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ALMOST GROUP THEORY

NADJA HEMPEL

ABSTRACT. The notion of almost centralizer and almost commutator are intro-
duced and basic properties are established. They are used to study 9.-groups, i.
e. groups for which every descending chain of centralizers each having infinite in-
dex in its predecessor stabilizes after finitely many steps in any definable section.
The Fitting subgroup of such groups is shown to be nilpotent and the nilpotency
criteria of Hall is generalized to almost nilpotent ﬁc-groups.

1. INTRODUCTION

Groups in which every descending chain of centralizers stabilizes after finitely many
steps, so called M, -groups, have been of great interest to both group and model
theorist. They have been studied by Altinel and Baginski [1], Bryant [4], Bryant
and Hardley [3], Derakhshan and Wagner [5], Poizat and Wagner [17]. In the field
of model theory they appear naturally as definable groups in stable and o-minimal
theories. Passing to groups definable in simple theories or even more general rosy
theories, we obtain a weaker chain condition, namely any chain of centralizers, each
having infinite index in its predecessor, stabilizes after finitely many steps. We want
to study group for which any definable section satisfies this chain condition which
we call M -groups. Examples are (group theoretically) simple pseudo-finite groups,
groups definable in the theory of perfect bounded PAC-fields, and in general groups
definable in any rosy theory. A useful tool in this context is the FC-centralizer of a
subgroup: For a subgroup H of a group G, the FC-centralizer contains all elements
whose centralizer has finite index in H. These subgroups were introduced by Haimo
in [8]. Defining a suitable notion of these objects regarding A-invariant subgroups of
G and establishing their basic properties is the main part of Section 2.

From a model theoretic point of view, one particular problem we are interested in is
given an abelian, nilpotent or solvable subgroup H, can one find a definable envelope
of H, that is a definable subgroup of G containing H with the same algebraic prop-
erties. Finding definable sets around non-definable once admitting similar properties
brings objects outside of the scope of model theory into the category of definable.
But it is not only interesting from a purely model theoretic point of view but also
an important tool for applications. In the past decades there has been remarkable
progress on groups fulfilling model theoretic properties (stable, simple, dependent,
NTP3) as well as in 9 .-groups which will ensure the existence of definable envelopes
of subgroups. In Section 3 we prove the existence of definable envelopes “up to finite

index” for any abelian, nilpotent or solvable subgroup of an 91.-group.

Another object of interest is the Fitting subgroup, i. e. the group generated by all
normal nilpotent subgroups. It is always normal in the ambient group. Moreover,
as the product of any two normal nilpotent subgroups is again nilpotent by Fitting’s
Theorem, we can conclude that the Fittin[g subgroup is locally nilpotent. It is even
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nilpotent if G is finite. On the other hand, the Fitting subgroup of an infinite group
might not be nilpotent. In the case of 9M.-groups, Bryant first showed that the
Fitting subgroup of any periodic 9M.-group is nilpotent [4]. Using model theoretic
techniques, Wagner proved in [19] nilpotency of the Fitting subgroup of any group
whose theory is stable and later Wagner together with Derakshan obtained nilpotency
of the Fitting subgroup for arbitrary 9.-groups in [5]. Furthermore, it has been
recently generalized by Palacin and Wagner [16] to groups type-definable in simple
theories. One of the main ingredient other than the chain condition on centralizers,
is that the existence of a definable envelope up to finite index for any nilpotent
subgroup. As mentioned before, we establish this result for 9.-groups in Section 3
which enables us to prove nilpotency of the Fitting subgroup for 9i.-groups.

In the last section, we study subgroups of M -groups which are almost nilpotent
or also called FC-nilpotent, a notion which was also introduced by Haimo in [§8]: a
subgroup H of G is FC-nilpotent, if there is a sequence {1} = Hy < H; < -+- <
H, = H of normal nilpotent subgroups of G such that H;1/H; is in the FC-center
of G/H,. We first introduce the notion of the “almost commutator” of two subgroups
and establish its properties. Using definability of the almost centralizer for -
groups we can express being nilpotent for 9.-groups via the almost commutator.
This enables us to generalize the nilpotency criteria of Hall (G is nilpotent if one
can find a nilpotent subgroup N such that G modulo the derived subgroup of N is
nilpotent as well) to almost nilpotent 9 .-groups.

2. ALMOST CENTRALIZERS

Let us first give the original definition of an F'C-centralizer and related objects
given by Haimo.

Definition 2.1. Let G be a group and H, K and N be three subgroups of G such
that IV is normalized by H. We define:
e The FC-centralizer of H in K modulo N:
FCx(H/N)={k € Ng(N): [H : Cgy(k/N)] is finite}

e Suppose that N < H < K. Then, the n'" FC-centralizer of H in K modulo
N is defined inductively on n as the following:

FCY%(H/N) = N

FOIY(H/N) = FCx(H/FCR(H/N) N (| Nk (FCk(H/N))
i=0
e The nt"FC-center of H:
FC,(H) = FCjy(H)

Definition 2.2. Let H and K be two arbitrary subgroups of G. We say that H is
virtuolly contained in K, denoted by H <, K if the index of H N K is finite in H.
We say that H and K are commensurable, denoted by H =, K, if H is virtually
contained in K and K is virtually contained in H.

We want to generalize these notions to suitable versions of these objects and
relations regarding A-invariant subgroups of G. For two such groups H < K, we
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have two options regarding the index of H in K: it is either bounded, i. e. it does not
grow bigger than a certain cardinal while enlarging the ambient model, or for any
given cardinal k we can find an ambient model such that the index is larger than .
Then we say that the index is unbounded. Note that if the index is bounded it is

indeed bounded by (Q‘T(A)‘)Jr. This leads to the definition below.

Definition 2.3. Let H and K be two A-invariant subgroups of G. We say that H
is almost contained in K, denoted by H < K, if the index of H N K is bounded in
H. We say that H and K are commensurate, denoted by H ~ K, if H is almost
contained in K and K is almost contained in H.

Let H and K be two A-invariant subgroups. Observe that H < K does not depend
on the model we choose. Thus H < K remains true in any elementary extension.
Moreover, if H and K are definable, bounded can be replaced by finite and hence
being virtually contained and being almost contained coincide. Note also that being
almost contained is a transitive relation and being commensurate is an equivalence
relation among A-invariant subgroups of G. Furthermore, we have the following
property:

Lemma 2.4. Let G be a group and let H, K, and L be three A-invariant subgroups
of G such that H normalizes K. If H S L and K S L then HK < L.

Proof. We assume that G is sufficiently saturated. By assumption, we have that the
index of LN H in H as well as the index of LN K in K are bounded by some cardinal
kg and kg respectively which are smaller than (2|T(A)|)+. Take Iy ={h; :i < kg}
and Ix = {k; : i < ki } representatives of the cosets of LN H in H and of LN K in
K respectively. Then the set Iy - I has at most size 27| and as H normalizes
K, it contains a set of representatives of the cosets of L N (HK) in HK. Hence the
index of LN (HK) in HK is bounded in G and whence HK < L. O

Definition 2.5. Let H, K and N be three A-invariant subgroups of GG such that N
is normalized by H. We define:

e The almost centralizer of H in K modulo N:
Cr(H/N)={g € Ng(N): H ~ Cy(g/N)}

e The almost center of H:

Z(H) = Cu(H)

Let us point out some important properties of the almost centralizer.

Properties 2.6. Let H, H', K, L and L' be A-invariant subgroups of G such that
H and H' normalize L and L’.

(1) Cx(H) and Z(H) are A-invariant subgroup.

(2) Ca(H) < Cq(H) and Z(G) < Z(@).

(3) If H is definable, bounded can be replaced by finite and these definition
coincide with the definition of the FC-centralizer and FC-center of H.

(4) Cyr(H/L) = Cg(H/L)N H'.

(5) ég(H ) is fixed by all automorphism of G which fix H and thus it is normal-
ized by the normalizer of H and in particular by H. Furthermore, Z(H) is
a characteristic subgroup of H.
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(6) It H S H aswell as L < L' and Ng(L) < Ng(L'), we have that
Ca(H'/1) < Ca(H/T')

(7) Moreover, if H ~ H' as well as L ~ L' and Ng(L) = Ng(L'), we have that
Ca(H'/1) = Ca(H/T')

(8) If H is the union of A-type-definable subgroups H, with a € Q. Then

H) = m 5’G<Ha
acfl
(9) If L is the intersection of A-definable subgroups L, of G with o € Q, we have

that N
c(H/L)N (] No(Le) = [ Ca(H/La)
aell aell
(10) If L is the intersection of A-definable subgroups L, of G with a € Q all
normalized by K and H,

H<Cg(K/L) ifandonlyif H <Cg(K/Ly) forall ac Q.

As for any normal subgroup N of H, we have that ég(H /N) is normalized by H
the following definition of the iterated almost centralizers is well defined.

Definition 2.7. Let H and K be two A-invariant subgroup of G such that H < K
and N be a normal A-invariant subgroup of H, then

e The n'" almost centralizer of H in K modulo N is defined inductively on n
by:

C%(H/N) = N

GiF I (HIN) = CoelH/TL(HINY) 0 () Ni(Cie(H/N)
1=0

e The n'™ almost center of H is defined as Z,(H) = C? T (H).

Note that if H and N are normal subgroups of K, the definition of the n*® almost
centralizer of H in K modulo N simplifies to:

C%(H/N) = N and C*Y(H/N) = Cy(H/C3-(H/N))

Properties 2.8. Let G be a group, H < K be two A-invariant subgroup of G and
let n € N. Then we have that

Cy(H)=CALH)NK.

In the rest of the section, we show properties of the almost centralizer of ind-
definable subgroups of G. It is a model theoretic notion which generalizes type-
definable subgroups and which falls into the class of invariant subgroups.

Definition 2.9. Let G be a group and A be a parameter set. An A-ind-definable
subgroup H of G is the union of a directed system of A-type-definable subgroups of
G, i. e. there is a family {H, : a € Q} of type-definable subgroups of G such that
for all  and 3 in 2 there is v in Q such that H, U Hg < H, and H is equal to

UaEQ Ha'
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2.1. Symmetry. Observe that for two subgroups H and K of a group G, we have
trivially that H < Cg(K) if and only if K < Cg(H). In the case of FC-centralizers
and virtually containment, we will see that this is not true for arbitrary subgroups in
non-saturated models. However, we obtain the same symmetry condition replacing
the centralizer by the almost centralizer and containment by almost containment for
ind-definable subgroups. In case, the ambient theory is simple, this was proven by
Palacin and Wagner in [16].

Theorem 2.10 (Symmetry). Let G be a group, H and K be two A-ind-definable
subgroups of G and let N be a subgroup of G which is a union of A-definable sets.
Suppose N is normalized by H and by K. Then

H < Cq(K/N) if and only if K < Cg(H/N).

Proof. Let k be equal to (2/TN* . Assume that G is (2%)*-saturated. We suppose
that K is not almost contained in 5@(H /N). Thus, there is a set of representatives
{ki - i € (26)T} in K of different cosets of Cx(H/N) in K as @ is sufficiently
saturated. Since H is the union of type-definable subgroups H, with « in an index
set Q of cardinality at most «, for every i different than j in (2%)* there is o(; j) in Q
such that the centralizer of the element k; 'k;/N has unbounded index in Hq, .- By
Erdss-Rado, we can find a subset Iy of (2%)T of cardinality x* and « in £ such that
for all distinct ¢ and jin I, we have that a; j) is equal to « and thus the centralizer

Cp,, (k; 'k;/N) has infinite index in H,. Hence, H, can not be covered by finitely
many cosets of these centralizers by a well known result of B. Neumann |15, Lemma
4.1]. As additionally the complement of N is type-definable the following partial
type is consistent:

m(ry,:n€rt) = {[x;lxm,kflkj] ¢N:n#£meri#jel}U{z, € Hy:n €k}

(2

As G is sufficiently saturated, one can find a tuple h in G which satisfies 7(Z). Fix two
different elements n and m in k*. Then, we have that k; 'k; & C (hy; ' hy,/N) for all
i # jin Iy. Hence, the subgroup Cf (h,, thy, /N) has unbounded index in K witnessed
by (k; : j € Ip), and whence the element h,, *h,, does not belong to Cu(K/N). So
C 17(K/N) has unboudedly many H,-translates and therefore unbounded index in H.
Thus, the group H is not almost contained in Ci(K/N) which finishes the proof. [

We obtain the following useful corollary.

Corollary 2.11. Let G be an Ng-saturated group and H and K be two definable
subgroups of G. Then

H <, Cy(K) if and only if K <, C(H)

Proof. Since almost containment and the almost centralizer satisfies symmetry, it is
enough to show that for definable subgroups H and K of an Ng-saturated group, we
have that

H <, Cy(K) if and only if H < Cy(K).

So suppose first that H <, 6’H(K) and fix representatives hq, . .., h, of the distinct
classes of Cy(K) in H. Let Hy be the definable set {h € H : [K : Cx(h)] < d}. As
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K is definable, we have that Cp(K) = Ugen Ha- Thus

H:Ohi-UHd.

i=1  deN
By Ng-saturation, this remains true in any elementary extension of G and so H <
Cy(K).
On the other hand, if H %, Cy(K), then for any cardinal & the type
m(rici€r)={r; € HyU{a;'w; ¢ Hy:i#j,d € N}
is consistent. Hence, H £ Cy(K). O

In the general context, we may ask if symmetry holds for FC-centralizers. We give
a positive answer in the case that the ambient group H is an M -group. Afterwards,
we give a counter-example which shows that it does not hold in general.

Proposition 2.12. Let G be an M.-group and H and K be subgroups of G. Then
H <, FCq(K) ifandonly if K <,FCq(H).

Proof. Suppose that H <, FCg(K). So the group FCy(K) has finite index in H
and is obviously contained in FCq(K). Note that by the former the FC-centralizer
of FCy(K) in K is equal to the one of H in K. Since G is an M.-group, we can find
elements ho, ..., hy, in FCy (K) such that Cq(FCy(K)) is equal to the intersection of
the centralizers of the h;’s. As each h; is contained in the FC-centralizer of K in H,
this intersection and hence Cx (FCy (K)) has finite index in K. In other words, K is
virtually contained in Cx (FCg (K)) which, on the other hand, is trivially contained
in FCg(FCh(K)). As FCx(FCpy(K)) coincides with FCx (H) as mentioned before
we can conclude. O

The next example was suggested by F. Wagner.

Example 1. Let G be a finite non-commutative group, K be [[G and H be
the subgroup @y G of K. The support of an element (k;);cy in K, denoted by
supp((k;i)ien), is the set of indices i € N such that k; is non trivial. As any element h
of H has finite support and G is finite, any element of H has finitely many conjugates
in K, namely at most |G|IS*PP(M many. Thus its centralizer has finite index in K.
Hence H is contained in the FC-centralizer of K. On the other hand, fix an element
g of G which is not contained in the center of G. Let kg be the neutral element of
K and for n > 1 we define:

ki=g¢g ifi=0 (modn)

kn, = (k;); h that
(ks)ien suc a {kizl else

Now fix some distinct natural numbers n and m. We have that the element &, k,,
is a sequence of the neutral element of G and infinitely many ¢’s or g~ !’s. Now, we
can choose an element h in G which does not commute with g and for any j in the
support of k; 'k, we define the following elements of H:

li=h ifi=j
;=1 else

l; = (1;)ien such that {

These elements witness that the set of conjugates (k7 'kp)H is infinite and, as
the n and m were chosen arbitrary, the k,,’s are representatives of different cosets of
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FCk(H) in K. Thus K is not virtually contained in the FC-centralizer of H in K
which contradicts symmetry.

The previous example demonstrates that symmetry does not hold for the FC-
centralizer of arbitrary subgroups in non-saturated models but the following question
still remains open:

Question 1. Let H and K be two A-invariant subgroups of a group G. Then, do
we have that _ _
H<SCq(K) ifandonlyif K SCg(H)?

2.2. The almost three subgroups lemma. For subgroups H, K and L of some
group G we have that

[H,K,L|=1and [K,L,H|=1imply [L,H,K] =1,

which is known as the three subgroups lemma. We want to generalize this result to
our framework. As we have not yet introduced an “almost” version of the commuta-
tor, observe that, if H, K, and L normalize each other, we have that [H, K,L] =1
if and only if H < Cg(K/Cg(L)). Thus we may state the three subgroups lemma
as follows:

H < Ca(K/Cq(L)) and K < Ca(L/Cq(H)) imply L < Ca(H/Ca(K)).

We show this statement, replacing all centralizers and containment by almost cen-
tralizers and almost containment, for ind-definable subgroups which normalize each
other in the following sense:

Definition 2.13. Let H, K and L be three A-ind-definable subgroups of G. We say
that

e H strongly normalizes L if there is a set of A-type-definable subgroups {L, :
a € Q} of G each normalized by H such that L is equal to |J,cq La-

o H and K similtaneously strongly normalize L if there is a set of A-type-
definable subgroups {L, : a € Q} of G each normalized by H and K such
that L is equal to J,cq La-

e [ is a strongly normal subgroup of G if G strongly normalizes L.

Note that if L is a type-definable group, it is strongly normalized by H (or respec-
tively simultaneously strongly normalized by H and K) if and only if H normalizes
L (respectively H and K normalize L).

The almost three subgroups lemma can be deduced from the lemma below:

Lemma 2.14. Let H, K and L be three A-ind-definable subgroups of G. If H and
K simultaneously strongly normalize L, then the following is equivalent:

o HZ Ca(K/Cg(L)).
e For any cardinal k, there exists an elementary extension G of G and elements
(hi :i € k) in H(G), (kn:n € k) in K(G) and (s : s € k) in L(G) such that

[[hi_th'?k;lkm]?ls_llt] 7£ 1 Viaja n7m737t € K, Z 7&]7” 7£ m,s 7& t.

Proof. Let {Ly : o € Qp} be a set of A-type-definable subgroups of G each normal-
ized by H and K such that L is equal to (J,cq, Lo and {Kp: 8 € Qk} be a set of

A-type-definable subgroups of G such that K is equal to Uﬁeﬂx Kpg. Assume first
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that H € Cq(K/Cq(L)). Note that as K and H normalize L, they normalize as

well Cg(L). So Ca(K/Cq(L)) is well defined and for any h ¢ Ca(K/Ca(L)), we
have that [K : Cx(h/Cq(L))] is infinite.

Let & be a given cardinal greater than (27()*. Assume that G is (2(27))*-
saturated. The goal is to find elements (h; : ¢ € k) in H, (k, : n € k) in K and
(Is : s € k) in L which satisfy the second condition of the Lemma.

By saturation of G, one can find a sequence (h; : i € (22")*) of elements in
H such that for non equal ordinals ¢ and j, the element h;lhj does not belong to

Ca(K/Ca(L)) or equivalently
K £ Cx(h; 'h;/Ca(L). (%)

Claim. There is a subset I of (22Nt of size kT, f € Qi and a € Qy, such that for
all distinct elements i and j in I, we have that Kg & CKﬁ(h;lhj/Cg(La)).

Proof of the claim. Let ¢ and j be two different arbitrary ordinal numbers less than
(2@)*. By () there exists a sequence (k7 : n € (2%)%) of elements in K such
that for non identical ordinals n and m less than (2%)", we have

hy iy, (k)G | & Co(L).

As K is the bounded union of A-type-definable subgroups Kpg, by the pigeon hole
principle we can find subset J of (2%)% of the same size and f;; in Qk such that
for all n in J, the element k‘é” ) is an element of K, 3;;- To simplify notation we may
assume that J is equal to (2%)". Now, by Erdds-Rado, we can find a subset I of
(2"N* of size (2%)F and B € Qg such that for non equal i and j, we have that Bi j

is equal 3. Again for convenience we assume that I equals (2)7.

To summarize, we have now found 8 in Qf, a sequence of elements (hi i€ (2%)1)

in H and for any 7 different than j in (2%)" a sequence ( ) € (2%)%) in Kg

such that
hi g, (K9)) kG| ¢ Co(L).

Fix again two distinct ordinal numbers 7 and j in (2%)". By Properties 2.6 (8), we
have that the almost centralizer of L in G is the intersection of the almost centralizers
of the Ly’s in G. So for any non equal n and m in (2%)* one can find aE:;jq)n) in Qp,
such that

1ty 6 03] i (2,00 ).
*(n,m)

Now, we apply Erdgs-Rado to the sequences of the ]ﬂ(f g, Doing so, we obtain a

subset I(; ;) of (2%)* of cardinality at least k™ and o ;) in Qf, such that for all non
identical n and m in I(; ;, we have

1, ) K] ¢ i (L)

Next, we apply Erdgs-Rado to the h;’s. So, there exists a subset I of (2%)" of
cardlnahty at least k™ and « in 7, such that i 4 is equal to « for ¢ different than
j in I and thus for any such tuples we have

[h;lhj,(k< D)~ ’J} ¢ Cc (La) -

i,5)
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Thus, as for all non equal ¢ and j in I, the index set I(; ;) is of cardinality Kt >

(27N *  we conclude that the centralizer of the element h;lhj/ég([/a) has infinite
index in Kg (witnessed by the kﬁf " )’s). Hence, for all distinct ¢ and j in the index
set I of cardinality £*, we have that K £ CKB(hjlhj/Cg(La)) and the claim is

established. Uelaim

The claim together with a well known result of B. Neumann [15, Lemma 4.1] yield

that the group Kg/é’g(La) can not be covered by finitely many translates of these
centralizers.

Now, observe that since L, is a type-definable group, any relatively definable
subgroup of L, has either finite or unbounded index, whence the group Cg(L,) is
equal to the union of the following definable sets

d
Spa=149€G:Vio,....lq ]\ o)~ \/ ;' €Caly)
=0 i#j
where ¢(z) ranges over the formulas in the type 7 (z) which defines L, and d over
all natural numbers.

By the two previous arguments, we conclude that the partial type below is con-
sistent.

m(rn:ner) = {[h hj,a ' am) € Spa:n#menr,i#jel,deN¢cny}

Jrn
U{z, € Kg:n € K}
Take k which satisfies 7(#). By construction we have that [h; 'h;, ky k] & Ca(Ly).
Hence, Lo £ O, ([h; *hj, k; km]). So L, cannot be covered by finitely many trans-
lates of these centralizers. So the partial type below is again consistent.

(xs:s€r) = {[[hithj ki k), o m]) #lis#tEw,nFEmER, iFjel,}

(2

U{zs € Lo : s € K}

As L, is a subgroup of L, a realization of this type together with the (h; : ¢ € I)
and (k, : n € k) satisfies the required properties.

On the other hand, suppose that for any cardinal k, there exists an extension G
of G and elements (h; : i € k) in H(G), (k, : n € k) in K(G), and (Is : s € k) in
L(G) such that

[[hy g ke k] 1 ] #1 Viyjon,m,s,t €k, i j,n#m,s # ¢

So let « be greater than 27! If H < Cq(K/Cq(L)) then one can find i # j such
that h; 'h; is an element of Ca(K/Cq(L)). So the index of CK(hi_lhj/ég(L)) in
K is bounded. Once more this implies that one can find n # m such that k;, 'k, €
Ca(h;thi/Ca(L)). Thus [hythy, k'] is an element of C(L) or equivalently the

n

index of C([h; 'hy, k;; 'km]) has bounded index in L. Thus there exists s # ¢ such

n

that [[h; 'hy, Ky Ykm], 151] = 1 which contradicts our assumption and the Lemma is

established. m
Now we are ready to prove the almost three subgroups lemma.

Theorem 2.15 (almost three subgroup lemma). Let G be a group and H, K and L
be three ind-definable subgroups of G which simultaneously strongly normalize each
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other. If
H < Cq(K/Cq(L)) and K < Cq(L/Cq(H)) then L < Cq(H/Co(K)).

Proof. Assume towards a contradiction that L € Cq(H/Cg(K)) and let % be equal
to (27N *. By the previous lemma we can find (I : s € exps(k)T) in L, (k, : n €
(exps(k)™) in K and (h; : i € exps(k)") in H in a sufficiently saturated extension
of G such that

([ e, b hy) ey e ] #1 Vi jonymy st € (25)F, i # jn £ m,s # ¢

By the Witt’s identity [12, Satz 1.4], for every tuple i < j < n < m < s <t <
exps (k)T either

(1 ek k) 15H0) # 1 or [k Yk, 7 10), B ] # 1.

iy v
By Erdés-Rado we can find a subset I of cardinality <™ such that for alli < j < n <
m < s < t in I the same inequality of the two holds, say [[hj_lhi, ko tkn], 150 # 1.

Now let A be the order-type of I and note that it is greater or equal to k1. Identify
I with A. Thus

(1) [[h;lhi,k_lkrn],ls_llt]#l for 0<i<j<r<n<m<25<s<t<3K

m
Arguing as in the proof of Theorem 2.10, we can find i, j,n, m,s and t such that
0<i<j<kr<n<m<2:<s<t<3kand [[hj_lhi,kflkn},l;llt] = 1. This

m

contradicts (1) and the theorem is established. O

2.3. Generalized Neumann Theorem. We want to generalize a classical group
theoretical result due to B. H. Neumann [15, Theorem 3.1] (Any bounded almost
abelian group is finite-by-abelian). To do so, let us first introduce the following
notion.

Definition 2.16. A group G is almost abelian if the centralizer of any of its element
has finite index in G. If there is a natural number d such that the index of the
centralizer of any element of G in G is smaller than d, we say that G is a bounded
almost abelian group.

Remark 2.17. If we consider a definable almost abelian subgroup of an Ng-saturated
group, we can always bound the index of the centralizers by some natural number d
by compactness. Hence, any definable almost abelian subgroups of any Ng-saturated
group is a bounded almost abelian group.

Analyzing and adapting the proof of B. Neumann result led to the following the-
orem:

Theorem 2.18. Let G be a group and let H and K be two subgroups of G. Suppose
that
e H normalizes K;
e H< éG(K)z
e K < ég(H), moreover there is d € N such that for all k in K the set of
conjugates k™ has size at most d.

Then the group [K, H] is finite.

In the proof, we use the following fact:
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Fact 2.19. [2] Let G be a group and let K and H be two subgroups of G such that
H normalizes K. If the set of commutators

{lk,h]: ke K,h € H}
is finite, then the group [K, H] is finite.
Proof of Theorem 2.18. Let d be the minimal bound for the size of conjugacy classes
of elements of K by H. Fix some element k of K for which the conjugacy class of

k in H has size d and let 1, hs,...,hq be a set of right coset representatives of H
modulo Cy (k). Thus

ki=k, koe=£k", ..., kg=Kk"d

are the d distinct conjugates of k by H. We let C' be equal to the centralizer
Ck(ha,...,hq). As H is contained in Cg(K), we have that the group C has finite
index in K. Choose some representatives ai, ..., a, of right cosets of K modulo C.
Note that their conjugacy classes by H are finite by assumption. Let F be the finite
set kT Uall U---Uall and let F be the set {zg -1 22 -23:2; € FUF L < 4}
which is finite as well. Note that K is equal to C'F.

Now, we want to prove that E contains the set
D :={[g,h]|: g€ K,h € H}.

So let g € K and h € H be a arbitrary elements. Choose cin C, f in F, such that
g = cf. We have that

l9,h] = [cf,h] = [e, W) [f,h] = [ e, ) - fP

As f~! belongs to F~! and f" belong to F, it remains to show that [c, h] can be
written as a product of two elements in F U F~1.

Let w = ck. As ¢ commutes with he, ..., hq the conjugates
w=ck, w?=cky, ..., whi=cky

are all different. As d was chosen to be maximal, these have to be all conjugates of
w by H. So there are i and j less or equal than d, such that

h~twh = ck; and h™'kh = k;
and we have that
[e,h] = ¢ *h7leh = ¢ (W ekh) (WK h) = ¢ lekiky = kik;

As all k;’s belong to F', we can conclude that D is a subset of E and therefore finite.
Hence [K, H] is finite by Fact 2.19. O

Corollary 2.20. Let G be an Ng-saturated group and let H and K be two definable
subgroups of G such that H normalizes K. Suppose that

K < Cq(H) and H < Cr(K).
Then the group [K, H| is finite.
Proof. As G is Ny-saturated, the fact that K < 5g(H) implies that there is d € N

such that for all k in K the set of conjugates k¥ has size at most d. So all hypotheses
of Theorem 2.18 are satisfied and we can conclude. O
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2.4. ﬁc-groups.

Definition 2.21. A group G is called ﬁc—group if for any two definable subgroups
H and N, such that N is normalized by H, there exists natural numbers ngy and
dgn such that any chain of centralizers

CH/N(hON)ZZCH/N(h‘ONaath)Z (hléH)
each having index at least dyy in its predecessor has length at most nygy.

Remark 2.22. Note that any definable subgroup, any definable quotient and any
elementary extension of G is again an M -group.

One of the crucial property of subgroups of an ﬁc—group G is that the iterated
almost centralizers are definable which we prove below.

Proposition 2.23. Let G be an STTC—group, let H be a subgroup of G and let N be a
definable subgroup of G which is contained in and normalized by H.

(1) Then all iterated FC-centralizers FC&(H/N) are definable.

(2) If H is an A-invariant group, then all iterated almost centralizers 68(H/N)
are definable.

Proof. The proofs for the two cases are identical just replacing the iterated almost
centralizers by the iterated FC-centralizers and bounded by finite. We give the proof
using the notion CZ(H/N).

For n equals to 0 there is nothing to show as N is definable by assumption.

Now, let n € N and assume that 5’};(H/N) is definable for all ¢ < n. This yields
that ;g NV K(é}{(H /N)) is a definable subgroup of G and thus an M,-group as well.
Moreover, as 68“ (H/N) only contains elements which belong to this intersection we
may replace G by this intersection and assume that 5’8(H /N) is a normal subgroup.
Since G is an %c—group, there are g, ..., gm € 58+1(H/N) and d € N such that for
all h € CEHY(H/N):

M Colo:/CaHINY) = () Calgi/Ca(H/N)) N ca(h/c?a(H/N))] <d
=0 1=0

Let D be equal to the definable group (=g’ Cg(gz/ég(H/N)) Then the following
set is definable.

S = {g el [D : CD(g/ég(H/N))] < d}

We show that S = ég“(H/N). The inclusion ég“(H/N) C S is obvious by choice
of the ¢g;’s and d. So let g € S. To prove the inverse inclusion, we may compute:

[H : Ca(g/C(H/N))] < [H:HOD]-[HND: Cunplg/Ca(H/N))|
< [H:HND]- [D:Cp(g/Ca(H/N))|
< oo (i. e. finite for 1. and bounded for 2.)

Thus g belongs to CNZ'gH(H/N). Hence égH(H/N) is equal to S, and whence defin-
able. O



ALMOST GROUP THEORY 13

Remark 2.24. Note that all iterated centralizers of H in G are stabilized by any
automorphism which fixes H set wise. So, if H is an A-invariant group, all its
iterated almost centralizers are indeed definable over A. Moreover, for any (type-,
ind-) definable (resp. A-invariant) subgroup H, the iterated almost centers of H are
(type-, ind-) definable (resp. A-invariant).

3. DEFINABLE ENVELOPES IN 9.-GROUPS

In this section, we analyze arbitrary abelian, nilpotent and (normal) solvable sub-

groups of M.-groups. We prove the existence of definable envelopes up to finite
index, which is inspired by the result in simple theories.

As the following remark shows, it is impossible to obtain the same result on
definable envelopes as for stable groups in groups with a simple theory and thus
IMc-groups:

Remark 3.1. Let T be the theory of an infinite vector space over F, with p > 2
together with a non-degenerate skew symmetric bilinear form. Then T is supersimple
of SU-rank 1 and in any model of T" one can define an “extraspecial p-group” G, i. e.
G is infinite, every non-trivial element of G has order p, the center of G is cyclic of
order p and is equal to the derived group of G. This group has SU-rank 1 and as any
centralizer has finite index, one can find an infinite abelian subgroup. On the other
hand, there are no abelian subgroups of finite index in G. However, any definable
infinite subgroup of G has SU-rank 1 and thus finite index in G. Thus an infinite
abelian subgroup of G' cannot have a definable abelian envelope.

A model theoretic study of extra special p-groups can be found in [6].

So one has to find the modify the notion of definable envelopes which is adapted
to the new context. These are results due to Milliet.

Fact 3.2. Let G be a group definable in a simple theory and H be a subgroup of G.

e [14, Proposition 5.6.| If H is abelian, then there exists a definable finite-by-
abelian subgroup of G which contains H.

e [13] If H is nilpotent (resp. solvable), then one can find a definable nilpotent
(resp. solvable) subgroup of class at most 2n which virtually contains H.

To find envelopes for ﬁc—groups, we make use of a definable version of Schlichting’s
Theorem [18], which can be found in [20, Theorem 4.2.4].

In the rest of the section we prove the following theorem:

Theorem 3.3. Let G be an %c—gmup and H be a subgroup of G. Then the following
hold:

(1) If H is almost abelian, then there exists a definable finite-by-abelian subgroup
of G which contains H and which is normalized by Ng(H).

(2) If H is almost nilpotent of class n, then there is a definable nilpotent subgroup
N of G of class at most 2n which is normalized by Ng(H) and virtually
contains H.

In particular, if H is normal in G, we have that HN is a definable normal
nilpotent subgroup of G of class at most 3n which contains H.
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(8) If H is almost solvable of class n, then there exists a definable solvable sub-
group S of G of class at most 2n which is normalized by Ng(H) and virtually
contains H.

In particular, if H s normal in G, the group HS 1is a definable normal solv-
able subgroup of G of class at most 3n which contains H.

3.1. Abelian groups. We first investigate the abelian case. The proof is inspired
by the one of the corresponding theorem for simple theories in [14].

Proof of 3.3(1). Let H be an almost abelian subgroup of the ﬁ)vlc—group G. As G
1s an ﬁc—group there are elements hg,...,h,_1 in H and a natural number d such
that for every element h in H, the index [C : C' N Cg(h)] is smaller than d for C' :=
ﬂ?;ol Cg(h;). Observe additionally that H is virtually contained in C'. Moreover,
the following set

F={C":heNgH)}

is a family of uniformly commensurable definable subgroups of G. Thus applying
Schlichting’s Theorem to this family of subgroups, we obtain a definable subgroup D
which is normalized by N¢(H) and commensurable with C. So D virtually contains
H and thus DH is a finite extension of D and thus definable. Note that:

o« Z (DH) is a definable almost abelian group as DH is a definable subgroup

of an M.-group.

e H < Z(DH) as DH is commensurable with C' and thus the centralizer of
any element of H has finite index in DH.

e Z(DH) is normalized by Ng(H) as both D and H are.

So the definable almost abelian (thus finite-by-abelian) group Z(DH) contains H
and is normalized by Ng(H). O

3.2. Solvable groups. To prove the solvable case we introduce the following nota-
tions:

Definition 3.4. A group G is almost solvable if there exists a normal almost abelian
series of finite length, i.e. a finite sequence

1} =GydG1 994G, =GC

of normal subgroups of G such that G;1/G; is an almost abelian group for all ¢ € n.
The least such natural number n € N is called the almost solvable class of G.

Definition 3.5. Let GG be a group and S be a definable almost solvable subgroup.
We say that S admits a definable almost abelian series of length n if there exists a
family of definable normal subgroups {S; : ¢ < n} of S such that Sy is the trivial
group, S, is equal to S and S;;+1/S5; is almost abelian and normalized by S.

In an arbitrary group, a priori not every almost solvable group admits a definable
almost abelian series.

By the following Lemma we only need to concentrate on building a definable
almost series.
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Lemma 3.6. Any definable almost solvable subgroup H of an Ng-saturated group G
which admits a definable almost series of length n

H=Hy>H > ... >H,={1}.

Then H has a definable subgroup of finite index which is solvable of class at most 2n
and which is normalized by (; No(H;).

The proof is analogous to the one of Corollary 4.12 in [13]|. Although is done there
in the context of a simple theory, the proof is almost identically in our context. The
only difference is that in the beginning of the proof, one has to replace G by the
definable subgroup (), Ng(H;) and thus we may suppose that all H; are normal in
G. Moreover, in the end, instead of taking the connected component, one has to take
the intersection of all normal subgroups of G of finite index and so we have that the
definable solvable subgroup H we obtain is additionally normalized by (), Ng(H;).

Proposition 3.7. Let H be an almost solvable subgroup of class n of an ﬁi)v?c—group G.
Then there exists a definable almost solvable subgroup of class n which is normalized
by Ng(H) and admits a definable almost abelian series containing H.

Proof. Let {1} = Hyp < --- < H, = H be an almost abelian series for H. We
construct recursively a definable almost abelian series

{1}:50§...§5n
such that for all i <n, H; < S; and S; is normalized by Ng(H).

As S is the trivial group, we may let 0 < 7 < n and suppose that S;_; has been
constructed. Since S;_; is definable and normalized by Ng(H), we can replace G by
the definable section G; = Ng(S;—1)/S;—1. Note that this is an 9M.-group and that
H;/S;—1 is an almost abelian subgroup. Thus by the almost abelian case, there exists
a definable almost abelian subgroup S; of G; which is normalized by Ng,(H;/Si—1)
containing H;/S;_1. As H; is a characteristic subgroup of H and S;_; is normalized
by Ng(H), the normalizer of H;/S;_1 and thus of S; contains Ng(H)/S;—1. Now
defining S; to be the pullback of S; in G, we conclude. U

Proof of 3.3(8). Proposition 3.7 applied to H gives us a definable almost solvable
group K of class n containing H which admits a definable almost series for which
each member is normalized by Ng(H). By Lemma 3.6, the group K has a defin-
able subgroup S of finite index which is solvable of class at most 2n and which is
normalized by Ng(H). O

3.3. Nilpotent groups.

Definition 3.8. A group H is almost nilpotent if there exists an almost central series
of finite length, i.e. a sequence of normal subgroups of H

(I} <Hy<H <---<H,=H

such that Hi,1/H; is a subgroup of Z(H/H;) for every i € {0,...,n — 1}. We call
the least such n € N, the almost nilpotency class of H.

Remark 3.9. The iterated almost centers of any almost nilpotent group H of class
n form an almost central series of length n.
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In this section we prove that any almost nilpotent subgroup of class n is virtually
contained in a definable nilpotent group of class at most 2n. To do so, we need the
following consequences of Corollary 2.20 and Theorem 2.10.

Proposition 3.10. Let G be an Me-group. Then the commutator [Z(G),Ca(Z(Q))]
18 finite.

Proof. We may assume that G is Ng-saturated. As G is an ﬁc—group, the normal
subgroups Z(G) and C(Z(G)) are definable. As trivially Ce(Z(G)) is contained in
itself and _ _ o

Z(G) = Ca(G) < Ca(Ca(Z(G))),

we may apply Corollary 2.20 to these two subgroups and obtain the result. O

Corollary 3.11. Let G be an ﬁc—gmup and H be an A-ind-definable subgroup of
G. Then o
H 5 C(Ca(H))

Proof. Trivially, we have that Cg(H) < Cg(H). Since G is an M,-group, the almost
centralizer C(H) is definable and thus by symmetry, we obtain the result. O

Proof of 3.3(2). We construct inductively on i < n the following subgroups of G:
In the ith step we find a definable subgroup G; of G and two definable normal
subgroups Ng;_1 and Ng; of G; all normalized by Ng(H) such that:

H Sv Gi;

FCz(H) NG; < Ny
[N2i—1,Gi] < Nag—1y;
[N2i, Gi] < Noi_1;

G; < Gi-1.

Once the construction is done, letting N be equal to Na), gives a definable nilpotent
subgroup normalized by Ng(H) and of class at most 2n which is witnessed by the
sequence

{1}:N0ﬂGn < NNG, <+ < Noypy NGy,

So, let Ny be the trivial group and Gg be equal to G.

Now, assume that ¢ > 0 and that for j < ¢ and & < 2¢ — 1 the groups N and
G; have been constructed. We work in the quotient G = G;_1/Ny;_1y which is
an ﬁc—group and we let H = (H N G;—1)/Ny;—1) which is obviously normalized by
Ng(H). The first step is to replace G by a definable subgroup C which virtually
contains H and such that FCq(H) = Z(C). Observe that the preimage of FCg (H)
in G;_1 contains FC;(H) N G;_1 as FC,_1(H) N G;_1 is contained in No(i—1)-

If there is go/Na(i—1) € FCa(H) \ Z(G), we consider the family
H = {Ca(gl/Nai-1)) : h € Na(H)}

Note that as H is normalized by Ng(H) all members of H virtually contain H.

Moreover, as G is an M.-group there exists a finite intersection F of groups in H
such that any K in H we have that the index [F : F N K] is at most d. Thus the
family

{F":h e Ng(H)}
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is uniformly commensurable. So, by Schlichting’s Theorem there is a definable sub-
group Cg of G which is invariant under all automorphisms which stabilizes the family
setwise, thus normalized by N¢g(H ), and commensurable with F. Moreover F N H is
commensurable with Cr(go/Na(i—1)) as go/Na(i—1) belongs to FCq (H). Over all we
obtain that

ConH=,H and Cp <, CG(QO/NZ(ifl))' (*)

If now, there is g1/Na;_1) € Cc,(H N Co) \ Z(Cyp), we can redo the same con-
struction and obtain a C;. By (x) and g; not belonging to Z(Co), we have that
Ca(90/Na(i-1), 91/No(i—1)) has infinite index in Cq(go/Na(i—1))- Then we can it-
erated this process. It has to stop after finitely many steps, as for every j the
index of CG(QO/NQ(i_l)y cee agj+1/N2(i—1)) in CG(QO/N2(i—1), cen agj/NQ(i—l)) is infi-
nite by construction, contradicting the fact that G is an ﬁc—group. Letting C be
equal to ), C;, we found a definable subgroup of G (thus an ﬁc—group), such that
FCc(H) = Z(C), which is normalized by Ng(H) and whose intersection with H has
finite index in H.

The next step is to define G;, No;_1 and No;. As C is an i/)JVTC—group, Proposition
3.10 yields that the commutator Z = [Z(C),Cc(Z(C))] is finite. Since Z(C) and
Cc(Z(C)) are characteristic subgroups of C, we have that Z is normalized by N (H)
and contained in Z(C). Note additionally that the group Ce(Z(C)) has finite index
in C by Corollary 3.11. Thus G; = Cc(Z(C))NCe(Z) has finite index in C. We let
N; = Z N Gy, a finite subgroup of the center of G;, and Ny = Z(C) NG; = E(Gi),
which is contained in Z(G;/IN1). Note that all groups used to define G;, N; and
Ny are all characteristic subgroups of C and thus G;, N1 and Ny are normalized
Ng(H). Moreover, N7 and Ny are normal subgroups of G;. Let G;, No;—1 and Ny;
be the preimages of G;, N1 and Ny in G respectively. They satisfy all requirements,
finishing the construction and therefore the proof. O

4. FITTING SUBGROUP OF 9.-GROUPS

In this section we analyze the Fitting subgroup F(G) and the almost Fitting
subgroup of an 9 -group as well as locally nilpotent 9.-groups.

The first step is to show that any locally nilpotent subgroup of an ﬁc—group, thus
in particular the Fitting subgroup, is solvable.

Proposition 4.1. Any locally nilpotent subgroup of an ﬁc—gmup s solvable. In
particular, the Fitting subgroup of an M.-group is solvable.

The proof is analog to the corresponding result for type-definable groups in simple
theories [16, Lemma 3.6].

In the next lemma we deal with a definable section of some M -group acting via
conjugation on another definable section. We recall and introduce some facts and
notations:

Let G be a group that acts on an abelian group A by automorphisms. If B is a
subgroup of A and ¢ an element of G we denote by Cp(g) the group of elements b
in B on which g acts trivially, i. e. gb = b. Furthermore, if H is a subgroup of G and
a an element of A, we denote by Cp(a) all elements h in H which act trivially on
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a. This yields the natural definition of an almost centralizer via this group action,
namely for any subgroup B of A and H of GG, we have that

Cp(H)={be B:[H:Cg(b)] is finite}

Cu(B) ={h € H : [B:Cp(h)] is finite}
Note that this group action defines a semidirect product A x G. Within this group,
the above defined almost centralizer Cp(H) (respectively Cg(B)) corresponds to

the projection of C~’Bx1(1 X H) to its first coordinate (respectively éle(B x 1) to
its second coordinate). So one obtains immediately the following symmetry for the
above almost centralizer using Theorem 2.10 for A x G.

Lemma 4.2. Let G be a group that acts on an abelian group A by automorphisms.
Let H be a definable subgroup of G and B be a definable subgroup of A, then we have
that

H < Cq(B) if and only if B < Ca(H).
Remark 4.3. Let G be a group and K, A, N and M be subgroups of GG such that:
M<K and N <A.

We say that the quotient K/M acts by conjugation on A/N if the action by K/M
on A/N via conjugation is well-defined, i. e.

e K < Ng(A)NNg(N);
e M <Cg(A/N).

Lemma 4.4. Let K and A be quotients of definable subgroups of an ﬁc—group G
such that K acts by conjugation on A. Then the Cx(A) and Ca(K) are definable.

Proof. The lemma is an immediate consequence of the following fact which is an easy
consequence of the descending chain condition in M -groups:

There are natural numbers n and d (resp. n’ and d’) such that any descending chain
of centralizers

Ca(ko) > Ca(ko k1) > --- > Ca(ko,....kn) > ... (ki € K)

(resp. Ck(ap) > Ck(ag,a1) > -+ > Ck(ao,...,am) > ... (a; € A))
each of index greater than d (resp. d') in its predecessor has length at most n (resp.
n'). O
The proof of [16, Lemma 3.8| which is stated for groups type-definable in a simple
theory uses only symmetry of the almost centralizer and that they are definable.
Hence it remains true for ﬁc—groups.

Lemma 4.5. Let K and A be definable sections of an M.-group G such that A is
abelian and K acts by conjugation on A. Suppose that H is an arbitrary abelian
subgroup of K and that there are a tuple h = (h; : i < £) in H and natural numbers
(m; : i < {) such that

o (hi —1)™ A is finite Vi</t; B
o for any h in H the indezx of Ca(h, h) in C4(h) is finite.

Then there is_a definable subgroup L of K which contains H and a natural number
m such that C'{ (L) has finite indez in A.
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Proof. Let
L = Cpy iy (Ca(h)) = {k € Ck (h) : [Ca(h) : Ca(h, k)] < oo}

with h given by the statement (note that Cxk (h) denotes the centralizer within the

group K and Ca (h) denotes the centralizer given by the group action of K on A).
Observe that L contains H by assumption and that it is definable by Lemma 4.4.

Let m be equal to 1+ Zf;é (m; — 1) and fix an arbitrary tuple 7 = (ng, ..., Nm—1)
in £*™. By the pigeonhole principle and the choice of m there is at least one i less
than ¢ such that at least m; many coordinates of 7 are equal to i. As the group ring
Z(H) is commutative and (h; — 1)™ A is finite for all ¢ less than ¢ by assumption,
we have that

(hy, — (hy, = 1)...(h,, , — DA
is finite.

Note the following:

(f) Let k be an element of K and B be a subgroup of A. Then we have that the
set (k — 1)B is finite if and only if B < Ca (k)
So, applying (f) to B = (h,, —1)...(hy,,,_, —1)A, for all ¢ < n we obtain that
(hp, —1)...(hy,, , —1)A < Ca(hy).
Thus
(hp, —1)...(h,_ _, —1)A < Ca(h).
Since for all kg in L, we have that Ca (h) < Ca (ko), we have as well that
(hnl - ]‘) t (hnvn—l - 1)A S CA(kO)
and again by (f) we deduce that
(ko —1)(hy, = 1)...(hy,, , — DA
is finite. As L is contained in the centralizer of h, the previous line is equal to
(hy, —1)...(hy,, , —1)(ko—1)A.

We repeat the previous process m times and obtain that for any m-tuple (ko, ... kpn—1)
in L we have that the set

(k1 —1) ... (k1 = 1)(ko — 1A
is finite. As the tuple is arbitrary, we have that for any k in L the group
(km—2—1)...(k1 = 1)(kg — 1A
is almost contained in the centralizer Ca (k), i. e.
L < Ck((Km_z—1)...(k; —1)(ko — 1)A)
By symmetry we have that
(Km—2—1)... (ki — 1)(ko — )A $ Ca(L)

By Lemma 4.4, we have that 5A(L) is definable. Thus we may work modulo this
group as A is abelian and obtain that

(K2 —1)...(k; — 1)(ko — 1)A/Ca (L)
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is finite for all choices of an (m — 1)-tuple (ko,...,ky,—2) in L. Thus as before we
obtain by (}) and symmetry that

(ks —1)... (ki = 1)(ko — 1)A S Ca(L/Ca(L)) = CR (L)
Repeating this process m times yields that A < GZ(L) O

Theorem 4.6. The Fitting subgroup of an ﬁc—group 1s nilpotent and definable.

Proof. Note first, that the Fitting subgroup F(G) of G is solvable by Proposition
4.1. So there exists a natural number r such that the r*® derived subgroup F(G)(")
of F(Q) is trivial, hence nilpotent. Now we will show that if F(G)™+1) is nilpotent,
then so is F(G)™.

So, suppose that F(G)™+1) is nilpotent. As it is additionally normal in G, using
Theorem 3.3 (2) we can find a definable normal nilpotent subgroup N of G containing
F(G)™+1). Note additionally that the central series

{1}:N0<N1<"'<Nk:N

with IV; = Z;(N) consists of definable normal subgroups of G such that [N, Niy1] <
N;.

Observe that it is enough to show that F(G)™ is almost nilpotent: If F(G)(™
is almost nilpotent it has a normal nilpotent subgroup F' of finite index by Theo-
rem 3.3(2). As F(G)™ is a subgroup of the Fitting subgroup, any finite subset is
contained in a normal nilpotent subgroup of G. Thus, there is a normal nilpotent
subgroup that contains a set of representatives of cosets of F in F(G)™. Hence the
group F (G)(") is a product of two normal nilpotent subgroups, whence nilpotent by
Fitting’s Theorem [7].

As F(G)™ /N is abelian and G/N is an M, -group, by Proposition 3.3(1) one
can find a definable subgroup A’ of G which contains F(G)™ such that A’/N is an
FC-group, i. e. A/ < Ca(A'/N). Moreover, the group A’/N is normalized by the
normalizer of F(G)™ /N and thus A’ is normal in G. The next step is to find a
definable subgroup A of A’ which still contains F(G)™ and a natural number m
for which N < C%(A). This will imply that A < Ca(A/N) < Ca(A/CR(A)) =
6’8”“(/1). As A contains F(G)™| the group F(G)™ would be nilpotent by the
above.

Fix now some i > 0. For any g in F(G)™ there is some normal nilpotent subgroup
H, which contains g. So N;H, is nilpotent by Fitting’s Theorem [7]. Therefore, we
can find a natural number my such that [N; ,n, g] < {1} or seen with the group
action as in Lemma 4.5

(9 — 1™ N; = {1}.
Additionally, as G is an ﬁc—group, we can find a finite tuple g in F’ (G)(”) such that for
any g € F(G)™ the index [Cy,(g/Ni_1) : COn,(3/Ni_1,9/Ni_1)] is finite. So we may
apply Lemma 4.5 to G/N acting on N;/N;_; and the abelian subgroup F(G)™ /N.
Thus, there is a natural number m; and a definable group K; that contains F(G)™
such that N; < 6&”1(K1/N1_1) Then the finite intersection A = A’ N[, K; is
a definable subgroup of G which still contains F(G)™. As for A’, we have that



ALMOST GROUP THEORY 21

A < Cg(A/N). Additionally:
N; < CBi(Ki/Ni—1) < CLH(A/Ni—y)
and inductively

N Cl*(A/Ny_1)

<
< O (A/(CH (A/Ny—2))) = CoT™ 1 (A/Ny )
< < Cglk-&--"—&-ml (A)

Using that A < Cg(A/N), we obtain that A < C2(A) for m = my, + - +mq + 1.

Overall, we get that F(G)™ is nilpotent for all n. In particular, the Fitting
subgroup F'(G) of G is nilpotent. And finally by a result of Ould Houcine [11]| we
deduce that it is definable as well. 0

Now, we want to study the almost Fitting subgroup:

Definition 4.7. The almost Fitting subgroup of a group G is the group generated
by all its normal almost nilpotent subgroups. We denote this subgroup by F(G).

Hickin and Wenzel show in [10] that the product of two normal almost nilpotent
subgroups is again normal almost nilpotent. Hence the almost Fitting subgroup of
any group G is locally almost nilpotent but it might not be almost nilpotent. For
M.-groups we show the following:

Proposition 4.8. The almost Fitting subgroup of an ﬁc—gmup 1s almost solvable.

Proof. Let G be an %C—group and g be an element of its almost Fitting subgroup.
Then there is a normal almost nilpotent subgroup H of G which contains g. By
Theorem 3.3(2), we deduce that H has a nilpotent subgroup of finite index which is
normal in G. Thus, the quotient H/F(G) is finite. Since additionally H is a normal
subgroup of G, we deduce that any element of H has finitely many conjugates modulo
F(G). Hence the group H and therefore F(G) are contained in Cq(G/F(G)). As
F(G) is nilpotent by Theorem 4.6 and Cg(G/F(G))/F(G) is almost abelian, we
deduce that C(G/F(G)) is almost solvable. As any subgroup of an almost solvable
group is almost solvable, we conclude that F (@) is almost solvable which finishes the
proof. O

We finish this section with two proposition about locally nilpotent ﬁc—group.

Proposition 4.9. Let G be a locally nilpotent Ng-saturated ﬁc—gmup. Then G is
nilpotent-by-finite.

Proof. Note first of all, that it is enough to show that G is almost nilpotent as any
almost nilpotent subgroup of an 9 -group is nilpotent-by-finite by Theorem 3.3(2).

As G is locally nilpotent, it is solvable by Proposition 4.1. So, we may inductively
assume that G’ is almost nilpotent. Thus G’ is virtually contained in a definable
normal nilpotent subgroup N of G by Theorem 3.3(2). We claim that it is enough to

show that for some natural number n, the group N is contained in Z,(G): If so, we
have that G/Z,(G) is an almost abelian group as G/N is an almost abelian group
and thus G is contained in Z,41(G).
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Now, we prove inductively that for every natural number ¢ < m, we can find a
natural number j such that Z;(V) is contained in Z;(G).

For i equals 0 this is trivially true. Thus, suppose that for Z;(IN) we have found
j such that Z;(N) is contained in Zj(G). We work in G = G/Z-(G) which is again
an {)Jvlc—group. We set

N := NZ](G)/ZJ(G) and Ni+1 = ZH_l(N)Z](G)/Z](G)
As _
[Zi11(N),N] < Z;(N) < Z;(G),

we have that [N;41,N] = 1. Moreover, since G/N is an almost abelian group, so is
G/N. We fix additionally the following notation:
For any subgroup H of G, by H* we denote H/N and for any element h of H we

write h* for its class modulo N. So, the group G* acts on N;;1 by conjugation and
we may regard N;;; as an G*-module as [N;+1, N] = 1.

Since G is an 9M-group, we can find a finite tuple g = (go, - . ., gm) of elements in
G such that for any ¢ in G the index [Ca(g) : Ca(g, g)] is finite. Let K be equal to
Ca(g/N) which has finite index in G as G/N is almost abelian. For any a € N1,
we have that the group generated by a and g is a finitely generated subgroup of a
locally nilpotent group and must be nilpotent. Thus for a given a in N;;; there is
a choice hy, ..., hg, of elements all belonging to the tuple g such that in the right
module notation

(hg —1)(h] —1)...(hy, —1)a =0.
As Nj 41 is definable and G is Ny-saturated, there is an upper bound for the choice

of dg which we denote by d.

Thus, for any choice of hg, ..., hqg each being an element of the tuple g and any
element a of N;11 we have in the right module notation

(hg —1)(h] —1)...(h;—1)a=0.

As a was arbitrary in N;y1, we obtain that
(hg = 1)(h1 — 1) ... (hg — 1)Niy1 = 0.

Moreover, since hg is an arbitrary element of g, the previous equation yields that

(h1 =1)...(hg = 1)Nip1 < Ca()-
Let kg be any element of K, by the choice of g, we obtain that

(h1 =1)...(hg — 1)Nip1 S Ca (ko)
or in other words

(kg —1)(h] —1)...(h; — 1)N;41 is finite.

As kg is an element of Cg(g/N) and N;;1 is commutative, this finite set equals

(hi = 1) (W = D)k — D)Ness

Iterating this process, we obtain that for any tuple of elements (ko, ..., kq) in K we
have that

(k;—1)...(k{ —1)(kg — 1)N;31 s finite.
Since the tuple was taken arbitrary, we have that for any k in K the group

(Fa—1 = 1) ... (k1 = D)(kg — DNia
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is almost contained in the centralizer Cn,,, (k), i. e.
K < Co((kj_y —1) .. (k] = 1)(k5 — DNup1)
By symmetry we have that
(Kioy = 1) (b = 1)(k§ = DNup1 S On,y,y (K)
As Njyisan ﬁ)vtc—group, the group 5Ni+l (K) is definable, thus we may work modulo
CN,,, (K) and obtain that
(kg1 —1) ... (ky = 1)(kg — 1)Ni1/COn; ., (K)

is finite for all choices of an d — 1 tuple (ko,...,kn—2) in K. Thus as before we
obtain by symmetry that

(Kiy = 1) (K = D)(k§ = DNi1 S O,y (K/Ony (K)) = CR, (K.

Z4(G). Thus Zi41(N) < ég(G/Zvj(G)) = Zdﬂ-(G). As N and thus Z;1(N) are
normal in G, this yields immediately that Z;;1(N) < Zg4j4+1(G) which finishes the
proof. O

Repeating this process m many times yields that N;y; < 61‘317:+1(K) = él‘éiH(G) <

Proposition 4.10. Let G be a locally nilpotent ﬁc—gmup such that G/Zk(G) has
finite exponent for some natural number k. Then G is nilpotent-by-finite.

Proof. First of all note, that it is enough to show that G/Zk(G) is almost nilpotent,
as this implies that G is almost nilpotent and any almost nilpotent subgroup of an
ﬁc—group is nilpotent-by-finite by Theorem 3.3(2). So let us replace G by G/Zk(G)
which is as well an ﬁc—group by definition, locally nilpotent and of finite exponent.

The rest of the proof is analogous to the previous one. Using the same notation
as before, the only difference is the way to find the bound d such that for any choice
of hg, ..., hq each being an element of the tuple g and any element of N;;1 we have
in the right module notation that

(e —1)(ht —1)...(h% — 1)a = 0.

In this context, we know that G has finite exponent, say e. Thus, the group
generated by g has finite order, say f. So for any a € N;41, the group generated by
a and g has order at most d = e/ - f and as it is a finitely generated subgroup of a
locally nilpotent group, it is nilpotent. Thus it is nilpotent of class at most d which
gives the bound. g

5. ALMOST COMMUTATORS AND ALMOST NILPOTENT SUBGROUPS OF 9M.-GROUPS

In section 2 we introduced the almost centralizer which is a centralizer “up to finite
index”. Thus one might ask, if there exists a corresponding notion of an “almost
commutator”. In this section we introduce such a notion and establish its basic
properties. Even though, this notion might not have the desired properties in the
general context, it has once we work in 9.-groups. This allows us to generalize
results on nilpotent group to almost nilpotent 9.-groups.

For the rest of the section we fix a parameter set A and let G be an
|A|T-saturated and |A|*-homogeneous group.
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Definition 5.1. Let G be family of all A-definable subgroups of G. For two A-ind-
definable subgroups H and K of G and , we define:

[H K], =({LeG: L=rNeUD) = [Ne() [T < Co(K/L)}

and call it the almost A-commutator of H and K. If A is the empty set we omit the
index and just say the almost commutator.

By Theorem 2.10 the almost commutator is symmetric, i. e. for two A-ind-definable
subgroups H and K, we have [H, K| $= =K, H ] 4- Moreover, it is the intersection of
definable subgroups of G. Note that the ordinary commutator of two A-ind-definable
groups is not necessary definable nor the intersection of definable subgroups, and
hence one cannot compare it with its approximate version, contrary to the almost
centralizer.

As the final results on almost nilpotent subgroups of {)Jv?c—groups we obtain only
deals with normal subgroups, we restrict our framework from now on to normal
subgroups. In this case, the subgroup [H, K] is the intersection of normal subgroups
in G which simplifies not only the definition but also many arguments and ambiguities
in numerous proofs. Note anyhow that all results in this section could be generalized
to arbitrary subgroups.

So let from now on F be the family of all A-definable normal subgroups
of GG. Note that this family is stable under finite intersections and finite products.

Then the definition of the almost commutator of two ind-definable normal sub-
groups H and K of G simplifies to:

[H, K], =({LeF: HZCa(K/L)}.

As H < Cg(K/L) does not depend on the model we choose, the almost commutator
does not depend on G. In other words, in any elementary extension of G, it will
correspond to the intersection of the same A-definable groups.

To simplify notation in the rest of the section, we add A as constants to the
language and thus for any two A-ind-definable subgroups H and K of G, the
almost commutator [H, K] and the A-almost commutator [H, K], in the
new language coincide. Therefore, we may omit A in the index in the rest of the
section.

For two A-ind-definable normal subgroups H and K of G and L the intersection
of A-definable subgroups of G, we obtain immediately that

H < Cq(K/L) implies [H,K]|<L.
The other implications is a consequence of the following result:

Lemma 5.2. For any A-ind-definable normal subgroups H and K of G, we have
that N B ~

H<Cq (K/[H,K]).
Moreover, ~[H, K]~ 1s the smallest intersection of A-definable normal subgroups for
which this holds.

Proof. We let L be the family of all A-definable normal subgroups L of G such that
H < Cg(K/L). Suppose that H € Cq(K/[H, K]). As [H, K] is the intersection of
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the normal subgroups L in £, Properties 2.6 (10) yields that there is an L in £ such

that H £ Cq(K/L). This contradicts the choice of the £ and the first part of the
lemma is established.

_ Now, let L be an intersection of A-definable normal subgroups such that H <
Ce(K/L). Then, this holds for any of the definable subgroups in the intersection.
Thus, those subgroups contain [H, K] and therefore L contains [H, K. O

Using the previous lemma we obtain immediately the following corollaries.

Corollary 5.3. Let H and K be two A-ind-definable normal subgroups of G and
L be an intersection of A-definable normal subgroups of G. Then, we have that
H < Cq(K/L) if and only if [H,K] < L.

Corollary 5.4. For any almost commutator of two A-ind-definable normal subgroups
H and K and any intersection L of A-definable normal subgroups, we have that
[H,K| < L if and only if [H, K] < L

Proof. The implication from rlght to left is trivial. So suppose that ~[H , KT < L.
Lemma 5.2 yields that H < Cg(K/[H, K]). Furthermore, by assumption we have
that the intersection of A-definable subgroups [H,K] N L has bounded index in
[H, K] i. e. we have that [H, K] NL ~ [H,K]. So Properties 2.6 (7) yields that
H < Co(K/([H,K]NL)). As [H, K] is the smallest subgroup for which this holds,
we obtaln the result. O

Lemma 5.5. Let H, K, N and M be A-ind-definable normal subgroups of G.

(1) If N < H and M < K then [N, M] < [H, K].
(2) If H (resp. K) is an intersection of definable groups [H, K| is contained in
H (resp. K).

Proof. (1) Let L be an arbitrary A-definable normal subgroup of G such that H
is almost contained in Cq(K/L). Since K N M is a subgroup of K, we have
that H is almost contained in C(KNM/L) as well. As N is almost contained
in H, we may replace H by N and obtain N is almost contained in ag(K N
M/L). Additionally, the almost centralizer of two commensurate A-ind-
definable subgroups such as M and K N M coincides. Thus we conclude that
N is almost contained in C(M/L) or in orther words [N, M]~ is a subgroup
of L. As L was arbitrary, the almost commutator [N M] is contained in
[H, K].

(2) We have trivially that H < Cg(K/H). So if H is the intersection of definable

groups, we conclude that the almost commutator of H and K is contained
in H.

0

An easy application of compactness yields:

Lemma 5.6. Let H and K be two A-type-definable normal subgroups of an |A|*-
saturated group G. Fix {H; : i € I} and {Ks : s € S} two projective systems of
A-definable sets such that H = (\,c; H;y and K = (\,cq K (i. e. for any i, j in I and
s, t in S there exists n in I and m in S such that H;NH; O H,, and K;NK; O K,y,).
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Then, we have that
HE = ()] HK..
(i,5)eIxS
Lemma 5.7. Let H, K, and L be A-ind-definable normal subgroups of G. Then we
have

[HK,L| < [H,L]- [K,L].

Proof.
[H L] [K,I] = (M eF:HSCa(L/M)}-({N€eF:KgCa(L/N)}
Y (WM-N:MNeF, HECalL/M), K S Ca(L/N)}
As the product of two groups in F is again a subgroup which belongs to F and since
H < Cq(L/M) and K 5 C(L/N), by Properties 2.6 we have that H < C(L/MN)
and K < Cg(L/MN). So by Lemma 2.4 we obtain HK < Cg(L/MN). Thus, the

previous set contains the following one:

> ([{PeF:HK S Ca(L/P)}

= [HK, L]
This finishes the proof. O
Another useful behavior of the almost centralizer is the following:

Lemma 5.8. Let H and K be two A-ind-definable normal subgroups of G and L
be an intersection of A-definable normal subgroups of G. If [H, K| < L then H <
CE(K/L).

Proof. Let [H, K] be contained in L. By Corollary 5.3, we have that H < Cq(K/L).
So H/Cg(K/L) is a bounded group and as H is normal in G, it contains h*-C (K /L)
for all hin H and k in K. Hence the set {h* : k € K}/Cq(K/L) of conjugates of
any element h in H by K modulo Cg(K/L) is bounded. As the size of this set
corresponds to the index of C(h/Cx (K /L)) in K, the group H is contained in the
almost centralizer Ci(K/Cx(K/L)), i. e. the group H is contained in 6’%(K/L) O

5.1. Almost nilpotent subgroups of ﬁc-groups. A consequence of the defin-
ability of the almost centralizer in 9 .-groups (Proposition 2.23) is that the almost
commutator is “well behaved”. For example, we obtain the lemma below:

Lemma 5.9. Let G be an /fmvc—group and H be an A-ind-definable normal subgroup
of G. For any natural number n, so we have that

[H, CE(H)] < C&™'(H)
Proof. We have that
[H, Ca(H)] = [H,Co (H / C5 (1)) ]
by definition of the almost centralizer. Moreover, the almost centralizer égfl(H ) is
an A-definable subgroup of G since G is an M -group. Thus
[H,Co (1 /Gy () ] < G ()
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as Ca(H/ ég_l(H )) is trivially contained in itself and we obtain the result. O

The main goal is to show a version of the Hall nilpotency criteria [9, Theorem 7|

for almost nilpotent M -groups. To do so, we first have to state the approximate
three subgroups lemma in terms of the almost commutator.

Notation. Let H, K and L be A-ind-definable normal subgroups of a given group G.

We write [H, K, L] for [[H, K], L]. Note that the group [H, K] is an A-ind-definable
normal subgroup of G and thus [[H, K], L] is well defined.

Now, given an g)ﬂv?c—group G, we have that the almost centralizer of any A-ind-
definable subgroup in G is definable. Thus for H, K and L such that H and K

normalize L, we have that H < Cg(K/Cg(L)) if and only if [H, K, L] is trivial.
With this equivalence, we may phrase Theorem 2.15 for M -groups as below.

Corollary 5.10. Let H, K and L be three A-ind-definable strongly normal subgroups
of an M.-group G. Then for any M which is an intersection of A-definable normal
subgroups of G, we have that

[H,K,L] < M and [K,L,H] < M imply [L,H, K] < M.

Proof. Let M be equal to the intersection of definable subgroups M; with i < k. For
any ¢ less than k, we may work in the group G modulo M; which is a quotient of
an M.-group by a definable normal subgroup and so an 9M.-group as well. Hence,
Theorem 2.15 (working modulo the definable group M;) yields that

H<Co <K/5g(L/M,~)> and K < Cg (L/C*G(H/Mi)>

imply
L<Cq (H/@G(K/Mi)> .

Which we can translate to

[H,K,L] < M; and [K, L,H| < M; imply [L, H, K] < M,
So the statement is true for any M; and hence for the intersection. O

Now, we want to define the notion of an almost lower ceniral series and find a
characterization of being almost nilpotent via this series. In literature the ordinary
lower central series of a subgroup H of G is defined as follows:

wH =H and ~+1H=[vH, HJ.
Analogously, we introduce a notion of the almost lower central series:

Definition 5.11. We define the almost lower A-central series of an A-ind-definable
subgroup H of G as follows:

(F1H)a=H and (F1H)a = [7:H, H],.
We also refer to (7, H) 4 as the iterated n'™ almost commutator of H. Again, if A is
the empty set we omit the index.

As we have added A as constants to the language, we may omit it again
in the subscript of the iterated n'" almost commutator for the rest of the
section.
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Remark 5.12. The almost lower center series is well-defined as ~[H H ]~ is the inter-
section of A-definable groups and hence A-type-definable. Thus, by induction we see
that 3,41 H = [%H H] is again an A-type-definable subgroup.

To make the proofs more readable, we fix the following notation:

Notation. If Ky, ..., K,, are A-ind-definable subgroups of G, let

(K1, ... Ky) = [...[[Ko, K1], Ka], ..., Kn).

If K;,...,K;yj—1 are all equal to K we can replace the sequence by K i. e. write
in(Kly ceey Kn) as ﬁn(Kla e Ki_l,KJ, Ki—l—ja e ,Kn) A]SO,

Vivorj (K1, Ky, KO Kir, oo Kivg) = Yo (K, o Ky K, o, K g).

Observe that 7,(H") is another way of writing (7, H).

We want to establish a connection between the triviality of the nth iterated almost
commutator of a normal subgroup H of G and the almost nilpotency class of H.

Lemma 5.13. If H is an A-ind-definable normal subgroup of an ﬁc—group G and
almost nilpotent of class n, then Fp,41H is trivial. Conversely, if Y41 H is trivial,
then H is almost nilpotent of class at most n + 1.

Proof. To prove the first result, we show by induction on 7 < n that the almost
commutator ;41 H is contained in 5’8‘1(H) As H is almost nilpotent of class n, i.
e. H < éG( ), the inclusion is satisfied for ¢ equals to zero. Now suppose it holds
for all natural numbers smaller or equal to i. The induction hypothesis together
with Lemma 5.5(1) implies that J;40H = [%HH H] is contained in [C" “(H), H).
Moreover, by Lemma 5.9 we have that [C’” “(H),H] is contained in C” =HH).
Hence 7;42H is also contained in C’g “~1(H) which finishes the induction. Letting
i be equal to n, we obtain that 7,41 H is contained in ég(H) which is the trivial
group by definition.

For the second result, we first show the following inclusion by induction that for
1 less or equal to n — 1:

Vinr1)—iH < CH(H).
For ¢ = 0, the inequality holds by hypothesis. Now we assume, the inequality holds
for i < n —1. Thus Y1) H < CG( ) or in other words [’y(n+1)_(z+1)H H] <
C’G( ). By Corollary 5.3, we have that

Tn+)-+1H S Co (H/CE(H)> =C¢' ' (H).
By Corollary 5.4, as (n+ 1) — (i + 1) is at least 2, finally we obtain ¥, 41)—(i4-1)H <
6&+1(H ) which finishes the induction.

Now, we let i be equal to n — 1 we obtain: [H, H] < égfl(H) Then by Lemma
5.8 we have that H < C4"!(H) and hence H is almost nilpotent of class n + 1. [

The next three lemmas are the preparation to finally show the approximate version
of Hall’s nilpotency criteria.
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Lemma 5.14. Let N be a normal subgroup of an ﬁc—gmup G. Then for all positive
natural numbers n and m, we have that

WnNa %mN] = Ynt+m V.
The proof is an easy induction on m.

Lemma 5.15. Let N be an A-ind-definable normal subgroup of an S/)JV?c—group G.
Then, for any natural numbers n > 2, ¢ and j we have that

[FnN, 3is5(N?, G9)] < FnpiN

where ~["?TLN, Yitj (NE, Gj)]~ fori=j=0 equals v,N

Proof. Note first that as n is at least 2, the group 7, /N is an intersection of normal
A-definable groups. Thus for ¢ equal to 0, we have that ['ynN Y; G] < 7,N by Lemma
5.5(2).

Now, let i be equal to 1. Note first that by Lemma 5.5(1)+(2),

[?nNy ﬁ1+j(Na GJ)] < [%nN, [Na GH : (*)
Furthermore, we have the following:
~ - = 55(1)+(2) - -
[[VnNa G]7N] S [’YnN7 N} = ’Yn+1N7
~ - ~55(2) - -
“'VnN NJ, G] < [N, N] =Fn41N.
Hence, as 7,+1 N is the intersection of A-definable subgroups, the three subgroups

lemma (Corollary 5.10) yields that [3,N, [N, G]] is contained in F,41N. Now, by (%)
we conclude for ¢ equals to 1.

If 4 is greater than 1, we have that

- LB
(YN, %i4i (N, G?)] < [3uN,%N].

By Lemma 5.14, we obtain that hnN, %NT is contained in 7,4+; N which finishes the
proof. O

The following lemma is |9, Lemma 7| generalized to our framework.

Lemma 5.16. Let N be a A-ind-definable normal subgroup of an ﬁc—gmupNG and
suppose that there exists a natural number m > 0 such that Ypy,41(N,G™) S [N, N].
Then, for all natural numbers r > 0 we have that

%rm—&—l(Nra Grm—r-i-l) S ;)V/r—l-lN-

Proof. We start this proof with the following claim.

Claim. Let X be an ind-definable normal subgroup of G. Then for any n > 0, we
have that

(2) Fn+2(X, N, G") H Yi+1(X, G )s Yn—i+1(IN, Gnii)]-
=0
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Proof of the claim. We prove the claim by induction on n > 0. Let n be equal to 1.
Trivially we have that

[N,G,X] < [X,[N,G]] - [[X,G],N]
and ) o o o
6., N < [X.IN. 6] - X, 6T V.
The three subgroups lemma (Corollary 5.10) insures that
[X,N,G] < [x,[N, 6] - [[X, 6], N]
and so the claim holds for n = 1.
Now, assume the claim holds for some n > 0. We compute:

Fnia(X, NG = [Fusa(X,N,G"),G]

&
{ﬁ %-&-1 (X, G )y Vn—it+1 (N, G"ii)j,G].

C"IAm

As all factors are invariant normal subgroups of G we may apply Lemma 5.7 finitely
many times to the last expression and continue the computation:

n -~

(3) < H “%H(Xa G"), Fn—it1(N, Gn_i)]vG}-

i=0
To simplify notation, we let X; = %;+1(X, G?) and N; = 5;41(N, G’). Now, fix some
i less or equal to n. We obtain that

H%rl (X,G", GT, Fn—i+1 (NN, G"_i)j = ~[’%+2(X, G An—it1 (N, GTH)T
= [Xit1, Nooi
and
H%—Hl(N,G"*i)yGT,7i+1(X,Gi)]~ = N[ _ip2(N, G )%H(X,Gi)]N
= N[ Np—iy1, X ]N
= [Xi, Naoin1]-

As the groups on the right are intersection of definable subgroups of G, using the
approximate three subgroups lemma (Corollary 5.10), we obtain the following in-
equation for the ith factor of (3):

H%H(Xa G"), An—i+1(N, Gn_i)] G} < [Xit1, Noei] - [Xi, N -

Over all, we get that

n+1 n+1 ) o~
Fnt3(X, N, G™) < T 1K Naia] = [ [Fist (X, @), Fngroiga (N, G )]
1=0 1=0

|:lclaim

Now, we prove the Lemma by induction on r > 0. By Corollary 5.4, the almost in-
equality V41 (N,G™) < [N, N] implies immediately J,,4+1(N,G™) < [N, N]. Thus,
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for r equals to 1 the lemma holds trivially by the hypothesis. Assume that the result
holds for a given r greater or equal to 1. We want to prove that

?(r+l)m+1(NT+la G(T+l)mir> < §r+2N-

Now consider equation (2) with n = (r + 1)m — r and X replaced by 7, N". This
gives us:

(4) 7(r+1)m+1(Nr+1, Gr+m=ry Y+ 1ym—r)+2(3N, N, Gr+m=r)
(T+1)m_7‘ T s .~
? = H [Fir1 (3N, G*), Fneip1 (N, G" )]

=0

The group on the left hand side is the one we want to analyze. The goal is to prove
that all factors on the right hand side are contained in 4,4+2/N. So, we consider the
factor indexed by 1.

Supoose first that ¢ is greater than rm —r. By induction hypothesis, we have that
Femi1 (N7, G4 <5, N,

AS Yrma1(NT,G™™~ 1) is normal in G and an_intersection of A-definable groups,
using Lemma 5.5 (2) we obtain that ,1;(N",G") < 7,41 N and

~ = N n—in oo =~ n—i\]
At 13N, GY), Anig 1 (N, G < [FraN, Anip1 (N, G|
5.15
<

§r+2N'
Now, assume that ¢ < rm — r. By the case r = 1, we have that ¥, +1(N,G™) <

[N,N]. As n —i is greater than m and 7,,41(V,G™) is an intersection of normal

subgroup of G, we also have that 3,_;1(N,G" %) < [N, N]. So we may compute:

T~ ~ ATT i\ o~ n—i\] 55(1) 7 r oy T il
[f)/i-&-l((fYT’N )7 G )7 ’Yn—’i-f—l(Nv G ):| S [f)/’t-‘r’/‘(N 7G )7 [N7 N]]
5.15
< 771r+2N-

Hence all factors, and therefore (4 1)1 (N1, Gr+1m=r) are contained in J,4oN.
This finishes the proof. O

Now, we are ready to generalize Hall’s nilpotency criteria to ﬁc—groups.

Corollary 5.17. Let N be an A-ind-definable normal subgroup of an ﬁc—group G.
If N is almost nilpotent of class m and G /[N, N] is almost nilpotent of class n then
G 1is almost nilpotent of class at most (m;rl)n — (g) + 1.

Proof. By hypothesis and Lemma 5.13 we have that

Ym+1N =1 and 411G < [N7N] (*)

Hence

Ynt1(N,G") < [N, N]
and whence N satisfies the hypothesis of Lemma 5.16. Thus
(6) Fensr (N7, G < 50N

holds for all natural numbers r. Let f(z) = (x‘QH) n — (5). For every i greater than
1, we obtain that

Vr)+1G < i1 N
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Choosing i to be m we get that
Vm)+1G < Yma N = {1}.

So Lemma 5.13 yields that G is almost nilpotent of class at most (m;rl)n— (5)+1. O

Corollary 5.18. Let H and K be A-ind-definable normal subgroups of an ﬁc—gmup
G.

(1) ffIH, HI: ~[G’zG]N, then for all v > 2, we have 7, H = 7,G.

(2) If [H, K] and [H, H| are contained in [K, K|, then for all r > 2, the almost
commutator Y. H is contained in 7. K.

Proof. (1) As H is a subgroup of GG, we have that 7, H < 5, G holds trivial for
all » > 2. We prove the inverse inclusion by induction on r. For r equals to
2, the statement holds by hypothesis. Now suppose that the statement holds
for all natural numbers smaller than r > 2. Thus,

G <7 (H, Q).

Furthermore, [H,G] < [H, H|, hence we may apply Lemma 5.16 with m =1
and obtain that

(B ,G) < 5,H
which finishes the proof.
(2) Consider L = HK. Then we can compute that
~ ~ o~ ~ 5.7~ ~ ~ ~ o~ ~ o~ ~
[L,L]=[HK,HK] < [H,H|-|K,K]|-[H, K| =K, K].
By the first part of the corollary we can conclude that 7, H" <7, L" =~,K".
O

5.2. Other applications of the almost three subgroups lemma and results
on almost nilpotent groups. Using symmetry of the almost centralizer, the three
subgroups lemma and the definabilily of the almost centralizer, we may generalize a
theorem due to Hall [12, Satz I11.2.8| for the ordinary centralizer to our context.

Proposition 5.19. Let G be an ﬁc—group, Nog >Ny >--->N,, > ... be a de-
scending sequence of A-definable normal subgroups of G, and H be an A-ind-definable
normal subgroup of G. Suppose that for all i € N, we have H < Cg(N;/Niy1). We
define for i > 0,
H; := () Crr(Ny/Niyi).
keN

Then we have that for all positive natural numbers i and j, the group H; is almost con-
tained in ég(Hj/HHj), the group H is almost contained in GZG (H / ég(Nj_l/NHj))

and therefore [yiy1H, Nj_1] < Ni4;.

Remark 5.20. The non-approximate version [12, Satz II1.2.8] states that for H;
defined as (e CH(Ni/Ni+i) we have that for all positive natural numbers ¢ and
Js [Hi, Hj] < Hiyj and [yip1 H, Nj—1] < Nigj.
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Proof. Note that H is equal to [\,cy Ca(Ni/Ni+i) N H and thus the intersection
of an ind-definable subgroup and boundedly many definable subgroups. So H; is as
well an ind-definable subgroup of G.

As éG(Nk/Nk+z’+j) is definable for any natural number k, Properties 2.6 (9) yields
that

H; < Cg(H;/Hiyy) = Ca (Hj / N éG(Nk/NkJrHj))
keN
if and only if for all natural number k& we have that

H; < Cq (Hj/éG(Nk/NszriJrj)) :
So it is enough to show the latter result for any natural number k € N. So fix some
k, i and j in N. By the definition of H; we have that H; < Cq(Niti/Nititj)-
Symmetry modulo definable subgroups for almost centralizers yields that Np,; <
Cc(Hj/Nj+iy+j). This implies that
(7) H; < Ca(Ne/Niwi) < Ca (Ni [ ColHy /Nisis) ) -
Exchanging the role of ¢ and j we obtain as well that

(8) H < Cg <Nk/éG(Hi/Nk+j+i>> =Cq (Nk/éG(Hi/Nk+i+j)> :

Using again symmetry modulo definable subgroups for almost centralizers to (7), we
get:

(9) Ne 5 G (Hi/CalH;/Nisisy))

Working in G/Nj.i4;, we can apply the three subgroups lemma (Theorem 2.15) to
the equalities (8) and (9) since all N;’s and all H;’s normalize each other and obtain

H; < Cq (Hj/éG(Nk/Nk—l-i—O—j)) :
As k was arbitrary, this establishes the first part of the theorem.
In particular, we have that for any natural numbers ¢ and j greater than 0
" 5 Ca(H/H) S Cq (Hi | Ca(H/Hy)) = C3(H: /Hy)
S o S CH(H/Hin) S Cs (i / CalNj1/Nigy) )

By hypothesis we have that H; is a bounded intersection of groups which are com-
mensurate with H and whence it is itself commensurate with H. As two commen-
surate groups have the same almost centralizer, the same almost inclusion holds for
H which finishes the proof. O

Using the previous result and definability of the almost centralizers, we may find
a version of [4, Lemma 2.4] in terms of the almost centralizer:

Corollary 5.21. Let H be an A-ind-definable normal subgroup of an ﬁc—group G.
Then for any 0 < ¢ < j, we have that

H 5 Gy (H [ Co (Chtm) ) GG ()
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Proof. For k < 2j —1, we let Ny = C2/~'"¥(H) and for k > 2j — 1, we let N, be the

trivial group. As G is an S)JTC group, all Nj are definable. Note that for any natural
number n, the almost centralizer CG( ) is definable and C’”+1( ) = C(;(H/CG( )
is contained in itself. Hence, symmetry of the almost centralizer (Theorem 2.10) yield
that

H 5 Ca (Cg (1) /Cam))
and whence _

H 5 Co(Ni/Niy1)-

So we may apply Proposition 5.19 to the ind-definable subgroup H and the sequence
of definable groups IV;. This gives us that

H < C’G (H/CG j— 1/Nz+])) = 5&: (H / éG (éé(H)/éjG_l_l(H)»
O

Using the new notion of almost commutator and the fact that the almost central-

izer of any subgroup in an E,Dv?c—group is definable, we may state the previous lemma
in this terminology which resembles more to the ordinary result.

Corollary 5.22. Let H be an A-ind-definable normal subgroup of the {)JVTC—group G.
Then for any 0 < ¢ < j, we have that

R H, 5’%;(H)T < ééfifl(H).

In the next lemma, we use the almost three subgroups lemma in terms of the
almost commutator to generalize [4, Lemma 2.5 to our framework.

Lemma 5.23. Let H and K be two A-ind-definable normal subgroups of G with
K<Hand?l>0.If

Co(iK) ~ Ca(@H) t=1,....(
then éé(K) ~ 6é(H)

Proof. The case £ equals 1 is trivial. So let’s assume that the lemma holds for £ — 1.
We need to prove the following intermediate result:

Claim. [y, H,C4(K)] < CL(H) holds for all t =0,...,¢—1.

Proof. We show the claim by induction on the tuple (¢,t) (ordered lexicographically)
with ¢t < £. First we treat the cases (¢,0) for any natural number ¢:

Replacing H by K, i by £—1, and j by £ in Corollary 5.22, we obtain [7,K, C4(K)] =
1. This implies that éé( ) is almost contained in Cq(5,K) which is, by the hy-
pothesis of the lemma, commensurate with Cg(3,H). Thus C* a(K) S Ca(H) or

in other words [y, H, aé(K)T = 1. Hence the claim holds for (¢,0) with ¢ > 0.

Now, let 0 < t < ¢ and assume additionally that the claim holds for any tuple
(k,s) < (4,t) in the lexicographical order.
Then using Lemma 5.5 (1) and the induction hypothesis for (¢,¢—1) (in the equation
marked as (%) below) and for (¢ — 1, — 1) (in the equation marked as (xx) below)
we may compute

5.5(1) - S ()

mftH,KLé&K)ﬂKgH [Fe—cH, H), C&(K)] = Fo— -1y H, C&H(K >]§ CN(H)
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and

~ - ~ —~ o~ ~ -~ ~ ~ (o) o,
Fe—eH, [K,C&(K)]| < Fe—tH,CG  K)] = Fe—1)——1H.C& ' (H)] < C&(H).
Thus by Corollary 5.10 we have

[Fi-eH, C&(K)], K] < CE(H).

Ast—1isless than £, we have, by the hypothesis of the outer induction, that 651 (H)
is commensurate with C5 *(K) and so [[Yo—H,C4(K)], K] is almost contained in
CE_I(K). As CtG_l(K) is A-definable, using Corollary 5.4, we obtain that

[Fe—eH, CH(K)], K] < O (K).

Thus ﬁg_tH , C~’é(K )]~ is almost contained in étG(K ) which is commensurate once

more with C%(H) by the outer induction hypothesis. Again by Corollary 5.4 almost
contained can be replaced by contained, which gives us

[Fe-tH. CG(K)] < CG(H).

Thus the claim holds for the tuple (¢,¢) which finishes the induction and hence the
proof of the claim. O(claim)

Now taking ¢ equals to £— 1, we obtain [H, C%(K a(K )] < éé_l(H) which implies that
CG( ) is almost contained in C% (H). On the other hand, we have that

<~ 5:5(1) ~ =59 ~, hyp. ~p_

[K,Co()] = [H,Co(H)] < Cg ' (H) ~ O (K).

Again by Corollary 5.3 we obtain that [K, aé(H)T < 5’5{1([() and so éé(H) is
almost contained in C%(K). Combining these two results, we obtain that C&(K) is
commensurate with C§(H) which finishes the proof. O

We finish this section with another result on almost nilpotent ‘)AJ/IC—groups which
do not use the almost three subgroups lemma.

Lemma 5.24. Let G be almost nilpotent E/)JvTc—gfoup and N be a nontrivial intersection
of A-definable normal subgroups of G. Then [N, G] is properly contained in N and
NN Z(G) is a nontrivial subgroup of G. In particular, any minimal A-invariant
normal subgroup of G is contained in the almost center of G.

Proof. As N is an intersection of A-definable normal subgroups of G and we have
trivially that N < CG (G/N), the group [N G’] is contained in N. Additionally,
the commutator [N G] is also contained in [G,G] by Lemma 5.5. Inductively we
obtain 7;+1(N,G") < NN ’yl+1G As G is almost nilpotent 7,,G is trivial for some
natural number m. Hence [N G] has to be properly contained in N because if not
¥m (N, G™~1) would be equal to N as well. This proves the first part of the Lemma.

Moreover, again by Lemma 5.5, we have that 3,,(N, G™ 1) <7,,G and thus it is
also trivial. Now choose n such that 7,41 (N, G™) is trivial and properly contained
in 3,(N,G"1). Hence

Fn(N,G" ) S Z(G).
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Since the almost center of G is definable, Corollary 5.4 yields that 7, (N,G" 1) is
actually contained in Z(G). As additionally the group 7, (NN, G™1) is nontrivial and

contained in N, the subgroup N N Z(G) is nontrivial as well. O
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