept region method,
the volume of the new cell is well computed, only some pieces are associated to an incorrect old cell
data representation.

Integration error. If the representation of the underlying functional is complex then we may have to resort
to numerical integration formula when evaluating their value on the intersection surfaces between the
old and new meshes. This also produces an error which can be called integration error. Most of the
time numerical integration formula are chosen accurate enough to virtually reduce this error to zero.

In this work we focus on a remapping method for which exact mesh intersection is adopted and virtu-
ally exact quadrature formula are employed. We also adopt conservative polynomial reconstructions. As
a consequence the representation error only remains of the order of the polynomial reconstruction per-
formed. We will reconstruct polynomials of degree up to 5 which leads to nominal 6th order accurate
remapping schemes. Obviously the main concern is the preservation of physical properties (monotonic-
ity, positivity, etc.) which depend on the system of PDEs solved and the essentially non-oscillatory be-
havior of the remapped solution. We do not adopt ENO or WENO type of polynomial reconstructions
[49, 50, 69, 57, 92, 20, 45, 41] but rather rely on a recent a posteriori stabilization called MOOD for Multi-
dimensional Optimal Order Detection method [19, 29, 30, 70]. The main novelty of this approach is to setup
a list of admissible properties for a remapped solution, and to verify that the piece-wise constant remapped
solution fulfills these properties. If not, locally to a bad cell, a more dissipative remap scheme is employed
to recompute the remapped data for instance increasing the representation error by reducing the order of
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accuracy with which the polynomial reconstruction is done. Then the problematic cell is further tested, and,
possibly need to be recomputed after some more polynomial degree decrementing.

With such an approach the need for a limiter vanishes. Indeed the role of the limiter is twofold: (i) detect
which cells need more dissipation, and (ii) compute how much dissipation is actually employed. Both are
difficult tasks when only a priori data are available, that is when only data on the old mesh are usable. In
an a posteriori approach, the detection (i) consists of a check against the validity criteria and the amount of
dissipation (ii) is directly driven by the successive polynomial degree decrementing employed. In our case
we mostly adopt the following decrementing cascade: P5 → P3 → P1 → P0 involving only four orders of
accuracy 6th, 4th, 2nd and 1st. The last scheme of the list must ensure that the detection criteria are valid.
This so-called parachute scheme is important to assure the validity of the numerical solution in extreme
situations.

The paper is organized as follows. A first section presents the general philosophy and properties that
a high order remapping scheme must obey. Next we design a high accurate remap scheme based on poly-
nomial reconstructions in 2D on general polygonal meshes. In the same section we show some numerical
evidences that some limiting is needed and present classical second order accurate remapping schemes em-
ploying a slope limiter. An a posteriori MOOD like approach is designed and tested for pure remapping
situations. Conclusion and perspectives are finally drawn.

2. Philosophy of high order remap scheme

In order to ease the description let us introduce generic notation. We call “old mesh” and denote byM
the mesh onto which the finite volume vector of physical variables U is defined. In other words if a cell of
index i ofM is denoted by Ωi then the finite volume piece-wise constant cell centered value Ui is defined
by

Ui =
1
Vi

∫
Ωi

U dx dy, (1)

where Vi is the volume of cell Ωi, i.e Vi =

∫
Ωi

1dx dy. Such entities are volume averaged conserved

quantities. For system of PDEs conserved mass averaged quantities are defined by

Ui =
1
mi

∫
Ωi

ρU dx dy, (2)

where mi is the mass of cell Ωi, i.e mi =

∫
Ωi

ρ dx dy and ρ is the density.

The remapped solution is called Ũ and is defined on the “new mesh” denoted M̃. Usually M̃ is a slight
modification ofM sharing the same connectivity. However in all generality we consider that the connec-
tivity of M̃ may have no relation whatsoever with M, that is the number of cell and neighborhood have
possibly changed. However the old mesh must pave a larger computational domain than the new one to
avoid undefined regions. In this work we only consider the same computational domain exactly paved by
the old and new meshes.

2.1. Properties of the remapped solution
The unique goal of a remapping scheme is to properly remap variable U from meshM onto mesh M̃.

The formula “properly” is deliberately vague as there is no universally accepted definition of what kind of
properties the obtained remapped solution should fulfill. Nevertheless we can provide a non-exhaustive list
of properties for a remapped solution to be considered as “good” in the case of a system of conservation
laws.
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• Physical admissibility. If U is physically admissible, Ũ must enjoy the same property. The defini-
tion of physical admissibility depends on the system of equations solved. It simply means that the
discrete solution should be valid for the model of PDEs considered. As instance for Euler equations
with simple equation of state one must require that the density and the specific internal energy are
both positive. Other systems of PDEs may reasonably require that all computed velocities do not ex-
ceed the speed of light (relativistic magneto-hydrodynamic models) or that concentrations of species
remain between zero and one (multimaterial fluid models).

• Conservation. If Q =
∑

i Ui represents some conserved quantity such as mass, momentum or total
energy then Q̃ =

∑
i Ũi must be equal to Q.

• Accuracy. The remapping technology must be able to exactly retrieve a scalar field: constant, linear,
parabolic, or polynomials of higher degree. In [63] the authors have proposed a linearity preserving
scheme, meaning that the scheme is exact for piece-wise linear field. A counter-example is the
so-called “donor cell” remap scheme considering piece-wise constant data which is exact only for
constant fields.

• Bound-preservation. Because the remapped solution is obtained from a kind of conservative inter-
polation, it should not exceed local numerical bounds defined using the old discrete solution. This
property also known as the Discrete Maximum Principle (DMP) states that, given a neighborhoodNi

of cell i, the solution should fulfill

min
j∈Ni

(U j) ≤ Ũi ≤ max
j∈Ni

(U j). (3)

However it has been shown (see as instance in MOOD method [29, 19]) that the strict DMP property
forces the scheme to remain at most second order accurate in L∞ norm. An appropriate relaxation
of the DMP must be designed to reach effective high-order of accuracy (such as the U2 detection
process of [29, 19], or simpler relaxation [42]). This is due to the fact that the genuine “continuous”
of Maximum Principle states that

min
x∈Ni

Uex(x) ≤ Ũi ≤ max
x∈Ni

Uex(x). (4)

• Efficiency. In 2D, and even more pronounced in 3D, the remapping scheme may be expensive. There-
fore some care must be taken to design an effective remap scheme with a clear gain in accuracy if
extra computation time is required.

• Reversibility. In [74] the authors have proposed that a remap scheme be reversible. The two succes-
sive remaps fromM to M̃ then back from M̃ toM should exactly lead back to U.

The previous list is not ordered by importance, only the physical admissibility property is essential to
provide admissible data. We would like to emphasize that the bound preservation is only a numerical
concern whereas the physical admissibility property checks the true validity of the discrete solution with
respect to the system of equations; both should not be confused. Reversibility is often by-passed as this
property is difficult to fulfill. Conservation property is most of the time presented in its global formulation
as above, however conservation must be ensured in the vicinity of each cell. In other words the remapping
scheme should not destroy the principle of causality; if a cell value has increased, this is only due to its
interaction with close neighborhood only1.

2.2. Review of a generic remap scheme
A generic remap scheme starting from piece-wise constant data is a three step process:

1We have to understand that the details of the previous list of property must be provided by the user (or developer) to determine
what is a good enough solution. Consequently this list of properties may slightly change from user to user or may evolve if the system
of equation is modified. Ideally the remapping scheme should be able to adapt to such modifications.
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Figure 1: Exact mesh intersection (overlays) for subsequent remapping starting from an old black mesh onto a new blue mesh — Left:
Exact intersection for meshes sharing the same connectivity. Cell 0 is surrounded by cells 1, . . . , 8. New blue cell 0 is paved with
small pieces of old neighbor cells 0, 1, 2, 3, 7 and 8. Red polygon corresponds to the intersection with corner black cell 8 (red number),
blue polygon to the intersection with left black cell 1 (blue number), gray polygon to the surface of old cell 0 remaining in new cell 0.
Right: Exact intersection for meshes having different connectivity. Only a portion of a generic blue mesh is shown. The intersection
of one blue cell and the black mesh may lead to an arbitrary number of intersection polygons with an arbitrary number of blue cells.

• First, one defines a representation of the old solution U on the old meshM; The simplest choice is
to maintain the piece-wise constant representation.

• Second, a geometrical intersection between a new cell and the old mesh is computed, it consists of a
set of closed surfaces that pave the new cell without overlapping and gap, see Fig. 1 left panel for an
example with quadrangles and shared connectivity, and, the right panel for the general case.

• Third, the remapped variable in the new cell is computed as the sum of integrated representations
(from first step) onto the intersection surfaces (colored polygons in Fig. 1).

As already seen these three steps generate three errors, two of which can be made as small as desired if an
exact mesh intersection and high accurate numerical integration are employed.
The ’representation error’ remains present and at least two main flaws for such a straightforward remap
method can be pointed:

1. the method is exact only for constant functions leading, in some sense, to a first order accurate method
which may be considered as too much dissipative,

2. there is no check on the physical admissibility of the discrete remapped solution.

The first issue has led several authors to propose to reconstruct the underlying function as a piece-wise lin-
ear function [87, 63] like in a MUSCL finite volume scheme. If so, the remapping method becomes exact
for linear function and, as such, is considered as a second-order accurate method. However the generation
of non-physical remapped quantities enforces the utilization of slope limiter in the reconstruction phase.
Such limiters may not always be trivial to define as instance for vector fields, tensors, etc. Classically the
limiting is independently applied to each component leading to a frame dependent procedure2. Moreover
most limiters are funded on a strict application of the discrete maximum principle. Consequently the remap
scheme accuracy in L∞ norm can never exceed 2. Using more advanced reconstructions following WENO

2This is one of the reasons why frame invariant limiters [73, 80] have been recently designed.
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philosophy is also possible but it would require the reconstruction of several polynomials per cells and their
mixing through non-linear weights, leading to a somewhat more expensive method.
The second flaw is often by-passed by stating that a lot of dissipation brought by the first order of accuracy
will help. Rarely we can prove that a first order remap scheme can assure that the physical admissibility
properties are fulfilled. This situation becomes even more complex when some variables are reconstructed,
limited, and, further non-linearly mixed together in an equation of state for instance. For a scalar advection
equation, a decent limiter often ensures that the remapped solution is admissible. Conversely for the hy-
drodynamic system of equations, the situation is mathematically more complex. Indeed ensuring that the
remapped data (density, momentum and total energy) will generate a positive pressure through the equation
of state is not trivial. In some sense remapping should not be though as a black box of pure geometrical or
interpolation operators acting independently of the physical meaning of the remapped variables. Rather the
remapping has to take into account the properties of the variables and their possible relationships. Note that
slope limiters or WENO type of limiting have the same drawbacks when applied straightforwardly without
any fine tuning.

2.3. Review of an a posteriori stabilization MOOD loop
To fulfill the list of properties from the previous section (physical admissibility, conservation, accuracy,

bound-preservation, efficiency, reversibility) one must not only high accurately reconstruct the variables to
remap, but, also, make sure that the conserved variables are conserved, that admissible variables remain so
and that a non-oscillating behavior is observed.
Remark that the remapped variables may not be the conserved variables or the physical variables tested for
admissibility. For instance, in an hydrodynamics context with a given equation of state (EOS), the density ρ,
velocity U and specific internal energy ε are independent variables to be remapped. However the conserved
quantities are the mass m = ρV (integral of density over a volume), the momentum Q = ρU (integral of ρU),
and the total energy E = mε + 1

2 mU2 (integral of total specific energy ε + 1
2 U2). Remapped and conserved

variables do not coincide. Neither do they coincide with the constraints for physical admissibility for this
system of PDEs: positivity of density, internal energy and possibly pressure. Note that one also could
consider the second principle of thermodynamics, ρ ∂

∂t S ≥ 0, where the entropy S is related to the other
thermodynamic variables by the Gibbs relation TdS = dε − pd(1/ρ) where T is the temperature.
In table 1 three sets of variables to remap are proposed. These lead to either the loss of momentum and/or
total energy conservation (Remap #0 and Remap #1) or the loss of specific internal energy positivity
preservation (Remap #2).

In this work this multi-task remapping is based on high accurate reconstructions and remapping of con-
served variables like for Remap #2. The admissibility properties are assured with a so-called a posteriori
stabilization MOOD loop. In [19, 29, 30, 70, 42, 14] the authors have shown that in the context of fi-
nite volume, Discontinuous Galerkin and even direct Arbitrary-Lagrangian-Eulerian schemes for advection
equation or hydrodynamics, an a posteriori limiting/stabilization approach denoted MOOD was revealed
fruitful. In this work we will apply some of the tools from [19, 29, 30] to the remapping context.

2.3.1. Accuracy: unique unlimited high accurate polynomial reconstruction
High accuracy is obtained by reconstructing polynomials (up to 6th order of accuracy) by considering

a unique central stencil with respect to the current cell. A least square procedure is employed to determine
the best fitted conservative polynomial of degree d > 0. Conversely to WENO type of approach where
several polynomials are reconstructed, in this work, a unique central stencil with enough neighbor cells is
considered for the reconstruction. Moreover we choose to reconstruct conservative variables so that the
question of conservation does not hold anymore (situation of Remap #2 in table 1).

2.3.2. Monotonicity and stabilization: a posteriori decrementing
The remaining question is the construction of a dissipative mechanism to assure a non oscillatory be-

havior, to kill Gibbs phenomenon and preserve the positivity as well as other important physical properties
6



Remapped variables Conserved variables Admissibility
mass m = ρV mass m = ρV density ρ > 0

Remap #0 velocity U momentum Q = mU spec. intern. energy ε > 0
intern. energy ε total energy E pressure p > 0
mass m = ρV mass m = ρV density ρ > 0

Remap #1 momentum Q = mU momentum Q = mU spec. intern. energy ε > 0
total intern. energy E = mε total energy E pressure p > 0

mass m mass m density ρ > 0
Remap #2 momentum Q = mU momentum Q spec. intern. energy ε > 0

total energy E total energy E pressure p > 0

Table 1: Example of remap choices for the hydrodynamics system of PDEs. The hydrodynamics variables are deduced from each
others: the mass is an integrated density: m = ρV , momentum has the dimension of mass×velocity Q = mU = ρVU, total energy is
E = E + 1

2 Q2/m where the total specific internal energy is E = mε and the specific internal energy is denoted by ε which is usually
employed along with density to define the gas pressure p through an equation of state (EOS) p = EOS (ρ, ε). Physical admissibility
demands that density, specific internal energy and pressure remain positive. Depending on the EOS the pressure positivity may be
implied by density and energy positivity.

of the system of PDEs from which the variables are considered. Any classical types of limiting (slope
limiting [107], hierarchical limiting [65], (W)ENO [56, 45, 39], etc.) are performed a priori by a clever
analyze of the available data at tn. This implies that the “worst case scenario” must always be considered
as plausible, and, as a consequence, the “precautionary principle” applies. In other words because some
investigation has found a plausible risk of instability development, a priori limiting strategy strikes more
often and harder than necessary. We believe that such limiting can be relaxed only if further information
emerges that provides evidence that no harm will result when using unlimited reconstructions. One way
to gain more information is to check a posteriori, that is to say after the remapping has been done, if the
candidate remapped solution fulfills some stability criteria3

These are the extremely simple and crude principles of the MOOD method: first compute a candidate
unlimited solution, then detect if this solution locally fails to fulfill some stability criteria (in problematic
cells) and further recompute only those problematic cells with a more dissipative scheme, for instance using
lower accurate reconstructions to get a new candidate solution. The new candidate solution is then tested
again for eligibility, and, if some problematic cells are still detected then an even more dissipative scheme
(for instance by discarding any reconstruction) is triggered. This procedure iterates up to the acceptability
of the numerical solution. Note that the detection procedure is always performed on a candidate remapped
solution, hence the terminology a posteriori. Moreover a bad candidate solution in a given cell is never
used, rather it is always discarded and one start again from valid tn data. The a posteriori MOOD paradigm
follows this fundamentally different way.

In the next section we detail our MOOD remapper by describing what are the detection criteria to test
a candidate solution, which ’cascade’ of schemes is adopted (from the most accurate scheme to the most
dissipative one), and which scheme is the parachute/bullet-proof scheme, that is the last scheme of the
cascade.

3Testing a posteriori the validity of a solution is not new and can be found in the context of remapping methods (decreasing of
polynomial order in [52], repair methods [98, 88, 75, 26], or FCT [13, 66]) and presumably in many other areas.
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3. High accurate MOOD remapping strategy with a posteriori stabilization

For our remapping scheme several developer choices must be made. A maximal polynomial degree
dmax is first set. A dmax + 1th order accurate remap scheme then is expected in an ideal situation where
the solution is smooth enough: this is the Ultimate Scheme one would like to use as much as possible,
also denoted as the Pmax scheme. Next the developer must fulfill a list of properties that the remapped
numerical solution in each cell must fulfill. If so, the solution in this cell is said to be valid otherwise the
cell is called problematic. These properties are called the Detection Criteria. One must also design a ’low
ranked’ scheme, the solution of which is considered as always acceptable: it is called the Parachute Scheme
(or bullet-proof scheme). In the remapping context we know that the first order remapping scheme (using
constant data per cell, i.e donor cell remap scheme) is the most diffusive and stable scheme that can be
built. If all contributions of the remapped solution are computed with such a low order scheme the obtained
solution is considered as valid and stable, though not tremendously accurate. This parachute scheme is also
referred to as the P0 scheme.
Finally one must determine a ranked list of schemes to be tested called the Cascade. This cascade is visited
while decrementing occurs when problematic cells are detected starting from the ultimate scheme and drop-
ping to the parachute scheme. As instance we can order the unlimited schemes according to the polynomial
degree of the reconstructions: Pmax → Pmax−1 → . . . → P2 → P1 → P0, possibly skipping some of them,
see the last subsection for a discussion on this point.

In the following we present the main steps of our high accurate remapping scheme: polynomial recon-
struction, geometrical mesh intersection, integration and a posteriori detection which is, de facto, the heart
of the a posteriori stabilization technique inspired from the MOOD paradigm [19, 29, 30, 70]. This section
is concluded by a summary and discussion on technical implementation and developer details.

3.1. Polynomial reconstruction
In this section we briefly recall the least-square polynomial reconstruction technique employed, which

has already been described thoroughly in [19, 29, 30, 70] for instance. Let us describe a polynomial re-
construction for a generic variable U defined by cell centered mean values Ui in any cell Ωi. Given a cell
Ωi, a degree d > 0, a large enough stencil Sd

i made of Nd
i > 0 cells in the vicinity of Ωi, the problem of

polynomial reconstruction of degree d in Ωi consists in finding the coefficients Rαi of

Ui(X) = Ui +
∑

1≤|α|≤d

Rαi

(
(X − Xi)α −

1
|Ωi|

∫
Ωi

(X − Xi)α dX
)
, (5)

such that, in a least-squares sense, the following functional is minimal

E =
∑
j∈Sd

i

ω j

 1
|Ω j|

∫
Ω j

Ui(X) dX − U j

2

. (6)

In the previous equations Xi is the centroid of Ωi, X a generic point in Ωi and Rαi are the unknowns polyno-
mial coefficients where α= (αx, αy) ∈ N2 is a multi-index with |α| = αx + αy. Last, the terms ω j are positive
weights used to provide better condition number of the associated matrix to be inverted as it dependents on
a spatial characteristics length [43]. By construction, the mean value on Ωi of the polynomial is equal to ρi

since the integral over Ωi of the term between parenthesis in (5) simply vanishes.
This technique is rather classical and is able to exactly reconstruct any polynomial of degree d′ ≤ d if a

large enough stencil Sd
i is provided. In 2D a minimum of (d + 1)(d + 2)/2 − 1 neighbor values are needed,

and, for the sake of robustness we always pick more neighbors D(d) = 1.5d(d + 1)(d + 2)/2 − 1e where de
means the closest strictly superior integer. as a consequence stencil Sd

i is incrementally constructed, see
figure 2, as
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Figure 2: Sketch of the first level of neighborhood L1
i (blue cells) of central white cell Ωi and second level L2

i (green cells). Each
level is composed of Voronoi neighborhood of all cell belonging to the previous considered level - Level L2

i is composed by the
Voronoi neighborhood of all cells Ω j belonging to L1

i . Stencil Sd
i is constructed by the union of one or more levels in such a way that

card(Sd
i ) > 1.5d(d + 1)(d + 2)/2 − 1)e, where d is the degree of the polynomial degree to be reconstructed.

0. Sd
i = L1

i where L1
i is the Voronoi neighborhood of Ωi, that is to say L1

i = { j, s.t Ω j
⋂

Ωi , ∅}. If
card(Sd

i ) ≥ D(d) exit, else set k = 1
1. Sd

i = Lk+1
i where Lk+1

i is the reunion of the Voronoi neighborhood of any Ω j ∈ L
k
i .

2. If card(Sd
i ) ≥ D(d) exit, else k = k + 1 and go back to 1.

Usually card(Sd
i ) > D(d) and we could possibly reduce the number of neighbor cells from the last iterate,

then reducing the size of the linear system to be inverted, however to the price of a non-symmetric final
stencil.

In our remapping technique we only consider one stencil per degree d. Contrarily to WENO polynomial
reconstructions we do not have to choose several stencils, neither do we have to non-linearly mix several
reconstructions altogether. Moreover to fulfill the conservation property, the reconstructions are always
performed for the conservative variables. Obviously if conservation is not to be maintained, primitive or
characteristics variables could be reconstructed instead. Finally when U is a set of conservative variables
asU = (ρ, ρU, ρE)t then the reconstruction step is performed for each conservative variable. Of course the
extra cost is rather low as the variables all share the same matrix to be inverted.

3.2. Geometrical mesh intersection
The problem of mesh intersection can be mathematically stated in a relative simple fashion. Let us

denote byM the set of cell index in the old mesh and M̃ in the new mesh and supposed that both meshes
pave the same domain. Next we call intersection polygons the non empty figure ωk j such that

∀k ∈ M̃, ∀ j ∈ M, ωk j = Ω̃k

⋂
Ω j , ∅. (7)

Any cell Ω̃k in the new mesh is therefore paved by a set of Pk intersection polygons as, see the colored
polygons in figure 1,

Ω̃k =

Pk⋃
j=1

ωk j, (8)
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Figure 3: Sketch of a triangle/triangle intersection algorithm. The first edge of the blue triangle is visited and a decision is taken to
state if all vertexes lay on the same half-plane defined by this edge (black vertexes are on one side whereas white ones on the other). If
not then intersection between the blue edge and the black triangle occurs. Here two intersection points are computed (1 and 2). Each
edge is visited successively to finally construct the red polygons which is nothing but the intersection polygon between the black and
blue triangles.

From a computational point of view writing a robust polygonal intersection code is demanding. We have
chosen to employ already validated algorithms which can be found in [102, 28]. Because those algorithms
nicely extend to 3D polyhedral meshes, we have implemented a degenerated 2D version adapted to our con-
text. Briefly the algorithms for intersecting two convex polygon rely on successively clipping one against
the edges of the other. Following [28] we realize that this algorithm is an implementation in the remapping
context of some ideas presented abstractly in [102] where the author suggests using the planar graph rep-
resentations of convex polygons to ensure topological consistency of the resulting intersection polygons.
In our implementation any star-shaped polygon is first split into simplexes (triangles). Then triangle-to-
triangle intersection is performed by clipping the edges of one triangle against the other, see figure 3 for a
brief illustration.
Fine tuned “2D oriented algorithms” may be presumably more efficient. However the algorithms proposed
in [102, 28] have been designed and developed for general polyhedron in 3D and are shown to be robust to
mesh degeneracy. These constitute a viable base to write an encapsulated 2D-3D intersection tool within a
common environment.

3.3. Integration
When mesh intersection polygons 8 are available the remapped conservative variables are computed by

integrating the reconstructed polynomials 5, as

Ũk =

Pk∑
j=1

∫
ωk j

U j(X) dX. (9)

More precisely each intersection polygon ωk j is split into NT triangles

ωk j =

NT⋃
i=1

Ti, (10)

Then a Ng point Gauss-Legendre numerical integration is employed

Ũk =

Pk∑
j=1

∫
ωk j

U j(X) dX =

Pk∑
j=1

NT∑
i=1

(∫
Ti

U j(X) dX
)
'

Pk∑
j=1

NT∑
i=1

 Ng∑
g=1

wgU j(Xg)

 . (11)
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Ng is chosen according to the polynomial degree d of the reconstructionU j in such a way that (11) is indeed
exact. When d j is relatively large, say about 5 in our case, then the number of integration point increases4.
Moreover the triangular splitting (10) usually leads to several triangles (on average ' 4) implying a total
number of polynomial evaluations of the order NE = Pk × NT × Ng, which for d = 5, Pk = 4, Ng = 7 yields
NE = 140. Therefore the implementation of the integration demands some care to avoid some waste of
computational resources.

3.4. a posteriori detection
The main principles of the a posteriori detection step and subsequent decrementing have been described

in the previous section 2.3.2 and we provide the development and implementation details in this section.
Let us consider that the hydrodynamics system of equation is solved and, consequently the variables to
remap are the conservative variables that isUi = (ρi,Qi, Ei)t. The case of a single scalar variable is trivially
deduced.
At the end of the remap scheme previously described (unlimited reconstruction of degree dmax, exact mesh
intersection and virtually exact integration), we have access to a candidate remapped solution Ũk in each
cell Ω̃k. The purpose of the detection is to filter ’good’ cells which have been properly remapped with this
high accurate remap scheme from ’bad’ cells which present some issues (oscillations, non admissibility
states, etc.) Following the MOOD paradigm the detection criteria are split into two different sets

Physical Admissibility Detection criteria (PAD). The physical admissibility of the remapped data Ũk

for any cell k is tested here. In the hydrodynamics context, a ’good’ cell is such that the positivity of
density, specific internal energy and possibly the pressure, are observed

(PAD) CPAD
(
Ũk

)
=

{
1 if ρ̃k > 0 and ε̃k > 0 and p̃k > 0
0 else (12)

These criteria must be adapted to the system of PDEs resolved.

Numerical Admissibility Detection criteria (NAD). With these criteria we test if newly created extrema
on conservative variables are considered as smooth ones which do not need to be dissipated, or, non-
smooth extrema which need stabilization. Hence, a new extrema is observed if, at least, one of the
components of Ũk does not fulfill the following discrete maximum principle, that is if

Dk =

{
1 if Ũk ≤ min j∈Nk Ui, or max j∈Nk Ui ≤ Ũk

0 else
. (13)

In that case, we apply the so-called U2 detection criteria which, according to “curvatures” in the
vicinity of i, decides it k is to be kept as is or needs to be recomputed with w more dissipative
scheme. The U2 criteria is computed on the neighborhoodNk in the old mesh for each component of
U. First one considers the P2 reconstructions Ui(X) in cell i belonging to Nk and further computes
the minimal/maximal directional “curvature” as

Xmin
k = min

i∈Nk

(∂xxUi(X)) , Xmax
k = max

i∈Nk

(∂xxUi(X)) . (14)

and, for this direction the Boolean Xk

Xk =

 1 if
Xmin

k X
max
k > −δ and

max
(
|Xmax

k |, |Xmin
k |

)
< δ or

∣∣∣∣∣∣Xmin
k

Xmax
k

∣∣∣∣∣∣ ≥ 1
2


0 else

. (15)

4For degrees d = 1, 2, 3, 4, 5, 6, 7 the number of Gauss-Legendre points scales in 2D as Ng = 1, 3, 4, 6, 7, 12, 13.
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The same computation is also performed in the y direction to get Yk. Here δ is the local geometrical
length, in our case we set it to the maximal local length edge inNk. The U2 criteria finally states that
an extreme remapped cell Ũk may be nonetheless valid if XkYk = 1, and is problematic otherwise:

(NAD) CNAD
(
Ũk

)
=


1 if Dk = 0
1 if Dk = 1 and XkYk = 1
0 if Dk = 1 and XkYk , 1

. (16)

A cell is flagged as problematic if either CPAD
(
Ũk

)
or CNAD

(
Ũk

)
are equal to 1. In the case of a

system of PDEs, all components ofU must be valid for the cell to be accepted.

3.5. Decrementing

When a cell k is problematic then it must be recomputed with a more dissipative scheme which employs
lower degree polynomial reconstructions. Therefore for each old cell j being in interaction with new cell
k ( j = 1, . . . Pk), we reconstruct the polynomials U j(X) choosing a lower degree d j than previously used.
In more details each old cell j carries along with data U j the local cell polynomial degree d j ≥ 0. The
polynomial reconstructions are of order d j + 1. If j has participated in the occurrence of a problematic
cell k then its polynomial degree d j is reduced with the minimal possible value being d j = 0. Then, after
decrementing all polynomial degrees d j of cells interacting with new cell k, we have de facto reduced the
accuracy with which cell k is remapped. Note that only one cell polynomial degree is considered even in
the case of several component ofU. This drastically simplifies the associated remap algorithm.

The decrementing step is designed in figure 4) as a decrease of the polynomial degree of 1 at each cycle.
This is not mandatory and any other jump from dmax to 0 are possible. In [19, 29, 30] as instance the choice
of the authors was dmax → 2 → 0 and in [70] dmax → 1lim → 0 where 1lim means P1 reconstruction with
slope limiter (TVD scheme). In fact the only mandatory choices are the maximal degree dmax and the most
dissipative donor cell remap scheme (d = 0). Ultimately we could choose dmax → 0 for efficiency purpose,
at the cost, presumably, of de-gradating some of the results, or, dmax → dmax − 1 → · · · → 0 to get the best
possible accuracy at the price of a waste of CPU time. In the numerical experiences gathered in the next
section we pick dmax = 5 and the cascade 5→ 3→ 1→ 0.

3.6. Summary

In this section we summarize our high accurate remap algorithm with a posteriori MOOD stabilization
described in details in the previous sections. To ease the summary we split the remap scheme into main
four components and sketch them in figure 4: geometrical Mesh intersection, polynomial Reconstruction of
degree d, Integration, Detection of problematic cells. The ’MOOD loop’ corresponds to some iterations of
the chain (Mesh intersection, Reconstruction, Integration, Detection) only for cells detected as problematic
for which lower degrees are used for the subsequent polynomial reconstruction.
The first three components are mandatory to provide a candidate high accurate solution fitting the nominal
accuracy of dmax + 1 (these are the black boxes in figure 4).
Contrarily the Detection and subsequent decrementing and re-update are parts of the a posteriori stabiliza-
tion steps of MOOD. These are meant to maintain the high accuracy when smooth flows are encountered,
or to decrease the accuracy (possibly to 1st order) on discontinuity.
Note that several iterations can be done but this loop always ends either when the validity of the cell values
is confirmed by the detection step, or, when the threshold degree d = 0 is reached (which corresponds to a
robust donor cell remap used for this cell)5.

5 A classical second order scheme with slope limiter would have only the first three components supplemented with a ’Limiting’
component before Integration.
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Figure 4: Sketch of the MOOD remapper split into four main components: Geometrical Mesh intersection, polynomial Reconstruction
of degree d, Integration, Detection of problematic cells. The ’MOOD loop’ corresponds to some iterations of the chain only for
problematic cells for which lower degree (after decrementing) polynomial reconstructions have been done.

4. Numerical experiments

The goal of this section is to provide numerical evidences showing that a high accurate remap scheme
with a posteriori stabilization based on a MOOD like paradigm provides solutions which are accurate, es-
sentially non oscillatory and physically admissible. On purpose we have not coupled this remapper with any
Lagrangian scheme building de facto an ALE code in order to avoid polluting the remapping effects from
pure parasitical Lagrangian scheme behaviors. Consequently our goal is to properly present the behavior of
our MOOD remapper, leaving for future work the validation and verification of a MOOD remapper within
a 2D and 3D ALE code.

Our methodology of testing is based on a set of pure scalar/vectorial remapping test cases for which
the number of remapping steps is either restricted to 5 to emphasize specific instantaneous behaviors, or, to
tousandth to enhance their accumulation. To do so we have designed two situations: (i) A five quadrangle
mesh situation which remaps fromMk toMk+1, with k = 1, . . . , 5 and back toM1, whereMk andMk+1
are related by small deformations, and, (ii) a polygonal mesh rotation situation which rotates the polygonal
mesh of the unit disk in such a way that two successive meshes can not be assumed to be related by small
displacements.
Nonetheless initial and final meshes are the same yielding to a simple way to measure the accuracy of the
numerical scheme by monitoring the error between initial and remapped solutions, as

εp = ‖U0 −UT ‖p, ε∞ = max
i
|U0

i −U
T
i |. (17)

Moreover numerical rate of convergence can be deduced and general efficiency is also monitored by con-
sidering successively refined meshes.

The scalar shapes. Several “shapes” are considered in this work. We design smooth shapes based on sine,
Gaussian and polynomials, see table 2. Discontinuous profiles are composed of the three static functions: a
Hump, a Cylinder and a Cone

X0 = (0,−1/2), H(x, y) =
1
2

(
1 + cos

(
πmin(r0(x, y), 1)

))
, (18a)

X1 = (0, 1/2), C(x, y) =

{
1 if r1(x, y) ≤ 0.75
0 else (18b)

X3 = (1/2, 0), K(x, y) = max
(
1 −

5
2

R3r3(x, y), 0
)

(18c)
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Figure 5: Three shapes used for the rotating remapping test case (left), 1024 polygonal cell mesh (middle) and 4096 polygonal cell
mesh (right).

where rk(x, y) = 2
Rk

√
(x − xk)2 + (y − yk)2 and Rk is the radius of shape centers Xk, Rk =

√
x2

k + y2
k , for

k = 0, 1, 2, 3. These shapes are displayed in figure 5.

Name Equation Domain Properties
Sine 1 + sin(4πx) + sin(4πy) X ∈ [0, 1]2 C∞

Gaussian 1 + e−25(x−1/2)2
e−25(y−1/2)2 X ∈ [0, 1]2 C∞

Polynomial 1 1 + xy X ∈ [−1, 1]2 C∞

Polynomial 2 3 + (2x2 − 1)(3y2 − 1) X ∈ [−1, 1]2 C∞

Polynomial 3 3 + (4x3 − 3x)(4y4 − 2y) X ∈ [−1, 1]2 C∞

Cylinder

{
2 if

√
x2 + y2 ≤ 0.25

1 else
X ∈ [0, 1]2 Discontinuous

Three shapes (18) r(X) ∈ [0, 1] Discontinuous

Table 2: Initial shapes used to test the remapping schemes.

The vectorial shapes. We have emulated a non-smooth solution for the system of hydrodynamics in 2D.
In this case four conserved components (mass, momentum and total energy) are simultaneously remapped
and they are linked by means of a non-linear relation such as a perfect gas equation of state p = (γ − 1)ρε,
where ε = E − 1

2ρ(u2 + v2), with γ = 7/5 for instance. The shapes given by the formula in table 3 loosely
represent the origin point explosion solution, as instance a Sedov like problem, for which the shock wave
is at position r0 with parameter δ corresponding roughly to the initial temperature before the explosion. In
our simulation we consider r0 = 0.75 and δ = 10−6, see figure 6. The profiles are made of discontinuous
parts (shocks at radius r0) and smooth parts (rarefaction’s zones). Note also that the density presents a peak
before the shock wave leading to a smooth extrema for the pressure variable. A high frequency perturbation
of specific internal energy as a function of radius 0.2 ≤ r ≤ 0.7:

g(r) = 1.16656 e−100(x−0.5)2
sin(25πr), (19)

is super-imposed to this profile. The exact profiles are plotted in figure 6 where the smooth high frequency
profile as well as the shock wave are ilustrated. Density and velocity remain the same, only the pressure is
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Variable Equation Domain

ρ

{
δ + 6( r

r0
)8 if r =

√
x2 + y2 ≤ r0

1 + δ else
X ∈ [0; 1]2

U
{

0.83X if r =
√

x2 + y2 ≤ r0
0 else

X ∈ [0; 1]2

ε g(r)
{

0.25 + 3(1 − r
r0

) if r =
√

x2 + y2 ≤ r0

δ else
X ∈ [0; 1]2

Table 3: Initial shapes used to test the vectorial remapping schemes. We consider r0 = 0.75 and δ = 10−6 and a high frequency
perturbation of specific internal energy as a function of radius 0.2 ≤ r ≤ 0.7 as: g(r) = 1.16656 e−100(x−0.5)2

sin(25πr).
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Figure 6: Exact profiles for the vectorial remapping test case. Top panels: profiles as a function of radius. Bottom panels: profiles as
a function of X = (x, y). From left to right: density, velocity, internal energy and pressure. Note that the magnitude of the velocity is
presented on the top panel and the v component on the bottom panel.

impacted by the perturbation on the energy initialization.

The meshes. Our methodology does not depend on the shape of the cells, as a consequence meshes made
of quadrangular, triangular or general polygons can be considered without any restriction.
We have considered general polygonal meshes obtained through the Voronoi tessellation described in [99,
100], and summarized in [71]. Let us rapidly rephrase the main steps of the construction of a Voronoi
tessellation. We consider a convex computational domain Ω in 2D. For a set of generators Gi = (xi, yi) ∈ Ω,
the Voronoi cell Ωi is defined by, see [90]

Ωi = {X = (x, y) ∈ Ω : |X − Gi| ≤ |X − G j|, for all i , j} (20)

The Voronoi cell Ωi is a convex polygon, and the set of Voronoi cells indeed covers Ω without holes or
overlaps defining de facto the so-called tessellation of Ω. We use an algorithm for the construction of
Voronoi tessellation which is described in [99, 100]. Depending on the position of generators, the Voronoi
mesh can be genuinely non-uniform and one of the measure of non-uniformity is how far the centroid of
a Voronoi cell is from the associated generator. In other words, the closer the centroids and the generators
are, the more uniform the mesh is. Ultimately, the Voronoi tessellation for which the position of the cell
centroid coincides, is called Centroidal Voronoi Tessellation (CVT) [55] and are asymptotically made of
perfect hexagons. For our purpose we use a mesh smoother the so-called Lloyd’s algorithm [34, 35, 36, 33].
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Figure 7: Illustration of the iterative Lloyd’s algorithm to produce smooth Voronoi meshes on the unit disk (50 cells on the boundary,
200 inside the disk). Left panel: iteration 0, middle panel: iteration 1, right panel: iteration 10.

It simply consists on an incomplete iterative method to create a CVT. For instance this algorithm starts with
an arbitrary distribution of generators (in our example on the unit disk, 50 fixed generators on the boundary
and 200 randomly distributed in the disk), see the squares on the left panel of figure 7, constructs the
corresponding Voronoi tessellation and deduces the centroids of the constructed Voronoi cells. On the next
iterate, the centroids of the previous iterate are used as new generators, a new Voronoi mesh is created
associated with its centroids, and so on. As an illustration the resulting meshes after one, two and ten
iterations are presented in figure 7 and, visually, the regularity has improved during this process though the
initial connectivity may have changed. Note that we can constrain some generators to remain fixed as we
have done on the disk boundary. This may help to create some boundary zones made of rectangles should
we desire so. All polygonal meshes in this paper are created following this procedure.

The schemes. The remap schemes which we are considering are the following ones

• UNLIM-Pk: Unlimited of nominal accuracy k +1, that is with kth polynomial degree reconstructions,

• MUSCL: Second order accurate with Barth-Jespersen limiter [8, 9, 5, 6] using piece-wise linear
reconstructions, that is PLIM

1 ,

• MOOD-Pk: High order accurate with a posteriori stabilization as described in this paper with cascade
P5 → P3 → P1 → PLIM

1 → P0, and the following detection criteria

– DMP: strict discrete maximum principle as NAD (Numerical Admissible Detection). (This
scheme is proposed only as an illustration.)

– DMPu2+PAD: relaxed discrete maximum principle as NAD along with Physical Admissible
Detection (PAD) criteria as described in this paper.

Using these schemes one expects to observe some general behaviors:

On smooth solutions, the unlimited schemes provide the optimal order of convergence as well as MOOD
like schemes whereas MUSCL scheme order of convergence is strictly less than 2. For MOOD-P1
which is of the same order of accuracy than MUSCL we expect that the accuracy of MOOD over-tops
MUSCL one.
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On discontinuous profiles, the unlimited schemes are oscillatory whereas MUSCL and MOOD schemes
have an ENO behavior. The order of accuracy of MUSCL and MOOD can not exceed one due to the
discontinuity in the solution, nevertheless MOOD results should present a better accuracy.

On difficult problems involving loss of positivity of pressure, one expects to observe the failure of the
MUSCL scheme and, of course, of any unlimited scheme of order greater than one. MOOD and the
finite volume remapper (unlimited of order one) are the only ones able to maintain the positivity not
only of ρ but also ε and consequently p.

For most of the tests we expect that the number of problematic cells detected by MOOD remains of the
order of few percents of the total amount of cells if the mesh is fine enough to capture the main
features of the flow.

As a consequence the cost of a MOOD scheme must be close to the unlimited scheme of the same order
on the same mesh. Indeed the extra cost brought by the problematic cells may be negligible if their
number is small. For second order schemes, one expects MOOD scheme to be less expensive than
MUSCL for the same reason.

4.1. Successive remappings of smooth profiles

On the unit square we define 5 Voronoi tessellations using random generators and smoothed by 10
iterations of Lloyd’s algorithm. These meshes denotedMk, k = 1, · · · , 5, differ by the fact that their internal
generators are randomly located, yielding 5 uncorrelated polygonal meshes. The sequence of projection is
M1 → M2 → M3 → M4 → M5 → M1 so that the errors are easily computed at the end of any number
of this sequence. We consider polygonal meshes of size 322, 642, 1282, 2562 and 5122. In the next sections
we will remap the smooth profiles defined in table 2.

In table 4 we report the errors in L1, L2 and L∞ errors as well as orders of convergence for MOOD
remap scheme of nominal 2nd, 3rd and 6th order of convergence for the smooth profiles from table 2 and a
polygonal mesh made of N2 cells. For the first two polynomial profiles we observe that either the schemes
are exact up to a machine precision error or converges with the expected orders of convergence. For the
third polynomial which is of higher degree than the 6th order remap scheme, as well as for the sine and
Gaussian profiles the expected order of convergence are reached. We have omitted the errors produced by
the non limited high accurate schemes as they are extremely close to the ones obtained by MOOD remap
schemes. To confirm this behavior we have gathered in table ?? the number of bad cells re-updated with
one of the lower order scheme in the cascade for one smooth profile only. As can be seen almost no cell is
ever detected, consequently any a posteriori MOOD schemes are run unlimited on these smooth profiles.
This is expected for any scheme but not always attained with classical a priori stabilization techniques.
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Figure 8: L1, L2, L∞ errors for the smooth Gaussian profile remap in logscale as a function of mesh size for successive remaps on
polygonal grids for MOOD-Pk schemes, k = 1, 3, 5 — Exact expected convergence rate are drawn with dashed lines.

Next in figure 8 we present the errors for the Gaussian profile in logscale as a function of mesh size for
the three MOOD remap schemes. The data corresponds to the last row of table 4. As already seen on the
figures of the table the expected orders of convergence are attained in all norms even if L∞ norm results
present some defects. Nonetheless the convergence of all MOOD schemes is achieved. It is important to
remark that the finest mesh (5122) error for the second order accurate MOOD-P1 scheme in red is larger
than the coarsest mesh (322) error for the sixth order accurate MOOD-P5 scheme in blue. In other words
to maintain approximately the same accuracy, a second-order accurate scheme needs about 256 times more
cells. Later in section 4.4 we will observe that the MOOD-P5 scheme is 6 times more expensive than
MOOD-P1. These results suggest that a (very) high accurate remap scheme is competitive in 2D on smooth
profiles.

4.2. Rotating polygonal mesh remap of discontinuous profiles
The computational domain is the unit disk and we define five Voronoi tessellations made of 642 cells

smoothed by 5 iterations of Lloyd’s algorithm, see the description at the begining of section 4. Next we
apply 10 rotations of angle θ where θ = 2π/Nr with Nr = 10. Consequently the last mesh coincides with the
initial one and error computations are performed between the final remapped solutions and the initial data.
The rotation angle is chosen relatively large so that two consecutive meshes have almost no connection
close to the border of the disk, while coinciding in the vicinity of the center of rotation. As such 1000
remaps are performed.
In figure 9 we present the x− z planar view of the three shapes in the top-left panel. This also coincides with
the reference solution after 1000 remaps. Next we present the results provided by a classical second-order
limited remap scheme (MUSCL) for which large diffusion can be observed both on the smooth peaks and
also on the discontinuous cylinder. The second, third and fourth lines present the results for the second-,
fourth- and fifth-order accurate remap schemes. The left panels are dedicated to the unlimited scheme (no
stabilization at all), the middle panels present the results obtained by a MOOD scheme with a strict DMP
detection, and, the right panels show the current MOOD scheme results. Red/blue color emphasizes the
over/under-shoots produced by the schemes.
As expected the unlimited schemes accurately maintain the smooth peaks but oscillates close to the cylinder
discontinuities and the C1 discontinuity around the smooth profiles. Contrarily the MOOD scheme with
strict DMP is able to maintain the cylinder in bounds but clip the maximal values on the smooth profiles.
Not only the maximum value is diffused but the general shapes of these profiles are also diffused. Increasing
the polynomial degree (the formal order of accuracy) does improve the results on the cylinder but not on the
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smooth profiles or only marginally. Last the genuine MOOD remap scheme is able to reproduce the accurat
peaks that the unlimited scheme did produce, and, at the same time maintain the cylinder in bounds without
spurious oscillations.
This test shows several phenomena. First that the strict application of the DMP even with the use of
large polynomial degree is inadequate to improve the overall numerical results. Second, the application of a
relaxed DMP with a PAD criteria results in a MOOD remap scheme which maintains the smooth profile and
assure that the solution remains in bounds. (The accuracy of such MOOD scheme is almost comparable
with the unlimited scheme on smooth profiles). Third, there is a net gain in employing more accurate
reconstructions. Last, even if MOOD-P1 and MUSCL remap scheme are of the same nominal accuracy, the
MOOD results are significantly more accurate and as stable.

In figure 10 are displayed on the top line the polynomial degrees employed by the MOOD P5 on the
initial mesh (during the first remap stage) and on the but-last mesh (during the last remap). The right panel is
a full view of the results from panel 9k of figure 9. The degrees can be 0, 1, 3, 5 and −1 corresponding to a P1
reconstruction with slope limiting. From these figures we can observe that the decrementing was effective
close to the discontinuities as expected. At final time, some diffusion has occured and the decrementing is
not needed anymore apart from false detections on plateau6, and few cells on the cylinder sharp transitions.
The bottom panels of figure 10 present the location of the bad cells detected with the PAD (blue) or NAD
(red) criteria for the final remap stage of the MOOD P5 scheme. The panel on the right presents the same
results but on a log-scale to emphasize the modification of the curvatures detected by the u2 criteria (15) of
the NAD for red cells close to the border of the three shapes. These cells trully need some decrementing
to avoid spuriour oscillations. We can notice that even with a 6th order accurate remap scheme, enough
diffusion has been deposit so that almost unlimited reconstructions can be used everywhere but on few cells.
Consequently computing some sort of limiter apart from these few cells seems a waste of computational
resources.

Last but not least, for the MOOD P5 remap scheme results, we provide in figure 11 the percentage of
cells updated with one of the lower scheme in the cascade, i.e → P3 → P1 → PLIM

1 → P0. We observe
that the percentage cells updated with any low order scheme does not exceed 0.2%. Overall the ratio of
re-updated cells never exceeds 0.5%. Notice that in this scalar case the P0 scheme in the cascade is never
triggered because the slope limiter is able to assure the preservation of the physical bounds 0 and 1. As
such the slope limiter in the scalar case is sufficient to preserve physical bounds. This may not be the case
anymore for a system of interleaved variables.

This test concludes our numerical study on the scalar case. We have observed that our high accurate
remap scheme can reach the optimal order of accuracy on smooth profiles and maintain a stable solution
on discontinuous profiles. This validates our a posteriori detection decrementing stabilization on the scalar
case. Next sections will present the results obtained on a more demanding emulation of the hydrodynamics
system of equations.

6These have no implication because on a plateau any reconstruction is accurate enough. Note that we could also add a test to avoid
decrementing when a plateau is detected to avoid the extra cost of cell remap recomputation.

20



(a) Initial ≡ Final (b) MUSCL

(c) P1-UNLIMITED (d) MOOD P1 DMP (e) MOOD P1 DMPu2+PAD

(f) P3-UNLIMITED (g) MOOD P3 DMP (h) MOOD P3 DMPu2+PAD

(i) P5-UNLIMITED (j) MOOD P5 DMP (k) MOOD P5 DMPu2+PAD

Figure 9: Results for the remapping of three shapes (Cylinder, Hump, Cone), polygonal mesh made of 642 cells, 10 rotations (1000
remaps). x − z projected planar view, the red/blue cells present over/under-shoots — First-line: initial and final data, MUSCL remap
scheme results — Second-, third-, fourth-lines: Pk-UNLIMITED remap scheme, MOOD Pk with strict DMP, and current MOOD Pk
(with relaxed DMP and PAD detection criteria) for k = 1, 3, 5.
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(a) First mesh (b) Final mesh

(c) PAD-NAD on final mesh (d) PAD-NAD on final mesh (elevation in log-scale)

Figure 10: MOOD P5 remap scheme results for the three shape problem — Top-line: cell polynomial degree on the first (left) and
last (right) remap step — Bottom-line: map of the PAD (blue) and NAD (red) activated cells on the final remap step. Right panel is
the log scale of the left one to emphasize the modifications of the curvature which is used to detect bad cells in the u2 criteria.
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Figure 11: Evolution of the ratio of decremented cells for MOOD P5 scheme after 1000 remaps on the three shape problem. Blue: %
of cells updates with the fourth order unlimited scheme. Green: % of cells updates with the second order unlimited scheme. Red: %
of cells updates with the second order scheme with Barth-Jespersen limiter.
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Figure 12: Examples of two meshes obtained during the cyclic remapping motion with M = 128 and N = 1000. Iterations 320 and
740.

4.3. Remapping on systems of variables
In this section we consider the remapping of four conserved components (mass, momentum and total

energy) which are linked by means of a non-linear relation, refer to table 3.
The unit square is paved by a uniform M × M quadrangular mesh. The mesh is animated by a non uniform
trully 2D motion following

x(ξ, t) = [1 − α(t)] ξ + α(t)ξ3, y(η, t) = [1 − α(t)] η + α(t)η2, α(t) =
1
2

sin(4πt), (21)

for 0 ≤ ξ, η ≤ 1 and 0 ≤ t ≤ 1. The vertex positions at pseudo time tn Xn
i, j are defined by

Xn
i, j =

(
x(ξi, tn), y(η j, tn)

)
=

(
x
(

i − 1
M

,
n
N

)
, y

(
j − 1
M

,
n
N

))
, 0 ≤ n ≤ N, 1 ≤ i, j ≤ M + 1. (22)

usually refered to as a cyclic remapping motion [87, 88, 63, 64, 68, 106, 108]. Note that the first and last
meshes do coincide. We choose M = 128 and N = 1000, see figure 12 for two examples at iterations 320
and 740.

We test the MUSCL remap scheme along with the sequence of MOOD-P1, MOOD-P3, MOOD-P5 all
using the DMP+u2 numerical detection criteria (NAD) and the positivity of density, specific internal en-
ergy and pressure as physical detection criteria (PAD). The MUSCL remap scheme applies a limiter on the
density, momentum and total energy variables independently7. The goal of this test case is to show that
the shock wave is maintained as accurate as possible, at least as accurate as the MUSCL scheme but with a
clear improvement on the smooth regions of the flow, more specifically on the high frequency perturbation.
In figure 17 we plot the initial pressure on the left. Ideally this initial pressure profile should be reproduced
by an accurate remap scheme. In the middle/right panels are displayed the results given by a MUSCL
like remap scheme after 1000 remaps and the MOOD-P5 results. A small portion of the final mesh is also

7Other choices of limiter function or variables to remap may improve slightly the MUSCL remap results. Nevertheless the general
accuracy and main behaviors of a MUSCL remap scheme do remain comparable with the ones in this work.
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(a) Initial/exact pressure (b) Final - MUSCL scheme (c) Final - MOOD-P5 scheme

Figure 13: Remapping on a system of variables — Exponential shock with high frequency perturbation problem — 128 × 128 mesh
under 1000 cyclic remapping steps — Left panel: initial pressure which also corresponds to the target solution. Middle panel: pressure
given by the MUSCL remap scheme. Right panel: pressure given by the MOOD-P5 remap scheme.

reported. From these figures we can observe that an excessive diffusion of the MUSCL remapper has de-
stroyed the smooth flow for radius r ≤ 0.6 whereas the 6th order accurate MOOD scheme can maintain
these small scale features after 1000 remap stages. On the shock front, at r ' 0.75 both remap schemes
need to diffuse the discontinuity with at most a first order accurate scheme to avoid spurious oscillations.

Because the solution is expected to remain cylindrical we plot the density, specific internal energy
and pressure as a function of the cell radius for all cells after the remapping in red along with the initial
conditions in blue, see figure 14. Each row presents the results produced by of one remap scheme; MUSCL
on the first row, MOOD-P1, MOOD-P3 and MOOD-P5 on the last one. From these plots we oberve that the
formally second order accurate schemes (MUSCL and MOOD-P1) have difficulties to maintain accurate
results because of diffusion (loss of extrema) and dispersion (drift) errors. Nonetheless MOOD seems to
produce slightly more accurate results. When the nominal accuracy of the MOOD scheme is increased then
both errors are drastically reduced for the smooth parts of the flow. We can virtually remap many times
these shapes with only little loss. The shock region, as expected, can be improved only marginally as any
remap scheme must drop to a first-order accurate scheme to avoid parasitical oscillations.

In figure 15 we represent the elevation for the density, energy and pressure along with the the red/blue
bad cells at the 200th remap step (top row) and for the final 1000th remap step (bottom row). Only MOOD-
P5 remap scheme results are shown. The purpose is to show that each variable may generate bad cells.
However if any bad cell flag for one specific variable is waved, the full solution is recomputed. In other
word even if only the density variable is flagged as bad, all variables are recomputed with a next dissipative
scheme from the cascade.
From these plots we can observe that the number of bad cells diminishes with time as the scheme adds
some dissipation at each remap step. Blue cells are flagged because they do not fulfill the physical criteria,
mainly the positivity in this situation. Red cells are flagged because the numerics is not valid according to
the DMP+u2 detection criteria. In the next figure (figure 16) we present the same results for the internal
energy variable and twelve remap stages between 40 and 980. The bad cells are mostly located around
discontinuities or steep gradients and their number does not increase in time.

The previous figures have shown how, where and why some cells were flagged as bad. Now in figure 17
we plot the effective polynomial degree of the reconstructions used after the a posteriori MOOD loop has
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Figure 14: Remapping on a system of variables — Exponential shock with high frequency perturbation problem — 128 × 128 mesh
under 1000 cyclic remapping steps — Left to right: density, specific internal energy and pressure as a function of the cell radius for all
cells after the remapping in red along with the initial conditions in blue. Top to bottom: MUSCL, MOOD-P1, MOOD-P3, MOOD-P5
remap scheme results.
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Density Internal energy Pressure

Figure 15: Remapping on a system of variables — Exponential shock with high frequency perturbation problem — 128 × 128 mesh
under 1000 cyclic remapping steps — Detector maps for the density, internal energy and pressure variables (left to right columns).
MOOD-P5 results at remap steps 200 (top row) and 1000 (bottom row). Blue cells: positivity PAD is activated, red cells: NAD is
activated.
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Figure 16: Remapping on a system of variables — Exponential shock with high frequency perturbation problem — 128 × 128 mesh
under 1000 cyclic remapping steps — Detector maps for the internal energy variable MOOD-P5 results for twelve remap steps. Blue
cells: positivity PAD is activated, red cells: NAD is activated.
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(a) First remap step (b) 200th remap step (c) Last remap step

Figure 17: Remapping on a system of variables — Exponential shock with high frequency perturbation problem — 128 × 128 mesh
under 1000 cyclic remapping steps — Polynomial degree effectively used by the MOOD-P5 results for the first, 200th and last remap
steps. Polynomial degrees are 5 (red), 3 (green), 1 (light green), 0 (light blue) or −1 (dark blue) when a limiter is used along with a
piecewise linear reconstruction.

operated. The first, 200th and last remap stages of the MOOD-P5 results are shown. Recall that, according
to the cascade choosen, the polynomial degrees can take only five discrete values: 5, 3, 1, 0 or −1 when
a limiter is used along with a piecewise linear reconstruction. The location of bad cells are of course
consistent with the detection flags shown in previous figures. The five colors are used meaning that all
schemes in the cascade do play a role in these results even if the majority of bad cells are dealt with the
second-order limited scheme.

At last consistently with the scalar case, in figure 18 for MOOD P5 remap scheme results, we present
the percentage of cells updated with one of the lower scheme in the cascade, i.e→ P3 → P1 → PLIM

1 → P0.
We observe that the percentage cells updated with any low order scheme does not exceed 0.05%. The ratio
of re-updated cells by any of the lower scheme never exceeds 0.06%. Rarely the cascade drops to the P0
scheme.
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Figure 18: Evolution of the ratio of decremented cells for MOOD P5 scheme after 1000 remaps on the emulation of the hydrodynamics
problem (system of variables). Blue: % of cells updates with the fourth order unlimited scheme. Green: % of cells updates with the
second order unlimited scheme. Red: % of cells updates with the second order scheme with Barth-Jespersen limiter.
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4.4. Relative cost of the high accurate MOOD-like remapping scheme

This study is made on the cyclic remapping test of the hydrodynamics like profiles. Remind that
Ncycle = 1000 remappings are performed. As already seen this test involves discontinuous profiles and
subsequent stabilization iterations. The code is split into several main subroutines: the mesh intersection,
the stabilization procedure involving the detection/decrementing, the projection of the reconstructions that
is the integration step and the polynomial reconstruction. All the simulations have been run on a non-
dedicated sequential machine and a non-optimized implementation. As such they must be considered as an
average tendency.
In table 5 we present such profiling for MOOD-Pk schemes with k varying from 1 to 5 in order to estimate
the extra cost brought by the use of high accurate reconstructions. Notice that a MUSCL remap scheme cost
is of the same order than MOOD-P1 therefore we did not report these figures. Independent of the number
of cells in the mesh the same general behaviors are consistently observed: the stabilization cost for less than
10% of the overall cost, the cost of intersection and projection drops drastically when the polynomial degree
increases (respectively 40%/60% for P1 and 8%/19% for P5), the cost of the reconstruction as expected
increases with the polynomial degrees from 0% for P1 reconstruction up to 70% for P5.
Let us study the cost of increasing the nomila accuracy of a remap scheme. When the polynomial degree is
2 then the MOOD-P2 scheme costs about 15% more than a second order scheme (MOOD-P1). MOOD-P3
costs about 20% to 30% more, MOOD-P4 is about two times more expensive, and, MOOD-P5 six times.
The reason for this increase in cost from MOOD-P4 to MOOD-P5 can be seen in the cost of the reconstruc-
tion stages which jumps from 30% to 70%. AS such this step should be monitored and profiled to improve
the efficiency of the code.

Last in figure 19 we compare the L2 errors produced by the MOOD schemes for the three refined
meshes. The left row presents the L2 error on the density variable on the top panel and the total internal
on the bottom panel as a function of the mesh size (in logscale). The density error evolves as expected, the
finer the mesh, the smaller the error and the higher the nominal accuracy, the smaller the error. On purpose
we also present the total energy error which does not present the same nice behavior as the convergence
is slower for high-accurate methods. The right row dislays the L2 errors for density and total energy as a
function of the polynomial degree for each MOOD-Pk scheme (i.e the nominal order of accuracy minus
one). For the density variable the schemes behave as expected: the error decreases when the mesh is re-
fined and the polynomial degree increases. For the energy we observe that even if the general behavior is
correct, there are strange situation, for instance for MOOD-P3 and P4 the 32 × 32 mesh error is close to
the 128 × 128 mesh error and smaller than the 64 × 64 mesh error without obvisou reason. Notice that the
correct convergence behavior is also observed for the component of the momentum as we omit these figures
here.
With this figure we can conclude that the MOOD-like remapping schemes behave in general as expected,
that is, increasing the polynomial degree or the number of cells leads to a more accurate solution. Nonethe-
less we have also shown that, depending on the variable of interest, this general behavior may or may not be
totally satisfactory. In other words, even if cost and error measures are good sensors to estimate the quality
of a remapping scheme, only a large set of tests and associated diagnostics can convince the subjective view
point of an ordinary end-user.
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Figure 19: L2 errors for the density (left) and total energy (right) as a function of mesh size (left panels) for meshes: 32× 32, 64× 64,
128× 128, or, as a function of the polynomial degree (right panels), degree varying from 1 to 5. (The nominal order of accuracy being
the degree plus one.)
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Scheme Intersection Stabilization Projection Reconstruction Total Ratio vs

MOOD-P1

M
es
h

32
×

32

MOOD-P1
104.90 0.89 145.11 0.50 251.40

—
41.73% 0.35% 57.72% 0.20% 100.00%

MOOD-P2
106.10 0.97 155.78 23.44 286.29

1.15
37.06% 0.34% 54.41% 8.19% 100.00%

MOOD-P3
110.32 39.33 154.14 21.35 325.14

1.29
33.93% 12.10% 47.41% 6.57% 100.00%

MOOD-P4
116.89 63.43 192.47 147.27 520.07

2.07
22.48% 12.20% 37.01% 28.32% 100.00%

MOOD-P5
125.11 117.10 293.30 984.17 1519.69

6.04
8.23% 7.71% 19.30% 64.76% 100.00%

M
es
h

64
×

64

MOOD-P1
424.61 3.61 583.57 2.25 1014.03

—
41.87% 0.36% 57.55% 0.22% 100.00%

MOOD-P2
429.17 3.70 620.09 96.29 1149.26

1.13
37.34% 0.32% 53.96% 8.38% 100.00%

MOOD-P3
434.95 76.45 618.03 88.99 1218.42

1.20
35.70% 6.27% 50.72% 7.30% 100.00%

MOOD-P4
451.55 134.24 749.02 592.55 1927.35

1.90
23.43% 6.96% 38.86% 30.74% 100.00%

MOOD-P5
476.69 282.17 1086.65 4353.45 6198.97

6.11
7.69% 4.55% 17.53% 70.23% 100.00%

M
es
h

12
8
×

12
8

MOOD-P1
1685.11 14.84 2329.49 10.73 4040.18

—
41.71% 0.37% 57.66% 0.27% 100.00%

MOOD-P2
1732.20 15.37 2506.83 375.50 4629.91

1.15
37.41% 0.33% 54.14% 8.11% 100.00%

MOOD-P3
1732.94 187.87 2470.87 343.80 4735.48

1.17
36.59% 3.97% 52.18% 7.26% 100.00%

MOOD-P4
1779.98 394.34 3011.18 2598.17 7783.67

1.93
22.87% 5.07% 38.69% 33.38% 100.00%

MOOD-P5
1849.96 694.41 4158.08 17785.34 24487.78

6.06
7.55% 2.84% 16.98% 72.63% 100.00%

Table 5: Cost of MOOD remapping schemes for the cyclic remapping of the hydrodynamics like profiles with N × N quad mesh for
N = 32, 64, 128. Last colum corresponds to the ratio of the total cost between MOOD-Pk and MOOD-P1.
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5. Conclusion

In this work we have developed a formally high accurate 2D remapping scheme based on polynomial
reconstructions of the variables to remap. The stabilization strategy is based on an a posteriori detection
procedure of bad cells and subsequent polynomial degree decrementing of the reconstructions. Those bad
cells are de facto iteratively re-updated with a lower accurate scheme. Such a remap scheme is not exclu-
sively but devoted to become the third stages of an indirect ALE scheme based on Lagrangian, Rezone and
Remap stages.

More precisely this work has presented a scheme which conservatively remaps a set of cell-centered
variables from one original/old mesh onto a target/new mesh, both being possibly uncorrelated. High accu-
racy is obtained by means of unlimited polynomial reconstructions. On smooth problems, the remapping
scheme using such reconstructions maintains the optimal order of accuracy by construction. On the other
hand, stability is obtained by means of a a posteriori MOOD loop: Given a set of validity criteria and
a candidate remapped solution, the MOOD loop starts by detecting problematic cells which are flagged
and subsequently re-updated using lower accurate polynomial reconstructions in the vicinity of the bad
cell. Only problematic cells and few neighbors in direct interaction must be recomputed. Valid cells are ac-
cepted and are not re-updated during the MOOD loop. Within this loop a so-called ’cascade’ of schemes are
successively employed. In this work we have mainly considered a cascade of four schemes: the unlimited
6th order accurate scheme with P5 reconstructions, then the unlimited 4th order accurate scheme with P3
reconstructions, the 2nd order accurate scheme with P1 reconstructions possibly limited and finally a first
order accurate scheme. Note that the choice of the cascade is left to the user, and, any other cascade would
work equivalently provided that the 1st order accurate scheme is kept as the last resort scheme. The local
solution provided by this last resort scheme must always be accepted, hence the name ’parachute scheme’
in the MOOD phraseology.

The detection phase drives the quality of the remapped solution as it is responsible for detecting para-
sitical oscillations (Gibbs effect) and, also, small scale effects which can not be captured with the character-
istics mesh size employed. In this work we have considered either scalar remap for which only a maximum
principle applies, or vectorial remap from hydrodynamics-like data (density, momentum, total energy) for
which physical properties apply such as positivity of density, specific internal energy (and pressure depend-
ing on the equation of state). These are Physically Admissible Detection (PAD) criteria which we test for
any candidate solution, if a cell fails then it is marked as problematic and sent back for re-computation. To
detect spurious numerical oscillations one relies on some sort of relaxed discrete maximum principle and
this constitutes the Numerical Admissible Detection (NAD) criteria [19, 29, 30, 70, 42].
Reconstruction and numerical detection phases are performed on the variables which are remapped, in our
work these are the conservative variables. On the other hand the PAD criteria are conducted on the physical
variables of interest. This is not a limitation of the MOOD method, rather these are developer choices for
the most general case8

We have shown on pure remapping test cases that the high accurate remap scheme with a posteriori
stabilization

• attains the nominal order of accuracy on smooth profiles;

• presents an essentially non-oscillatory (ENO) behavior on discontinuous profiles;

• improves the numerical accuracy when the nominal order of accuracy increases still maintaining the
ENO behavior;

8Note that this could be easily modified if numerical evidences show that other choices are producing better results. In this work
we only focus on the proof of feasibility in the most general case. All practitioners, within their constrained development contexts,
have their own preferred choices, reconstructions on primitive or characteristics variables, etc. MOOD paradigm will simply adapt to
these choices.
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• on a smooth Gaussian scalar remap test the ratio of the L1 error between a 2nd and 6th order accurate
scheme is at minima 184 and maxima 5 millions. The 32 × 32 = 1024 error for MOOD-P5 scheme
is better than the 512 × 512 ' 262000 error for MOOD-P1 meaning that the second order accurate
scheme demands in 2D about 256 times more cells than the 6th order accurate scheme.

• the number of bad cells that need re-computation is low and they are appropriately located close to
the discontinuities or steep gradients;

• the cost of a MOOD-P3 scheme is about 1.3 times more important than the cost of a second order
accurate scheme (6 times for a MOOD-P5 scheme);

• compares favorably with a classical 2nd order remapper using a slope limiter (MUSCL like).

For the last point the authors are aware that many 2nd order remap schemes exist employing different slope
limiters, different machinery for interleaved variables (primitive, conservative, mixing, etc.), different ways
of handling mesh intersection (swept based, directional splitting, etc.). Our 2nd order accurate scheme
is just one representative of the well used family of remap schemes using a priori limiting. This family
may present some defects such as un-attained nominal 2nd accuracy on smooth profiles, no physics based
limiting leading to loss of positivity (or conservation), and, difficulty to extend the limiting procedure to
reconstructions beyond 2nd order. This work has presented one solution to these defects.

In the next future we plan to develop the extension of this approach to 3D on general polyhedral
meshes. We expect to show that, in this even more complex setting, the use of high accurate reconstructions
along with exact mesh intersection may improve the general behaviors of a remap scheme. The polyhe-
dral/polyhedral mesh intersection is described in [102, 28] and our first results of a posteriori MOOD like
stabilization in 3D are promising.
In parallel we will focus on coupling this remapper with a 2D and 3D second order accurate cell-centered to
obtain indirect ALE simulation codes for hydrodynamics equations. Last but not least is the parallelization
of the while machinery which will become crucial in 3D.
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Appendix: a priori vs a posteriori

Let us illustrate some flaws that inexorably appear when classical a priori slope limiters based on the
strict enforcement of the Discrete Maximum Principle are to be used with piecewise linear reconstructions.
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Figure 20: Zoom on a polygonal mesh generating inappropriate geometrical shaped cells (thick black cell) which may still have
out-of-bounds vertex reconstructed values (at red points) even if a slope limiter considering the Voronoi neighborhood (green bullets)
is employed.

Classical a priori slope limiter for piecewise linear reconstruction

In this work we have implemented a classical vertex-based Barth-Jespesen slope limiter9 [8, 9, 5, 6].
The vertex evaluated values of the piecewise linear reconstruction must lay in-bounds defined by the local
minimal/maximal mean values of the neighborhood. The limiter Φi is then applied to each reconstructed
variableU as

Ui(X) = Ui + Φi

∑
1≤|α|≤d

Rαi

(
(X − Xi)α −

1
|Ωi|

∫
Ωi

(X − Xi)α dX
)
. (23)

When a system of PDEs is considered there may be some in-adequation between the choice of the variables
to reconstruct and the choice of variables that must remain in bounds. For instance we may want to
reconstruct and project the momentum, but, only keep the velocity in-bounds, see other situations in
table 1.

The quality of the underlying mesh may be important to ensure the in-bounds property even for scalar
variable. For instance in figure 20 the strict application of a slope limiter does not ensure that the red
vertices Xp have reconstructed values Ui(Xp) which are in-bounds considering the Voronoi neigh-
borhood (green dots). This is due to the local “bad” quality of the mesh. However when dealing with
polygons, or worse with polyhedra, such situation is no more exceptional. Unless some preprocessing
of the mesh is performed, the slope limiting may still fail in ensuring the in-bounds property.

When a vectorial or tensorial variable is considered, the choice of a component-by-component limiting
may lead to non-frame-invariant results. This may be problematic for mesh moving techniques such
as Lagrangian schemes [73, 72, 79, 80, 81]. More advanced limiters have then to be developed to
cure this flaw which is usually not present for unlimited reconstructions.

9This choice is only meant to pick one of the classical a priori slope limiter. The same general conclusion would apply to most of
the a priori limiters should they be applied to conservative, primitive or characteristics variables. Indeed the a priori character of these
slope limiters is the characteristics we wish to emphasize. Of course there exist better choices than others depending on the system of
PDEs solved.
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High order slope limiter extensions

Many attempts of extending the ’slope limiter’ approach to high order polynomials have been tried
both in high order finite volume context under key word ’(W)ENO’ [48, 47, 1, 3, 45, 56, 43, 58, 115,
95, 93, 94, 91, 101, 2, 40, 103, 104] for which positivity preserving may demand some care [114, 4, 54]
or ’hierachical slope limiting’ or ’artificial viscosity’ [59, 82, 24, 23, 25, 65, 10, 97, 67, 15, 61, 60, 53,
111, 83, 105, 7, 89, 109, 76, 46, 31, 32, 96] or even for ’discontinuous Galerkin’ limiting strategies
[22, 21, 77, 78, 44, 112, 110, 113]. Being exhautive for this matter is simply impossible, consequently
the reader is guided to the references included in the cited works for a broaded view.

In summary

• the paradigms onto which are constructed slope limiter are not trivially extended to higher order
accurate reconstructions;

• some slope limiters may demand that the mesh verifies geometrical constraints, otherwize it may
activate inappropriately, see the example on figure 20;

• generally the bound preservation of the reconstructions within a cell does not imply the subsequent
bound preservation of the remapped solution, for instance when system of interleaved variables are
remapped.

While the second issue could be mitigated, as instance by a careful investigation of the mesh, the other two
simply can not. Contrarily with our a posteriori approach we deal with those issues by construction, as the
strategy does not assume any mesh quality, neither does it assume any form onto which the limiting must
act, neither does it postpone the question of bound preservation of the remapped solution.
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Delaunay triangular grids. Let us construct two Delaunay triangular grids made of about N = XXX cells
to project back and forth the sine profile from table 2, see figure ?? for the mesh. The Delaunay meshes have
a good geometrical quality and the number of cells are far beyond the minimal number required to expect
a good remap solution. MOOD, MUSCL and obvisouly UNLIM schemes are able to exactly reproduce
linear field (not shown in the table) as expected. Nonetheless the results for the smooth function shows that,
although MOOD performs as the unlimited scheme, that is not detecting a single bad cell hence leading
to a almost perfect second order accurate scheme, MUSCL remapping has more difficulties to reach these
errors and orders of convergence in L∞ norm. This was expected because it is well known that the strict a
priori application of the DMP clips extrema.

Polygonal grids. A Voronoi polygonal grid is constructed given a set of N = XXX so-called Voronoi
generators which are almost uniformly distributed. As such the mesh seems, at least visually, acceptable,
see figure ??. A second polygonal mesh is constructed by rotating the set of generators. The two meshes are
therefore of same geometrical quality however they do not verify the fact that the current cell onto which
the reconstructions are made, is not entirely covered by the convex hull constructed from the neighbor cell
centers (green cells) as illustrated in figure 20. As such the value of the reconstruction at some vertexes
may be out-of-bounds (see the red crosses in figure 20). If the underlying field is linear and if the piecewise
constant data are exact mean values then a limiter should never be activated. However with such a ’bad
quality’ mesh, the limiter is acting on several cells leading to a loss of accuracy10. The supposedly second-
order accurate MUSCL scheme is in this case not able to exactly remap a linear field. In table 6 are reported
the errors and orders of convergence when the sine profile if remapped. MOOD and UNLIM are almost
equivalent (as MOOD does detect almost no bad cell) whereas the a priori limiter in the MUSCL scheme
is over-reacting for this smooth situation, leading to a net loss in accuracy and convergence.

D
el
au
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ay

m
es
h

Nx L2 error L∞ error Nb L2 error L∞ error L2 error L∞ error

MOOD P1 −→ P0 MUSCL Plim
1 UNLIM P1

32 2.65E-02 — 3,33E-02 — 0 4.49E-02 — 3.24E-02 — 2.65E-02 — 3,33E-02 —

64 2.65E-02 — 3,33E-02 — 0 4.49E-02 — 3.24E-02 — 2.65E-02 — 3,33E-02 —

128 2.65E-02 — 3,33E-02 — 0 4.49E-02 — 3.24E-02 — 2.65E-02 — 3,33E-02 —

256 2.65E-02 — 3,33E-02 — 0 4.49E-02 — 3.24E-02 — 2.65E-02 — 3,33E-02 —

512 2.65E-02 — 3,33E-02 — 0 4.49E-02 — 3.24E-02 — 2.65E-02 — 3,33E-02 —

Expected order 2 2 2 2 2 2
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Nx L2 error L∞ error Nb L2 error L∞ error L2 error L∞ error

MOOD P1 −→ P0 MUSCL Plim
1 UNLIM P1

32 2.65E-02 — 3,33E-02 — 0 4.49E-02 — 3.24E-02 — 2.65E-02 — 3,33E-02 —

64 2.65E-02 — 3,33E-02 — 0 4.49E-02 — 3.24E-02 — 2.65E-02 — 3,33E-02 —

128 2.65E-02 — 3,33E-02 — 0 4.49E-02 — 3.24E-02 — 2.65E-02 — 3,33E-02 —

256 2.65E-02 — 3,33E-02 — 0 4.49E-02 — 3.24E-02 — 2.65E-02 — 3,33E-02 —

512 2.65E-02 — 3,33E-02 — 0 4.49E-02 — 3.24E-02 — 2.65E-02 — 3,33E-02 —

Expected order 2 2 2 2 2 2

Table 6: L2 and L∞ errors and convergence rate for the sine profile on back and forth remap on triangular and polygonal grids for
MOOD P1, MUSCL and UNLIMited schemes of the same nominal accuracy. Nb referes to the total number of bad cells detected
during the entire simulation.

10 We may argue that choosing a good quality mesh is mandatory. However in 3D this ’good quality’ mesh may not be easily found,
or, worse, may not even exist. Consequently numerical schemes which are marginally dependent on the mesh geometrical quality may
be of great value.
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