Weighted interpolation inequalities: a perturbation approach

Abstract : We study optimal functions in a family of Caffarelli-Kohn-Nirenberg inequalities with a power-law weight, in a regime for which standard symmetrization techniques fail. We establish the existence of optimal functions, study their properties and prove that they are radial when the power in the weight is small enough. Radial symmetry up to translations is true for the limiting case where the weight vanishes, a case which corresponds to a well-known subfamily of Gagliardo-Nirenberg inequalities. Our approach is based on a concentration-compactness analysis and on a perturbation method which uses a spectral gap inequality. As a consequence, we prove that optimal functions are explicit and given by Barenblatt-type profiles in the perturbative regime.
Type de document :
Article dans une revue
Mathematische Annalen, Springer Verlag, 2016, 〈10.1007/s00208-016-1480-4〉
Liste complète des métadonnées

Littérature citée [48 références]  Voir  Masquer  Télécharger

Contributeur : Jean Dolbeault <>
Soumis le : samedi 17 septembre 2016 - 16:47:20
Dernière modification le : jeudi 11 janvier 2018 - 06:12:21
Document(s) archivé(s) le : dimanche 18 décembre 2016 - 13:32:41


Fichiers produits par l'(les) auteur(s)




Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted interpolation inequalities: a perturbation approach. Mathematische Annalen, Springer Verlag, 2016, 〈10.1007/s00208-016-1480-4〉. 〈hal-01207009v3〉



Consultations de la notice


Téléchargements de fichiers