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Minimum fuel round trip froma L, Earth-Moon
Halo orbit to Asteroid 2006 RHj29

M. Chyba and T. Haberkorn and R. Jedicke

Abstract The goal of this paper is to design a spacecraft round trip transfer from
a parking orbit to Asteroid 2006 Rk, during its capture time by Earth's gravity,
while maximizing the nal mass or equivalently minimizing the delta-v. The parking
orbit is chosen as a Halo orbit around the Earth-Mbgfibration point. The round-

trip transfer is composed of three portions: a rendezvous transfer departing from the
parking orbit to reach 2006 R, a lock-in portion with the spacecraft following

the asteroid orbit, and nally a return transferltg. An indirect method based on

the maximum principle is used for our numerical calculations. To partially address
the issue of local minima, we restrict the control strategy to re ect an actuation
corresponding to up to three constant thrust arcs during each portion of the transfer.
The model considered here is the circular restricted four-body problem (CR4BP)
with the Sun considered as a perturbation of the Earth-Moon circular restricted three
body problem. A shooting method is applied to solve numerically this problem, and
the rendezvous point to and departure point from 2006Jgbre optimized using a

time discretization of the trajectory of 2006 Rid.
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1 Introduction

In [1], the authors analyze statistically a new population of near Earth asteroids,
namely the Temporarily Captured Orbiters (TCOs). They are classi ed by the fol-
lowing simultaneous conditions:

1. the geocentric Keplerian enerByjanetis negative,

2. the geocentric distance is less than three Earth's Hill rafi(3 0:03 AU);

3. the TCO makes at least one full revolution around the Earth in the Sun-Earth
rotating frame.

In some of the literature they are also referred ton@simoonsbut we will use the
terminology TCO here. The authors generated, pruned and integrated a very large
random sample of "test-particles” from the Near Earth Object (NEO) population
to calculate, among other statistics, the steady-state orbit distribution of the TCO
population. Of the 10 million integrated test-particles, it was found that over 16,000
became TCOs. A consequence is that statistically, at any moment there is a one
meter diameter TCO orbiting the Earth. The advantages presented by the TCOs for
space missions have been discussed in several papers [1, 2, 3, 4] and we will not
repeat the arguments here, but clearly it is what motivates our work. In particular,
their vicinity to the Earth-Moon system is very attractive and their energy typically
will help minimize the amount of thrust required by the spacecraft to reach them.

The orbits of the TCOs presented in [1] exhibit a wide range of behaviors, with
capture duration going from a few weeks to a few months. In this paper, we focus
on the only known TCO, namely 2006 RHd. It is a few meters diameter wide
asteroid and was discovered by the Catalina Sky Survey on September 2006. Its orbit
from June 1st 2006 to July 31st 2007 is represented on Figures 1 (in E-M rotating
frame) and 2 (in inertial frame), generated using the Jet Propulsion Laboratory's
HORIZONS database which gives ephemerides for solar-system bodies. The period
June 2006 to July 2007 was chosen to include the portion of the orbit during which
the asteroid is considered as captured by the Earth's gravitation. We can observe
that 2006 RH>o comes as close as 0.72 Earth-Moon distance from the Earth-Moon
barycenter. This paper focuses on the design of a round trip minimum fuel transfer
to 2006 RH 2.

We rst assume the spacecraft hibernating on a periodic orbit awaiting detection
of a TCO. Motivated by the successful Artemis mission and prior numerical simula-
tions on the rendezvous transfer [5], we chose the hibernating orbit to be a Halo orbit
around the Earth-Mooh; libration point with az-excursion of 5000 km. This orbit
is similar to the ones successfully used for the Artemis mission [6, 7]. The highest
point in z-coordinate of this Halo orbit igHao, (1:1190;0:013 0;0:180 0) and
its period istyao, 3:413 normalized time units or 184 days. Figure 3 shows
this Halo orbit in the EM rotating frame.

The round trip is composed of a rendezvous transfer to bring the spacecraft to
2006 RH 2, followed by a lock-in phase where the spacecraft travels with the as-
teroid and nally a return transfer to the hibernating orbit. Clearly, this optimization
problem presents a very large set of variables including the departure time, the tar-
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Fig. 1 2006 RH2 orbit between JundSt 2006 and July31$t 2007 in the Earth-Moon rotating
frame.

0 Earth 2006RH120 on

June 1, 2006
-1 2006RH

z (LD)

120 on

July 31, 2007

yup) 2 4 2

x (LD)

Fig. 2 2006 RH orbit between Junést 2006 and July31%t 2007 in an Earth's centered inertial
frame.

get rendezvous point, the lock-in duration on the asteroid and the return transfer
duration. To simplify our approach we rst decompose the round trip into a ren-
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Fig. 3 Parking Halo orbit around k with a z-excursion of 5000 km, in the EM rotating frame.

dezvous transfer and a return transfer that we address separately. Once these two
optimization sub-problems are solved we will consider the global mission.

The rst transfer is a rendezvous to a point on the 2006, Rldrbit from a Halo
orbit around the Earth-Mooly, libration point. The departing time of the spacecraft
from the hibernating orbit depends on the detection time of the TCO, and even
though it is a xed value for 2006 Rk}g since it was of cially detected we will
vary this parameter to analyze its impact on the fuel consumption. Additionally to
a discretization of transfer duration, a discretization of the TCO orbit will be used
to optimize the rendezvous point which will results in more than 5000 optimization
problems to be solved.

The second optimization problem is the return transfer from 2006,{Rtd the
L, libration point of the Earth-Moon system (rather than to the Halo orbit to reduce
the number of calculations, it can be expanded easily). This problem will be solved
with xed transfer durations and we will study the in uence of the departing point
on the 2006 Rhbg orbit and of the transfer duration on the fuel consumption. As
for the rendezvous transfer, this produces more than 5000 return transfers to be
calculated.

The global round trip will be analyzed based on the two sub-problems, the ren-
dezvous transfer and the return transfer. We can connect the best transfers together
in order to minimize the fuel consumption with the additional constraint that the
return trip has to start after the forward trip ended. This will provide us informa-
tion about the lock-in phase as well and its optimal duration for mission planning
purpose.

In order to solve the optimization problems associated with our mission, we use
indirect shooting methods [3, 4, 5, 12]. The main dif culty of these methods is the
initialization of the algorithm and existence of numerous local minima. To partially
reduce the number of local minima, we x the control structure to be composed of
at most three constant thrust arcs with 2 ballistic arcs in between. The reason to
impose this control structure is twofold. First, preliminary calculations on a set of
random TCOs with a free control structure for a similar control problem in [5] pro-
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vided results mimicking impulse transfers with at most three impulses. In extremely
rare instances adding a fourth switching or more would reduce the cost. Second,
since the parking orbit is not a periodic orbit of the CR4BP we have to impose an
initial impulse to leave the Halo orbit. Indeed, starting the transfer with a ballistic
arc is extremely unlikely to be ef cient or even possible since the time duration
of the transfer is xed. This very strongly suggests a strategy with one impulse to
leave the hibernating orbit, a second one to redirect the spacecraft toward the ren-
dezvous point and a nal one to match the position and the velocity of the asteroid
at rendezvous. We consider a chemical propulsion spacecraft with maximum thrust
Tmax= 22N, speci ¢ impulse lsp = 230s, and initial massmy = 350kg.

The novelty of this work is at least threefold. First, the target object is a TCO
and differs from the typically periodic orbits considered in the literature of mini-
mum fuel transfers. Second, we consider synchronized transfers to produce a global
round trip mission and add a practical detection constraint. Notice that the exis-
tence of an ef cient round trip transfer also enables the possibility of a multiple
rendezvous scenario with successives TCOs which would maximize the use of the
spacecraft. Third, the calculation of all the possible rendezvous transfers with re-
spect to departure time and rendezvous point and all possible return transfers with
respect to the departure point on the TCO trajectory, makes this study very com-
prehensive rather than focused on a given rendezvous point or departure point from
the asteroid. The trade-off of our work is the restriction to a speci c three thrust arc
control strategy.

As a nal comment, we would like to emphasize that the techniques presented
here can be applied to any TCOs. Asteroid 2006 gkivas chosen as a test-bed
TCO for our work to illustrate the algorithm since it is the only discovered one at
this time. As of now exploratory work is being conducted with the synthetic TCOs
calculated in [1], but in [2] the authors predicts that the Large Synoptic Survey
Telescope (LSST) could detect about 1.5 TCOs/lunation, which amount to a dozen
per year. This would provide ample population candidates for a real asteroid space
mission.

The outline of the paper is as follows: Section 2 presents the equations of motion
used as the dynamics of the optimal control problems. Section 3 gives the exact
formulation of the two optimal control problems as well as the necessary conditions
satis ed by the solutions of the problems. This Section also presents the numerical
method used for the calculations. Section 4 provides the numerical results for the
two optimal transfers and discusses the complete round trip problem. Finally we
conclude on possible future works.

2 Equations of motion

During its mission, the spacecraft will stay in some vicinity of the Earth and Moon
gravitational elds which suggests that the Earth-Moon circular restricted three
body problem (CR3BP), see [8], for the equations of motion might provide a good
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approximation. In the CR3BP setting, the spacecraft is assumed to move in the grav-
itational elds of 2 primaried; andP., of respective mass&4; andM. In addition,

the two primaries are assumed to follow a circular orbit around their barycenter and
the spacecraft is considered to have negligible mass. A normalization to obtain a
dimensionless system is introduced by setting the mass uMt to My, the unit

of length as the constant distance between the two primaries and the unit of time
so that the period of the primaries around their baryentepisThis leads to the
introduction ofm= M;=(M; + My), the only parameter of the model. Table 1 gives
numerical values of some of the parameters of the CR3BP model.

CR3BP parameters Sun Perturbed parameters

m 0:01215361914ms 3:289 10°

1 norm. dist. (LD} 384400 km |rs 3:892 107
1 norm. time 104379 h |ws| 0:925 rad/norm. timg

Table 1 Numerical values for the CR3BP and Sun Perturbed CR3BP.

Finally, we introduce a rotating reference frame, centered at the center of mass
and so that the-axis is oriented fronP; to P,. They-axis of the rotating frame is
taken orthogonal to the-axis in the orbital plane of the 2 primaries and thaxis
completes the frame. In this reference frame, the potential energy of a spacecraft of
position and velocity] = ( X;Y;z X;y; 2) is given by

24 \2
x+y+1 m+m+n(1 m);

Wa(xyi2) = — T, 2
with r 1 (resp.r ) the distance from the spacecraft to the rst (resp. second) primary,
that is q q
ri= (x m2+y?+28; rp= (x 1+m?2+y>+ 2%

The uncontrolled motion of the spacecraft is then given by

" W5, , _Tws, ,_ W5,
X 2y X y+ 2x Ty z iz
It is well known that there exists 5 equilibrium points to this system, the so called
Lagrange point&, Lo, L3, Ly andLs. The points_s.».3 are distributed along the
axis of the frame whilé 4 andLs form an equilateral triangle with the two primaries
in the xy-plane. We will focus on the libration poiht, motivated by the existence
of periodic orbits around this point that can be used as hibernating location for the
spacecraft awaiting detection of a TCO. Notice that we could also chgceedL 3
but preliminary computation suggested thais a better choice. Halo orbits around
L, are periodic orbits that are isomorphic to circles, see [8] for the existence of and
how to compute them.
Even though the TCO's orbit is in a vicinity of the Earth-Moon system during its
capture it can be as far as 5 normalized distance from the CR3BP origin and prelim-

(1)
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inary calculations showed that ef cient transfers might require for the spacecraft to
go to an even further distance from the CR3BP origin to maximize the thrust impact
on the spacecraft's motion. For this reason, to make our model more accurate, we use
an extension of CR3BP as in [9]. We consider a Sun perturbed Earth-Moon CR3BP
in which the Sun is assumed to follow a circular orbit around the Earth-Moon center
of mass without modifying their circular orbits. In this case the potential energy of
the spacecraft ig; = Wz + Ws with

Ws(X;y;2,q) = n—f m

(xcosq +ysing); 2
whereq is the time dependent angular position of the Sun in the rotating frayiee,
the constant distance from the Sun to the center of the reference frgmehe dis-
tance from the spacecraft to the Sug € =~ (X rscosq)2+(y rssing)2+ z2)
andmsis the Sun's normalized massy= Msy=(M1+ M2)). As the Sun is assumed
to follow a circular orbit in the rotating frame, its angular positioq {§) = qo+ tws
with ws the angular velocity of the circular orbit awg the angular position of the
Sun at time 0. The equations of motion take the same form as in (1) but with the
perturbed potentialy; replacing\s. The values of the new parameters are given in
Table 1.

Since the spacecraft is equipped with thrusters, we assume they can produce a
thrust of at mosTinax Newton in any direction oR3. We introduceu = (ug; Up; Uz) 2
B(0;1) R3the thrust direction, anal) ) the mass of the spacecraft, the controlled
equations of motion is an af ne control system

q(t) = Fo(q(t)) + a Fiui(t) 3
m(t)
where the drift is given by:
0 1
X
y
z
1 + 1+
Fo(g) = B 2y+ x ( n:)(i%x m rT(Xrg m rscgsq)ﬁs WS?;JSQ @)
2x+y (lr;n)y :%/ v rerIgnq)nt nerénq
@ m)z m zms
r3 r$

and the vector eldm, (resp.F; andR) is the vector of the canonical baag(resp.
es andeg) of R®. HereTiay is the maximum thrust expressed in normalized units.
To complete the model, the mass decreases proportionally to the delivered thrust

m(t) = Ir:s:ku(t)k; (5)
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wherelgp, the speci ¢ impulse, andp, the gravitational acceleration at Earth's sea
level, are parameters dependent on the considered thruster. For our numerical tests,
we use

Tmax= 22N; Isp= 230s; go = 9:80665m=s*; mp = 350kg:

Note however that with our xed control structure, it is actually quite easy to change
those parameters using a continuation to consider for instance a solar electric propul-
sion with a smallefinax but a highelsp. Indeed, the main obstacle to a continuation
that is based solely on the thruster parameters would be the possible change in the
control structure since there is no smooth continuation path between a minimum
fuel transfer withn switchings and another withh 1 switchings.

3 Problem statement

The aim of this paper is to design minimum fuel transfer to 2006 R ftom and

back to an hibernating location of the spacecraft including a rendezvous period dur-
ing which the spacecraft travels with the TCO. Since we want this round trip to take
into account various synchronization constraints, it becomes complex when written
as a single optimal control problem. To avoid this issue and obtain more general
results on each portion of the global transfer, we decide rst to decouple the ren-
dezvous and return transfers. With our choice to solve these two problems for var-
ious departure times, rendezvous points, return departure times and return transfer
durations, it then becomes straightforward to pair the rendezvous and return transfer
using a lock-in phase between the spacecraft and the asteroid into a complete round
transfer.

In this section, we introduce the rendezvous and return transfers as optimal con-
trol problems. We consider a synchronized rendezvous from a parking orbit to
2006 RH2p, whose orbit is shown in Figures 1 and 2. The second problem is the
return transfer from 2006 Rty to the Earth-Moor; libration point. We also pro-
vide the necessary conditions for a control strategy and its associated trajectory to
be optimal.

3.1 Rendezvous transfer

The objective of the rst portion of the spacecraft round trip transfer is to rendezvous
with 2006 RH 2. We introducd; to represent the capture time of the asteroid, cor-
responding to June!12006, and x it as the origin of our mission time frantg= 0.

We make some assumptions for our calculations.

Assumption 3.1 At the capture timectof asteroid 2006 Rl the spacecraft is
hibernating on a CR3BP-periodic Halo orbit around the Earth-Moanlibration
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point, with a z-excursion 000km. We x the position and velocity of the space-
craft at t; to be QyaoL, (1:1190;0:0130;0:180 0) which corresponds to the z-
highest point of the Halo orbit. This is an arbitrary choice and can be altered in
future work.

We denote bygiare the departing time of the spacecraft from the hibernating orbit.
The position and velocitysiart Of the spacecraft atiar are determined as the re-
sult of the CR3BP uncontrolled dynamic, see egs. (1), integrating &g, at

tc = 0 to tgart to guarantee the spacecraft departs from its correct location on the
L»-Halo periodic orbit. Our algorithm treatg,: as an optimization variable of the
rendezvous problem and will discretize the departure time of the spacecraft to an-
alyze its impact on the nal mass. The detection titﬁé‘ is a practical mission
constraint and in section 4 we discuss how our results provide information regard-
ing ideal windows of detection for 2006 Rbh corresponding to the best transfers.
2006 RH o was actually discovered on Septembethil 2006 but to gain insights

on future studies with other TCOs we consider it as a possible parameter of the
problem associated to the starting time of the mission.

The rendezvous point between the spacecraft and the asteroid is a position and
velocity g% on the 2006 Rk orbit corresponding to a tim&H > tear Our algo-
rithm treats the rendezvous point as an optimization variable as well and includes
a discretization of the 2006 Rbb orbit to analyze the impact of the rendezvous
point on the fuel consumption. We also add as a constraintf{jat July 37t 2007
which is equivalent to say that the rendezvous must take place before the asteroid
leaves the Earth gravitational eld.

To reduce the complexity of the optimization problem we x the structure of the
thrust for the candidates trajectories to optimality. Our choice is motivated by the
desire to mimic an impulse strategy with at most three boosts. One to depart from
the Halo orbit, one to redirect the spacecraft to the rendezvous point on 20036 RH
orbit and one to match the position and velocity of the spacecraft and asteroid at the
end. Prior numerical calculations have shown that such strategy provides good fuel
ef cient transfers. This structure will be assume for the return portion of the round
trip transfer as well.

Assumption 3.2 For our transfers, we restrict the thrust strategy)u [tstart tffj'j] !

B(0;1) RS, i.e. the control, to have a piecewise constant norm with at most three
switchings:

1ift 2 ftsarital [ [tz ta][ [taitRE] . (6)

0 ift 2 (t1;t2) [ (ta;ta) ’

where {;to;t3;t4 are called the switching times and satisfjpt< t1 <t t3<

ts < tRH. We denote by the set of measurable functions [isar; tR] ! B3(0;1)

satisfying(6) for some switching time@starg ta; t2; ta; ta; tRH).

ku(t)k =

In other words, we impose a control strategy with at most three thrust arcs and two
ballistic arcs.

We denote by = ( g;m) the state and by(t; x; u) the controlled Sun perturbed
CR3BP dynamics (3) including the mass evolution (5). The optimal control problem
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is now written as follows:

S mi Rey

% MM tit5tau()  tarare KU(D KA
strx(t) = f(t;x(0);u(t)); aet2 [tsartH]

rdv X (t - .
(Ocp)tstan;t,'fﬁ (t Igtﬁ'trt)_ (Sﬁtarn Mo) 7)

% q( rd\/) - qrdv

tstat< 1<t f3<ty< t%U

“u(x)2U

To analyze the impact of our variables on the fuel consumption a direct optimiza-
tion with respect tdtsiarg tﬁ,U) in addition to the other parametg(ts;to;ts;ts;u( ))
would produce a large number of local extrema since our approach is a variational
one. To address this issue, we discretize the set of departure and duration time of

the rendezvous transf@kar; tRH) and solve(OCFﬁtrdth_tRH for the nite number of
Starttrdy

discretized combinations. This produces an approximation of the optimal transfer
with respect tdtsiarg tféU) and(ty;t2;t3;t4;u( ) that becomes more accurate as the
discretization orftsiarg tﬁf{,’) is re ned. We use a 15 days discretizationtgfy, from

June %' 2006 to 360 days later and a one day discretizatiotffjnfrom June

2006 to July 3% 2007, with the additional constraint th! > tsiar. Note that by

xing the departure and duration time we X the rendezvous pqﬁﬁ}. Finally, as it
seems unlikely that a very short transfer would produce a reasonable fuel consump-
tion, we add a constraint for the transfer duraﬁﬁb tstartto be greater than 7 days.

Our choice of discretization leads to 5975 differ(a@CP)t’g;’rﬁtm to be solved.

To summarize our optimization algorithm, here is an example of how we would
chose the best rendezvous transfer based on a given detectidﬁ*t’imay Septem-
ber 14th 2006. Notice that after the discovery of the TCO, the calculation of its orbit
to obtain a high enough accuracy to permit a rendezvous is not immediate and re-
quire some period of time. In other words, practically we have a constraint that is
expressed asiart> t§H + tecalc Wheretgc is the time to run the TCO's orbit calcula-
tion. However, preliminary orbits obtained rapidly after detection are interesting to
produce preliminary mission scenarios and therefore should not be neglected. For
this reason, our algorithm allows to merge the detection time and the departure of
the spacecraft from the hibernating orbit.

Step 1:So|ve(OCF’)t“1"ﬁtRH for all tsiarrandt R satisfying:
start{rgy

() tstart2 Jc;tc+ 360 dayKby step of 15 days
(i) tRH 2 dstart 7 days, July 3% 2007Kby step of one day.
Step 2: Select the(OCP)trdV (RH with the best nal mass among the ones with

startlygy

tstat  September 14th 2006.

The rst step is done without any consideration for the detection time and therefore
is only performed once. Step 2 is an instantaneous step as it only needs to do a direct
comparison of the results of Step 1. Moreover, note that once Step 2 is performed,
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it is always possible to locally re ne the discretizationtgfy andtrdv around the
selected values, in order to improve the nal mass.

3.2 Return transfer

After the rendezvous transfer, the spacecraft will drift with the asteroid in a lock-in
con guration. The optimal duration of this drift will be determined as we combine
the rendezvous transfer with the return one. In this section we focus on the return
transfer, it is the portion of the transfer that see the spacecraft departing from the
2006 RH g orbit to return to a neighborhood of the Earth-Moon system. For sim-
plicity, we chose to aim directly at the Earth-Mobglibration point rather than the
Halo orbit. Returning to the Halo orbit will involve a very signi cant higher num-
ber of calculations and the difference in fuel consumption would be minimal but
it should be a topic for further study. The position and velocity oflthgoint are

given byg,, (1:155693830;0;0;0;0).

We denote byt the departing point of the return transfer on the 2006 &H
orbit. It is associated to a departure time that we introductids Clearly, the
spacecraft can depart the asteroid orbit only after its rendezvous which implies that
aRf> ot Here again we assume the conui@) to be admissible if it consists of
three thrust arcs and two ballistic ones, ue:) 2 U . The nal time of the return
transfer is denoted bty and satis ests > tRH. The optimal control for the return
transfer is now:

st: x(t)— f(t x(t) u(t)) aet2 [tRH tf]

X (t8h) = (QStart'mO ) (8)
q(tf) - qu

fstat< i<t f3<ty<ty

“u(x)2U

(O P) return

starv tf

8 . R'[f
% m|nt1't2't3't4'u() tRH ku(t)kdt

Remark 3.1 The initial mass @ is obtained from the nal mass'fiY of the ren-
dezvous transfer portion. Depending on the speci cs of the mission when the space-
craft is locked-in with the asteroid, we have tha@'i‘ris equal to, less than (if the
mission leaves some equipment or consumes some fuel) or greater than (if the mis-
sion brings back samples for example‘)"ane don't expect 51* to play a large

role in the fuel consumption, therefore for simplicity we chose to set it to 300 kg, that
is 50 kg less than the masg f the spacecraft at the beginning of the rendezvous
transfer.

As for the rendezvous transfer, we discretize the optimization variables to study their
impact on the fuel consumption. We also use a discretizatigtfigf tr  t8H) and
solve(OCP)retum for all the pairs of this discretization. The discretizatiortQ is

the same as onﬁv, so a step of one day from Jun® 2006 to July 3% 2007, while
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the discretization on the transfer duratign 3! is with a step of 30 days from 30
to 360 days. This leads to 5112 differe(ﬁ]CP)trSL”_m. At the end, when analyzing

startLf
the complete round transfer there will be a constraint on the relation between the

rendezvous time and the departing time for the return mission but to gain insight on
the problem we proposed to decouple them completely at rst.
Figure 4 gives a schematic explanation of the whole round trip.

RH120 capture Drift on RH120 detection Drift on Rdv transfer start
time t time t{H time tsar
Craft at  GuaoL, Halo Lo | craft on Halo L, | Halo L2 Craft on Halo L,
e}
2L e
ROUND TRIP ° 8
5
Oy

Return transfer end | Lo Return transfer start | o .. |Rdv with RH120
time t Craft time tRH, 2120 time tR!
Craftat q, ra Craft at o}, Craft at o

Fig. 4 Schematic explanation of the chronology of the round trip transfer.

3.3 Necessary conditions for optimality

The maximum principle, see [11], provides rst order necessary conditions for a
control and associated trajectory to be optimal. In this section we apply the maxi-
mum principle to our optimization problems.

Let us rst focus on the rendezvous transfer. We denotg iy = ( g(t); m(t)) 2
R® R, the state O(OCP)tran;thjH’ with q(t) = ( r(t); v(t)) the position and velocity

of the vehicle andn(t) its mass, at timé. For(OCP)trdtVﬁtRH, the maximum prin-
starbtyqy

ciple introduces an adjoint sta¢e®; p, ( )) de ned onl[tswar; tRH] and the so called
HamiltonianH de ned by
D E
H(EX(); p% pe();u) = pPkutk+  py(t);x () ; fora.et 2 [tsartid]l; (9)

whereli is the standard inner product. One of the condition of the maximum prin-
ciple is that the optimal control maximizes the Hamiltonian. This maximization
gives directly that the optimal control must be a multiple of the veptér) which
translates into the following condition:

u(t) = ku(t)kkgg;k; for a.et:
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Without any constraint on the structure of the control, the maximization of the
Hamiltonian leads to the de nition of the switching functign

kpy(t)k 1
- n0 .
y ()= p'+ Tmax m(t) 4|spgo Pm(t) (10)
and the sign ofy (t) would give eitherku(t)k = 1 if y (t) > 0 or ku(t)k = O is
y (t) < 0. However, since ifOCP)'% ARH the control structure is constrained to

tstart

have at most three maximum thrust arcs, a rewriting of the optimal control problem

following a similar approach than in [13], implies that the switching function can-

cels at the constrained switching times but does not preskufigk anymore. The

following theorem gives all the necessary conditions obtained from the maximum

principle applied tc(OCP){SthtRH.
rdv

Theorem 3.11f (g )im();u0)) : [isa tV] ! R7 B(01) and (taitits ) 2

R4 is an optimal solution o{OCP)" aARH: then there exists an absolutely con-

dv

ts tart

tinuous adjoint state p%; p,()) = ( p ,pr( )ipv();pm()) 2 R R’ de ned on
[tstart trdv] and such that:

@ (P%pe()) 6 0; 8t 2 [tstarstR], and 0iis constant.
(b) The state and adjoint state satisfy the Hamiltonian dynamics:

(1) = Ja(tx();p% pe(t);u(t)); for a.e. t2 [taritiy,] a1
Pe() = X ); % (1) u(t)); for a.e. t2 [tstari ]
©
u(t) = Egk 8t 2 [tstari ta] [ [t2;ta][ [ta;tRE (12)

dy (tl) =y(t)=y({tz)=y(t) =0
(e) mtRh=10

Condition (€) is the nal transversality condition and comes from the fact that
the nal mass is free. In case we would also consider a free initial tygg we
would obtain an initial transversality condition of the form

Pq(tstard ; I:oc R3BA(tstard)

whereFER3BR() is the uncontrolled dynamics of the vehicle in the CR3BP model
(without the Sun perturbation).

Remark 3.2 Notice that transversality conditions at the rendezvous with asteroid
2006 RH20 cannot be used because we do not have an analytic expression for its
orbit. In case there is an analytic expression for the rendezvous orbit it would imply
that the Hamiltonian must be zero at the rendezvous, as well@§ should be
orthogonal togRf.
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Remark 3.3 A state, control and adjoint staigx( );u( ); p°; p«()) satisfying the

conditions of Theorem 3.1 is called and extremaQ(DCP)t'dt"rﬁtRH. We assume here
Starttrgy

that the extremals c(DCP)trdt"mtRH are normal, that is p6 0.
Starttrdy

For the return transfer, the maximum principle applied(ﬂﬁ:P)trs}j{rt’: gives the
start
same necessary conditions as in Theorem 3.1, taithandtR replaced byt3H,

andts.

3.4 Numerical method

For our numerical calculations we assume than the extremals are normal §.6.,

and we can normalize it to 1. A study of the existence of abnormal extremals is
out of the scope of this paper since it is mainly oriented towards giving an example
of fuel ef cient round trips to a TCO, here 2006 R},

Both optimal control problems are solved using a shooting method, based on
the necessary conditions. The shooting method consists in rewriting the necessary
conditions of the maximum principle as the zero of a nonlinear function, namely
the shooting function. Using the necessary conditions, in particular the Hamiltonian
dynamics (11) and the maximization of the control (X2)t); px (t)) is completely
de ned by its initial valug(Xo; py.o) at timestsiart (respectivelytsiardy for the return
transfer) and by the switching timé¢g ;ts;t3;t4). Then, xing Xo, we denote bys
the shooting function:

2 iRy g
Speoitutztata) = |y (t);i= 1,234 S2RY (13)
' pm(trFij)

replacing for the transfer return proble(mCF’)trStﬁ’_'tr: respectivelytR by ty andg'®
start

by qL,. It follows that if we nd (py.o;t1;t2;t3;t4) such tha(py.o;t1;t2;t3;t4) = 02
R, then the associateo();u( ); 1;p.()) satis es the necessary conditions of
Theorem 3.1.

In this paper, the numerical results have been obtained by computing the shoot-
ing function using the adaptative step integrator DOP853, see [14]. To nd a zero
of S we used the quasi-Newton solMdlYBRD of the Fortranminpackpackage.
SinceY ) is nonlinear, the Newton method is very sensitive to the initial guess and
seldom converges. To address this initialization sensitivity, we use two initialization
techniques, described below.

The rst initialization technique is a direct approach, see [10], consisting in dis-
cretizing the stat® and controliin order to rewrite the optimal control problem as a
nonlinear parametric optimization problgfdLP). In (NLP) the dynamic has been
discretized using a xed step fourth order Runge-Kutta scheme. The si2¢Ldd)
depends on the size of the discretization. TIN&P) is solved using the modeling
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languageAmpl see [15], and the optimization sol@Opt, see [16]. Once a solu-
tion of (NLP) is obtained, we use the value of the Lagarange multipliers associated
to the discretization of the dynamic at initial time, as initial guessfgs. The other
unknowns are directly transcribable frgiNLP). This approach cannot be used to
solve our optimal control problems because in order to have a suf ciently accurate
solution, eactfNLP) should be solved with a very re ned time discretization which
would yield very long execution times of a few hours. We thus use this initialization
technique when the second one fails.

The second initialization technique is a continuation from the known solution of
one optimal control problem to another. For instance, let's say that we know the
solution of a(OCP)t':’tZrﬁtm, then we can reasonably hope that in some, if not most,

of the cases, this solution @nnectedo the solution of a nearb(;OCP)t'g;’mt%Hert.
To follow the connection between these two problems, we can use elaborate contin-
uation methods, like in [17] or [12]. Here, we chose to use a linear prediction con-
tinuation, which doesn't require the computation of the sensitivity of the shooting
function but is nevertheless enough for our purpose. A solving with the continuation
method usually takes a few seconds on a standard laptop, which explains why we
prefer this method to the direct one.

Typically, the direct approach is used on one case and the continuation method
enables us to solve tens or hundreds of other close cases. If the continuation method
fails for a case, we then use the direct approach on it to be able to initiate again the
continuation. In order to limit the number of local minima we add direct approach
solvings and continuations from other neighbors to try to improve the solution in
terms of nal mass. Thisocal minima trimmings based on two heuristics. The rst
one is a selection of locally optimal cases with the assumption that the evolution
of the nal mass should be more or less continuous with respect to the rendezvous
point on 2006 RHio (for the forward trip) or to the departure point on 2006 34
(for the return trip). For instance, for the forward trip, if two transfers with a compa-
rable duration and neighbor rendezvous points exhibit a large nal mass difference
(say more than 10 kg), we launch a direct approach with the rendezvous point cor-
responding to the lower nal mass. The second heuristic is a random selection of
transfers and is used sparsely. This second round of calculations is essential and
allowed us to greatly improve the solutions computed on the rst solving round.
Considering the large number of optimal control problems we need to solve and the
trimming of local minima, this process takes several days of computation.

4 Numerical results

In this section, we provide results for the rendezvous and return transfers in the form
of the best transfer and the evolution of the criterion with respect to the discretization
of the initial and nal times. We then provide a discussion on how these results can
be combined to design a global round trip mission.
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Notice that since our numerical approach is a variational one, and despite the
restriction of the control structure, it is not possible to guarantee that the proposed
trajectories are indeed optimal. Even the use of a (second order) suf cient condition,
see [18], would only gives a proof of local optimality. It is thus likely that among
the 5945 rendezvous trips and the 5112 return trips, there are some local minima
that can still be improved by nding other better local or ideally global minima.

4.1 Rendezvous transfer

As mentioned in the prior section, we use a discretization on the starting time and
the duration of the missiotyatis discretized from 0 to 360 days by step of 15 days.
FortféU, we use a 1 day discretization of 2006 Bhitrajectory from June % 2006
to July 3 2007 while satisfying the constraint th&ﬁ tstartt 7 days. This gives
a total of 5975 combinations and thus solving R t). We leave from a Halo
Orbit aroundL, with a z-excursion of 5000 km and a positigAaioL, 0N June it
2006 .

The best rendezvous transfer using the restricted thrust structure we imposed is
represented on Figures 5 and 6. Table 2 summarizes the main features of this best

rendezvous transfer.

Spacecraft
RH120 before rendezvous
2 Craft and RH120 in rendezvous

Second Boost
g

Moon at rdv time
Earth

Moon at departure

Starting Boost

-4
15 Final rdv Boost

y (LD) c X (LD)

Fig. 5 Best rendezvous transfer to 2006 Btin a geocentric inertial frame.

This transfer is obtained from a departure time for the spacecraft from the hi-
bernating orbit of 15 days, i.ésiart = 15 days which implies that detection of
the asteroid should occur even before capture time to allow for a precise calcula-
tion of 2006 RHq orbit before the mission. The rendezvous between the space-
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Spacecraft

RH120 before rendezvous

2 Craft and RH120 in rendezvous
Second Boost

1 Moon at departure

Earth

z (LD)

Starting -Boost

y(LD) C X (LD)

Fig. 6 Best rendezvous transfer to 2006 BHCR3BP rotating frame.

Best rendezvous to 2006 Ribo

Parameter Symbol Value
Departure date tstart 06/16/2006
Arrival date tRH 10/27/2006
Final position ( 1:9580:401, 3:992
Final velocity (0:224,1:728 0:029
Final Mass m¢ 280:855 kg
Delta-V DV 49643 m/s
Max dist. to Earth 1714 Mm (46 LD)
Min dist. to Earth 366080 km (05 LD)

Table 2 Table summarizing the best rendezvous transfer to 20064RH

craft and 2006 Rihy occurs on October 272006 which is 148 days after cap-
ture, i.e.ty = 148 days The duration of the rendezvous transfers is therefore
133 days. The point on 2006 R at which the rendezvous occurs is given by
qrfd" ( 1:9580:401; 3:9920:2241:728 0:029. As it can be observed, the
rendezvous point corresponding to the best transfer is far from the Earth and Moon
orbital plane and is not the closest one to the departure point as it is 5.08 LD from
the Ly libration point. A possible explanation is that as the spacecraft moves away
from the in uence of the two primaries, the thrusters have a larger impact on the
motion of the vehicle. It is also important to note that this rendezvous point is not
simply the closest one in terms of distance or energy. Figure 7 illustrates this fact ,
it represents the best nal mass obtained for each rendezvous point on 2006 RH
and the distance from these rendezvous point toLth&bration point. It can be
observed that there is rst a step increase in the nal mass for the rendezvous with
2006 RHo that occur near capture time, the reason is that these transfers corre-
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spond by design to rendezvous transfers with a short duration. The best transfers
are obtained between 120 and 170 days, then the nal mass is rather constant with
some uctuations most likely due to the existence of local minima. This observation
is good in terms of the design of a real mission, it provides us with a lot of exibility
over the departure times for the spacecraft from its hibernating orbit.

Absolute best mi '

Best m¢ (kg) for given rendezvous point/time
Scaled distance from RH120 tolL »

o 50 100 150 200 250 300 350 400

t (days)
Fig. 7 Best nal mass among alkgy: with respect to the rendezvous time. Also pictured is the
distance from the rendezvous point tg this distance has been scaled.

The nal mass of the spaceraft for the best overall rendezvous is 280855kg
which corresponds to BY  49643m=s, where we comput®V such thaim; =

moe '%. Notice that in [5] we have obtained a better transfer corresponding to a
DV of 2036m=s, however for this mission the rendezvous would take place on June
26th 2006 and the duration would be about 415 days which requires to detect and
launch the mission about 14 months before June 1st 2006 creating an unrrealistic
scenario. Note that the spacecraft performs only one revolution around the Earth in
the inertial reference frame.

Finally, let us comment on the thrust strategy for this best rendezvous transfer.
The norm of the control is shown on Figure 8. The three thrust arcs last respectively
16.44 min, 1.62 hours and 4.23 min and the two ballistic arcs last 68.70 and 64.25
days. The second thrust takes place approximatively in the middle of the transfer,
but notice that it is typically not the case (see the best return transfer below). It can
also be observed that the position and velocity of the spacecraft at the beginning of
the second thrust arc fty) = ( 3:286, 0:141, 0:012 0:476 3:1850:012);
which is at 329 lunar distance from the EM barycenter, that:B6lmillion km.

Figure 9 gives the evolution of the nal mass with respect@b andtgiart. TO
read the graph, notice that the scale for thg; need to be multiplied by 15 (the
discretization rate) to justify the void region for which no rendezvous transfer are
associated. It also re ects the fact thgf'  tsan+ 7days

Figure 10 is a selection of the evolution of the nal mass &\ with respect
to the rendezvous tintg%U for various starting datesg So it represent a sectional
view of 3D Figure 9.

From Figures 9 and 10, we can see that there is a rst gradual increase of the
nal mass with respect to the transfer duratitm' tstart HOwever, this increased
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o8l E
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02f E

20 20 60 20
t (days)

Fig. 8 Norm of control for the rendezvous transfer to 2006,RH

L
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Final mass vs.10 and rdv

my (kg)

Lo (days)

8000

7000

000

tsart = 0 day
—tsart = 75 days
—tswart = 150 days

50001

@
E sl —tsant = 225 days
> —tsart = 300 days teat = 0 day
: 100
3000 tsat = 75 days
tsart = 150 days
2000
50 ——tsan = 225 days

——tsan = 300 days

1000

Fig. 10 Evolution ofDV (left) and nal mass (right) for(OCP)trdt"L_tRH with respect to the ren-
Starbydy
dezvous date and various starting datgs2 f 0; 75, 150,225 300y days.

ef ciency of the transfer stops after 30 to 120 days, depending on the starting date. It
suggests that after a period of about 2 months, the nal mass is typically less sensi-
tive to an increase in transfer duration and depends more heavily on the rendezvous
point.
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Figure 11 provides the number of rendezvous transfers corresponding to a given
nal mass range, as a histogram. We can observe that the majority of transfers pro-
vide a nal mass above 200kg, this is very good to design an actual mission since it
implies that there is exibility with respect to the departure time and duration of the
transfer to produce an ef cient transfer.

400

350

300

# transfers
N N
3 3

i

a

o
T

0 50 100 150 200 250 300
ms (kg)
Fig. 11 Number of rendezvous transfers per nal mass range. Most rendezvous transfers provide
a nal mass above 200kg with a pick at around 230kg.

Based on our discretization, we considered 25 departure times for the spacecraft
for its hibernating location. Table 3 gives a quick overview of the best rendezvous
transfers for each of those departure timg: Of cially, 2006 RH120 has been de-
tected on September 42006 which is 105 days after its capture by Earth grav-
ity, that istg*H = 105. Using Table 3, we see that this gives that the best departure
time tstart Satisfyingtsiart  tR is tstarr= 180 days after June®12006. Notice that
under this scenario, the 75 days between the detection time and the departure of
the spacecraft for the rendezvous mission ensure that the celestial mechanic com-
putations required to predict 2006 Rids orbit with enough precision can be com-
pleted. This rendezvous transfer provides a nal mass of@&7kg, or equivalently
DV = 610224 m/s, and a rendezvous date 312 days after capture, that is April 9th
2007. In particular, we will see that this rendezvous transfer could be combined with
the best return transfer given in the following section. If in case of practical consid-
eration the departure of the spacecraft should be delayed, it can be observed from
Table 3 that the mass loss can be minimized since for instan¢gfor 285 days
we have that the nal mass is 265 kg which is not even a one kilo difference
from a departure 180 days after capture. However, this late rendezvous time might
seriously compromise the ef ciency of the return transfer. Clearly, an early detec-
tion of the TCO or timely departure of the spacecraft once the asteroid orbit has
been determined is much preferable for a fuel ef cient round trip transfer.
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toran ()]0 (@] my (kgD [tsan (D[ @]y (Kg.)
0 141 |265.831| 195 392 |255.172
15 148 |280.8553| 210 363 |262.025
30 111 |234.909| 225 425 1263.304
45 138 [251.379| 240 359 [240.076
60 146 |231.103| 255 425 | 260.92
75 414 [250.772| 270 416 |256.618
90 273 |250.608| 285 425 |266.525
105 414 | 250.02|| 300 425 |241.721
120 290 |252.5471| 315 425 |246.111
135 390 [245.707| 330 407 |254.773
150 380 [258.223| 345 425 |251.158
165 314 |244.521] 360 425 |245.369
180 312 [267.037
Avg - 253.091 S - 11.136

Table 3 Best rendezvous dates and nal mass for the 25 diffegnt Notice that the average
nal mass is253091 11:136.

4.2 Return transfer from 2006 Ribgto L,

To get a global idea of the impact of the choice of departure time from asteroid
2006 RH o and duration of the transfer we study at rst the return transfer as com-
pletely decoupled from the rendezvous transfer. In an unrealistic way we will as-
sume the spacecraft can depart 2006, Rlds soon as Juné'2006 and we use a 1
day discretization of the 2006 Rbt orbit. However, to keep the number of calcula-
tions under control we use a 30 days discretization for the transfer dutatia:,,
from 30 to 360 days. This gives a total of 5112 combinationg(tgf;tr tRH).
Since the mass at the departure from 2006 Rl$ unknown before hand, in order
to be able compare all the return trips we choose arbitrarily to set the initial mass of
the return trip to 300 kg, which is 50 kg less than the initial mass of the rendezvous
transfer.

The best return transfer t@ under our thrust restrictions is shown on Figure 12
and Table 4 summarizes the main features of the best return transfer.

Best return trip from 2006 RH 129

Parameter Symbol Value
Departure date  t5H, 06/01/2007
Arrival date ts 01/27/2008
Initial position (0:238 0:598 2:228
Initial velocity ( 0:947, 0:477,0:496)
Final Mass ms 250712 kg
Delta-V DV 404815 m/s
Max dist. to Earth 2031 Mm (28 LD)
Min dist. to Earth 265520 km (69 LD)

Table 4 Table summarizing the best return transfer from 2006 &b L,.
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Fig. 12 Best return transfer from 2006 Rbkh to Earth-Moon L in a geocentric inertial frame.

The starting date of the best return transfer is 365 days after 3t@@0B, which
corresponds to Juné'2007, and the transfer duration is 240 days. Notice that this
departure date occurs shortly before 2006, RHscape Earth gravity and after the
best rendezvous transfer found previously which makes it an ideal candidate for a
complete round trip. The nal mass for this transfemig 250712 kg, which is
equivalent tddV 404815 m/s which is comparable (slightly better) to ¥ of
the best rendezvous transfer.

Figure 13 gives the norm of the control associated to the best return transfer.
This thrust strategy has three thrust arcs lasting respectively 2.15 min, 1.32 hours
and 3.06 min. The two ballistic arcs durations are respectively 213.788 and 26.15
days, and contrary to the best rendezvous transfer the second thrust arc does not
occur in the middle of the transfer but rather near the end. However, as it was the
case for the rendezvous transfer the second thrust arc is the longest one.

Fig. 13 Norm of control for the best return transfer from 2006 B¢

Figure 14 gives the evolution of the nal mass with respect3p for various
choices oft8H,. We can see that for the return trip, there is not a large difference
of nal mass with respect to neither the different possible starting dates nor the
different transfer times.
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Fig. 14 Evolution of nal mass fo(OCP)[’S}j‘_’{l with respect to the starting date and transfer time.
start

Figure 15 is a selection of the evolution of the nal mass &nd with respect
to the departure dat&H, for various transfer duratiorts  t3H, So it represent a
sectional view of 3D Figure 14.

Fig. 15 Evolution ofDV (left) and nal mass (right) fof OCP)'g™ with respect to the starting

RH .
Istarstt

date and various transfer durations t t55,2 f 120,240,360y days

From the evolution of the nal mass with respect to the transfer duration, it seems
that allowing more time for the transfer does not always gives a more ef cient return
transfer. It is however possible the optimal control problem from a xed duration
one to one with a maximum allowed duration would give better results. Indeed, for
the return transfer, it would make sense to be more lax with respect to the trans-
fer duration than for the synchronized rendezvous transfer. This remark is partially
illustrated by the results from [5] where the transfer duration is free, albeit these
results are for a rendezvous type transfer.

Figure 16 gives the number of rendezvous transfers corresponding to a give nal
mass range, as a histogram. Contrary to the rendezvous transfers, it re ects more a
density with standard normal distribution and most of the return transfers give an
average nal mass of around 160 kg. This distribution does not provide us with as
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much exibility regarding which transfer to use as it was the case for the rendezvous
transfers since we then had many more transfers with a nal mass close to the best

one.

Fig. 16 Number of return transfers per nal mass range. Notice the similar shape to a density of a
standard normal distribution. The largest pick is at around 170kg.

Table 5 gives a quick overview of the best return trips for each transfer duration
Dtf = tf  tRH. It can be observed that the best transfers take place for durations
between 120 and 240 days, but that augmenting the duration beyond 240 days does
not provide more fuel ef ciency. It also seems like that except for the return transfers
lasting less than 150 days, all the others depart from a late date on 2006 RH
That is good because we cannot hope that a rendezvous transfer arrives to early on

2006 RH 2.
Dt (0[5 (d)]mr (kg)][Dt (At ()] mr (kg
30 37 |211.681| 210 271 |231.035
60 18 |225.091| 240 365 [250.712
90 149 |220.053| 270 221 |205.214
120 25 [232.328| 300 271 |207.765
150 154 |236.009] 330 218 |(201.274
180 236 |233.768| 360 236 (231.093

Table 5 Best starting date for return trip for the 12 different transfert duratiofy = tf
Mean value of nal mass is 223.835 kg and standard deviation is 14.843 kg.

tRH
start
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4.3 Complete round trip mission

Since the aim of this paper is to design a round trip mission to 2006RMe

need to combine a rendezvous transfer with a return transfer in a realistic way. This
implies that we need to take into account some practical constraints such that the
fact that the return transfer has to start after the end of the rendezvous transfer,
that istRH < t8H, This means that the spacecraft stays with 2006 RFor t35,

tR H days. We prefer to think of the lock-in duration between the spacecraft and
2006 RHyp to be a consequence of our calculation rather than a xed value by
the user. Our calculations determine what the ideal lock-in duration should be and
the only constraint would be to check that it corresponds to a realistic time for the
science part of the mission.

From our prior calculations, it can be observed that the best rendezvous and re-
turn transfers satisfy the time constraint, therefore we only need to modify the initial
mass of the return transfer to match our desired scenario. We chose to simply impose
that the mass at the end of the rendezvous transfer equals the mass at the departure
of the return transfer, in other word there is no loss or addition of mass during the
lock-in phase. This is an arbitrary choice, and we could for instance also decide that
some equipment was left on the asteroid or some material collected form the aster-
oid that would alter the departure mass in a different way. Based on our choice, the
return transfer must starts with an initial mass of B85 kg instead of the 36@
prescribed previously. This modi cation is addressed easily through a continuation
on the previous best return transfer. It provides a return transfer that is nearly the
same as the one with the higher mass. Table 6 gives the main features of the re-
turn trip, while Table 2 of the rendezvous section still gives the main features of the
rendezvous transfer. Figure 17 shows the entire round trip transfer in a Geocentric
inertial reference frame.

Best return trip from 2006 RH 1 for the round trip mission

Parameter Symbol Value
Stay on 2006 Rlitbo tRhr tRH 217 days
Departure date tRH, 06/01/2007
Arrival date ts 01/27/2008
Initial position (0:238 0:598 2:228
Initial velocity ( 0:947. 0:477,0:496)
Final Mass m¢ 234713 kg
Delta-V DV 404814 m/s
Max dist. to Earth 2031 Mm (28 LD)
Min dist. to Earth 265519 km (69 LD)

Table 6 Table summarizing the best return transfer from 2006 Bkb L,, after pairing with the
rendezvous transfer (sopm 280:855kQ).

As mentioned in section 4.1, the best round trip transfer requires to detect
2006 RH g at or almost immediately after capture which is not an ideal scenario
especially given the fact that 2006 Rid was actual detected 105 days after June
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Fig. 17 Best round trip transfer from 2006 Rbh to Earth-Moon L in a geocentric inertial frame

15t 2006. This suggests that additional scenarii should be analyzed. Moreover, the
round trip transfer should also allow for the spacecraft ample time to perform its
mission on the TCO. We denote biymissionthe minimum time the spacecraft need

to stay on 2006 Ripoto complete the science aspect of the mission. This constraint
can be expressed €8}, tRH+ dtmission Table 7 gives a sample of the best round
trip transfers for varioutf™ anddtmission Since the best return transfer departs one
year after June$12006 it can be used in almost all scenarii but the last one when
the rendezvous portion ends 395 days after JGr20D6. For instance if we assume

that the detection occurs only 210 days after JUHh@006 , and that we need only

30 days for the lock-in phase, the rendezvous transfer can be chosen as taking 102
days to be combined with the best overall return transfer. However, if we impose a
60 days lock-in constraint for the spacecraft and the asteroid we need to chose a dif-
ferent rendezvous transfer reaching 2006, Rtih 95 days. We can observe that the
longer the lock-in phase the more expensive the round trip transfer becomes. An-
other way to look at our calculations would be to design ef cient round trip transfers
and deduce from these data the ideal windows for detection and lock-in phases. This
would provide additional information for the overall design of a mission to TCOs.
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tRH gt rendezvous transfgr  return transfer round trip
d TSNt tRH] DV (m/s)|[tREte  tRE|DV (m/s)||TotaldV (m/s)|Duration
0| 30 [[15|148 496.43 |[365 240 | 404.82 901.25 373
30| 30 ||180[312 610.22 |[365 240 | 404.82 1.01504 372
30| 60 |/180|305 684.66 |[365 240 | 404.82 1089.48 365
210, 30 |(210[312 732.23 ||365 240 | 404.82 1137.05 342
210, 60 |/210[305 809.61 ||365 240 | 404.82 1214.43 335
240, 30 |(255[319 892.82 ||365 240 | 404.82 1297.63 304
240, 60 |/240[305 1010.88(|365 240 | 404.82 1415.70 305
270, 30 |(270[335 1034.27||365 240 | 404.82 1439.09 305
300, 30 |[330|395 936.80 ||425 120 | 704.06 1640.85 185

Table 7 Table summarizing the best round trips with detection and mission duration constraints,
with my = 350kg and " = 300kg. All times are expressed in days.
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