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ALMOST GROUP THEORY

NADJA HEMPEL

Abstract. The notion of almost centralizer and almost commutator are intro-
duced and basic properties are established. They are used to study M̃c-groups, i.
e. groups for which every descending chain of centralizers each having in�nite in-
dex in its predecessor stabilizes after �nitely many steps in any de�nable section.
The Fitting subgroup of such groups is shown to be nilpotent and the nilpotency
criteria of Hall is generalized to almost nilpotent M̃c-groups.

1. Introduction

Groups in which every descending chain of centralizers stabilizes after �nitely many
steps, so called Mc-groups, have been of great interest to both group and model
theorist. They have been studied by Altinel and Baginski [1], Bryant [4], Bryant
and Hardley [3], Derakhshan and Wagner [5], Poizat and Wagner [17]. In the �eld
of model theory they appear naturally as de�nable groups in stable and o-minimal
theories. Passing to groups de�nable in simple theories or even more general rosy
theories, we obtain a weaker chain condition, namely any chain of centralizers, each
having in�nite index in its predecessor, stabilizes after �nitely many steps. We want
to study group for which any de�nable section satis�es this chain condition which

we call M̃c-groups. Examples are (group theoretically) simple pseudo-�nite groups,
groups de�nable in the theory of perfect bounded PAC-�elds, and in general groups
de�nable in any rosy theory. A useful tool in this context is the FC-centralizer of a
subgroup: For a subgroup H of a group G, the FC-centralizer contains all elements
whose centralizer has �nite index in H. These subgroups were introduced by Haimo
in [8]. De�ning a suitable notion of these objects regarding A-invariant subgroups of
G and establishing their basic properties is the main part of Section 2.

From a model theoretic point of view, one particular problem we are interested in is
given an abelian, nilpotent or solvable subgroup H, can one �nd a de�nable envelope
of H, that is a de�nable subgroup of G containing H with the same algebraic prop-
erties. Finding de�nable sets around non-de�nable once admitting similar properties
brings objects outside of the scope of model theory into the category of de�nable.
But it is not only interesting from a purely model theoretic point of view but also
an important tool for applications. In the past decades there has been remarkable
progress on groups ful�lling model theoretic properties (stable, simple, dependent,
NTP2) as well as in Mc-groups which will ensure the existence of de�nable envelopes
of subgroups. In Section 3 we prove the existence of de�nable envelopes �up to �nite

index� for any abelian, nilpotent or solvable subgroup of an M̃c-group.

Another object of interest is the Fitting subgroup, i. e. the group generated by all
normal nilpotent subgroups. It is always normal in the ambient group. Moreover,
as the product of any two normal nilpotent subgroups is again nilpotent by Fitting's
Theorem, we can conclude that the Fitting subgroup is locally nilpotent. It is even
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nilpotent if G is �nite. On the other hand, the Fitting subgroup of an in�nite group
might not be nilpotent. In the case of Mc-groups, Bryant �rst showed that the
Fitting subgroup of any periodic Mc-group is nilpotent [4]. Using model theoretic
techniques, Wagner proved in [19] nilpotency of the Fitting subgroup of any group
whose theory is stable and later Wagner together with Derakshan obtained nilpotency
of the Fitting subgroup for arbitrary Mc-groups in [5]. Furthermore, it has been
recently generalized by Palacín and Wagner [16] to groups type-de�nable in simple
theories. One of the main ingredient other than the chain condition on centralizers,
is that the existence of a de�nable envelope up to �nite index for any nilpotent

subgroup. As mentioned before, we establish this result for M̃c-groups in Section 3

which enables us to prove nilpotency of the Fitting subgroup for M̃c-groups.

In the last section, we study subgroups of M̃c-groups which are almost nilpotent
or also called FC-nilpotent, a notion which was also introduced by Haimo in [8]: a
subgroup H of G is FC-nilpotent, if there is a sequence {1} = H0 < H1 < · · · <
Hn = H of normal nilpotent subgroups of G such that Hi+1/Hi is in the FC-center
of G/Hi. We �rst introduce the notion of the �almost commutator� of two subgroups

and establish its properties. Using de�nability of the almost centralizer for M̃c-

groups we can express being nilpotent for M̃c-groups via the almost commutator.
This enables us to generalize the nilpotency criteria of Hall (G is nilpotent if one
can �nd a nilpotent subgroup N such that G modulo the derived subgroup of N is

nilpotent as well) to almost nilpotent M̃c-groups.

2. Almost centralizers

Let us �rst give the original de�nition of an FC-centralizer and related objects
given by Haimo.

De�nition 2.1. Let G be a group and H, K and N be three subgroups of G such
that N is normalized by H. We de�ne:

• The FC-centralizer of H in K modulo N :

FCK(H/N) = {k ∈ NK(N) : [H : CH(k/N)] is �nite}
• Suppose that N ≤ H ≤ K. Then, the nth FC-centralizer of H in K modulo
N is de�ned inductively on n as the following:

FC0
K(H/N) = N

FCn+1
K (H/N) = FCH(H/FCn

K(H/N)) ∩
n⋂
i=0

NK(FCi
K(H/N))

• The nthFC-center of H:

FCn(H) = FCn
H(H)

De�nition 2.2. Let H and K be two arbitrary subgroups of G. We say that H is
virtually contained in K, denoted by H ≤v K if the index of H ∩K is �nite in H.
We say that H and K are commensurable, denoted by H =v K, if H is virtually
contained in K and K is virtually contained in H.

We want to generalize these notions to suitable versions of these objects and
relations regarding A-invariant subgroups of G. For two such groups H ≤ K, we
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have two options regarding the index of H in K: it is either bounded, i. e. it does not
grow bigger than a certain cardinal while enlarging the ambient model, or for any
given cardinal κ we can �nd an ambient model such that the index is larger than κ.
Then we say that the index is unbounded. Note that if the index is bounded it is

indeed bounded by
(
2|T (A)|)+. This leads to the de�nition below.

De�nition 2.3. Let H and K be two A-invariant subgroups of G. We say that H
is almost contained in K, denoted by H . K, if the index of H ∩K is bounded in
H. We say that H and K are commensurate, denoted by H ∼ K, if H is almost
contained in K and K is almost contained in H.

LetH andK be two A-invariant subgroups. Observe thatH . K does not depend
on the model we choose. Thus H . K remains true in any elementary extension.
Moreover, if H and K are de�nable, bounded can be replaced by �nite and hence
being virtually contained and being almost contained coincide. Note also that being
almost contained is a transitive relation and being commensurate is an equivalence
relation among A-invariant subgroups of G. Furthermore, we have the following
property:

Lemma 2.4. Let G be a group and let H, K, and L be three A-invariant subgroups
of G such that H normalizes K. If H . L and K . L then HK . L.

Proof. We assume that G is su�ciently saturated. By assumption, we have that the
index of L∩H in H as well as the index of L∩K in K are bounded by some cardinal
κH and κK respectively which are smaller than (2|T (A)|)+. Take IH = {hi : i < κH}
and IK = {ki : i < κK} representatives of the cosets of L ∩H in H and of L ∩K in

K respectively. Then the set IH · IK has at most size 2|T (A)| and as H normalizes
K, it contains a set of representatives of the cosets of L ∩ (HK) in HK. Hence the
index of L ∩ (HK) in HK is bounded in G and whence HK . L. �

De�nition 2.5. Let H, K and N be three A-invariant subgroups of G such that N
is normalized by H. We de�ne:

• The almost centralizer of H in K modulo N :

C̃K(H/N) = {g ∈ NK(N) : H ∼ CH(g/N)}
• The almost center of H:

Z̃(H) = C̃H(H)

Let us point out some important properties of the almost centralizer.

Properties 2.6. Let H, H ′, K, L and L′ be A-invariant subgroups of G such that
H and H ′ normalize L and L′.

(1) C̃K(H) and Z̃(H) are A-invariant subgroup.

(2) CG(H) ≤ C̃G(H) and Z(G) ≤ Z̃(G).
(3) If H is de�nable, bounded can be replaced by �nite and these de�nition

coincide with the de�nition of the FC-centralizer and FC-center of H.
(4) C̃H′(H/L) = C̃G(H/L) ∩H ′.
(5) C̃G(H) is �xed by all automorphism of G which �x H and thus it is normal-

ized by the normalizer of H and in particular by H. Furthermore, Z̃(H) is
a characteristic subgroup of H.
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(6) If H . H ′ as well as L . L′ and NG(L) ≤ NG(L′), we have that

C̃G(H ′/L) ≤ C̃G(H/L′)

(7) Moreover, if H ∼ H ′ as well as L ∼ L′ and NG(L) = NG(L′), we have that

C̃G(H ′/L) = C̃G(H/L′)

(8) If H is the union of A-type-de�nable subgroups Hα with α ∈ Ω. Then

C̃G(H) =
⋂
α∈Ω

C̃G(Hα).

(9) If L is the intersection of A-de�nable subgroups Lα of G with α ∈ Ω, we have
that

C̃G(H/L) ∩
⋂
α∈Ω

NG(Lα) =
⋂
α∈Ω

C̃G(H/Lα)

(10) If L is the intersection of A-de�nable subgroups Lα of G with α ∈ Ω all
normalized by K and H,

H . C̃G(K/L) if and only if H . C̃G(K/Lα) for all α ∈ Ω.

As for any normal subgroup N of H, we have that C̃G(H/N) is normalized by H,
the following de�nition of the iterated almost centralizers is well de�ned.

De�nition 2.7. Let H and K be two A-invariant subgroup of G such that H ≤ K
and N be a normal A-invariant subgroup of H, then

• The nth almost centralizer of H in K modulo N is de�ned inductively on n
by:

C̃0
K(H/N) = N

C̃n+1
K (H/N) = C̃K(H/C̃nK(H/N)) ∩

n⋂
i=0

NK(C̃iK(H/N))

• The nth almost center of H is de�ned as Z̃n(H) = C̃nH(H).

Note that if H and N are normal subgroups of K, the de�nition of the nth almost
centralizer of H in K modulo N simpli�es to:

C̃0
K(H/N) = N and C̃n+1

K (H/N) = C̃K(H/C̃nK(H/N))

Properties 2.8. Let G be a group, H E K be two A-invariant subgroup of G and
let n ∈ N. Then we have that

C̃nK(H) = C̃nG(H) ∩K.

In the rest of the section, we show properties of the almost centralizer of ind-
de�nable subgroups of G. It is a model theoretic notion which generalizes type-
de�nable subgroups and which falls into the class of invariant subgroups.

De�nition 2.9. Let G be a group and A be a parameter set. An A-ind-de�nable
subgroup H of G is the union of a directed system of A-type-de�nable subgroups of
G, i. e. there is a family {Hα : α ∈ Ω} of type-de�nable subgroups of G such that
for all α and β in Ω there is γ in Ω such that Hα ∪ Hβ ≤ Hγ and H is equal to⋃
α∈ΩHα.
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2.1. Symmetry. Observe that for two subgroups H and K of a group G, we have
trivially that H ≤ CG(K) if and only if K ≤ CG(H). In the case of FC-centralizers
and virtually containment, we will see that this is not true for arbitrary subgroups in
non-saturated models. However, we obtain the same symmetry condition replacing
the centralizer by the almost centralizer and containment by almost containment for
ind-de�nable subgroups. In case, the ambient theory is simple, this was proven by
Palacín and Wagner in [16].

Theorem 2.10 (Symmetry). Let G be a group, H and K be two A-ind-de�nable
subgroups of G and let N be a subgroup of G which is a union of A-de�nable sets.
Suppose N is normalized by H and by K. Then

H . C̃G(K/N) if and only if K . C̃G(H/N).

Proof. Let κ be equal to (2|T (A)|)+. Assume that G is (2κ)+-saturated. We suppose

that K is not almost contained in C̃G(H/N). Thus, there is a set of representatives

{ki : i ∈ (2κ)+} in K of di�erent cosets of C̃K(H/N) in K as G is su�ciently
saturated. Since H is the union of type-de�nable subgroups Hα with α in an index
set Ω of cardinality at most κ, for every i di�erent than j in (2κ)+ there is α(i,j) in Ω

such that the centralizer of the element k−1
i kj/N has unbounded index in Hα(i,j)

. By

Erd®s-Rado, we can �nd a subset I0 of (2κ)+ of cardinality κ+ and α in Ω such that
for all distinct i and jin I, we have that α(i,j) is equal to α and thus the centralizer

CHα(k−1
i kj/N) has in�nite index in Hα. Hence, Hα can not be covered by �nitely

many cosets of these centralizers by a well known result of B. Neumann [15, Lemma
4.1]. As additionally the complement of N is type-de�nable the following partial
type is consistent:

π(xn : n ∈ κ+) =
{

[x−1
n xm, k

−1
i kj ] 6∈ N : n 6= m ∈ κ, i 6= j ∈ I0

}
∪{xn ∈ Hα : n ∈ κ}

AsG is su�ciently saturated, one can �nd a tuple h̄ inG which satis�es π(x̄). Fix two
di�erent elements n and m in κ+. Then, we have that k−1

i kj 6∈ CK(h−1
n hm/N) for all

i 6= j in I0. Hence, the subgroup CK(h−1
n hm/N) has unbounded index inK witnessed

by (kj : j ∈ I0), and whence the element h−1
n hm does not belong to C̃H(K/N). So

C̃H(K/N) has unboudedly many Hα-translates and therefore unbounded index in H.

Thus, the group H is not almost contained in C̃G(K/N) which �nishes the proof. �

We obtain the following useful corollary.

Corollary 2.11. Let G be an ℵ0-saturated group and H and K be two de�nable
subgroups of G. Then

H ≤v C̃H(K) if and only if K ≤v C̃K(H)

Proof. Since almost containment and the almost centralizer satis�es symmetry, it is
enough to show that for de�nable subgroups H and K of an ℵ0-saturated group, we
have that

H ≤v C̃H(K) if and only if H . C̃H(K).

So suppose �rst thatH ≤v C̃H(K) and �x representatives h1, . . . , hn of the distinct

classes of C̃H(K) in H. Let Hd be the de�nable set {h ∈ H : [K : CK(h)] < d}. As
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K is de�nable, we have that C̃H(K) =
⋃
d∈NHd. Thus

H =

n⋃
i=1

hi ·
⋃
d∈N

Hd.

By ℵ0-saturation, this remains true in any elementary extension of G and so H .
C̃H(K).

On the other hand, if H 6≤v C̃H(K), then for any cardinal κ the type

π(xi : i ∈ κ) = {xi ∈ H} ∪ {x−1
i xj 6∈ Hd : i 6= j, d ∈ N}

is consistent. Hence, H 6. C̃H(K). �

In the general context, we may ask if symmetry holds for FC-centralizers. We give
a positive answer in the case that the ambient group H is an Mc-group. Afterwards,
we give a counter-example which shows that it does not hold in general.

Proposition 2.12. Let G be an Mc-group and H and K be subgroups of G. Then

H ≤v FCG(K) if and only if K ≤v FCG(H).

Proof. Suppose that H ≤v FCG(K). So the group FCH(K) has �nite index in H
and is obviously contained in FCG(K). Note that by the former the FC-centralizer
of FCH(K) in K is equal to the one of H in K. Since G is an Mc-group, we can �nd
elements h0, . . . , hn in FCH(K) such that CG(FCH(K)) is equal to the intersection of
the centralizers of the hi's. As each hi is contained in the FC-centralizer of K in H,
this intersection and hence CK(FCH(K)) has �nite index in K. In other words, K is
virtually contained in CK(FCH(K)) which, on the other hand, is trivially contained
in FCK(FCH(K)). As FCK(FCH(K)) coincides with FCK(H) as mentioned before
we can conclude. �

The next example was suggested by F. Wagner.

Example 1. Let G be a �nite non-commutative group, K be
∏

NG and H be
the subgroup

⊕
NG of K. The support of an element (ki)i∈N in K, denoted by

supp((ki)i∈N), is the set of indices i ∈ N such that ki is non trivial. As any element h̄
of H has �nite support and G is �nite, any element of H has �nitely many conjugates

in K, namely at most |G|| supp(h̄)| many. Thus its centralizer has �nite index in K.
Hence H is contained in the FC-centralizer of K. On the other hand, �x an element
g of G which is not contained in the center of G. Let k̄0 be the neutral element of
K and for n ≥ 1 we de�ne:

k̄n = (ki)i∈N such that

{
ki = g if i ≡ 0 (mod n)

ki = 1 else

Now �x some distinct natural numbers n and m. We have that the element k̄−1
n k̄m

is a sequence of the neutral element of G and in�nitely many g's or g−1's. Now, we
can choose an element h in G which does not commute with g and for any j in the
support of k̄−1

n k̄m we de�ne the following elements of H:

l̄j = (li)i∈N such that

{
li = h if i = j

li = 1 else

These elements witness that the set of conjugates (k̄−1
n k̄m)H is in�nite and, as

the n and m were chosen arbitrary, the k̄n's are representatives of di�erent cosets of
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FCK(H) in K. Thus K is not virtually contained in the FC-centralizer of H in K
which contradicts symmetry.

The previous example demonstrates that symmetry does not hold for the FC-
centralizer of arbitrary subgroups in non-saturated models but the following question
still remains open:

Question 1. Let H and K be two A-invariant subgroups of a group G. Then, do
we have that

H . C̃G(K) if and only if K . C̃G(H) ?

2.2. The almost three subgroups lemma. For subgroups H, K and L of some
group G we have that

[H,K,L] = 1 and [K,L,H] = 1 imply [L,H,K] = 1,

which is known as the three subgroups lemma. We want to generalize this result to
our framework. As we have not yet introduced an �almost� version of the commuta-
tor, observe that, if H, K, and L normalize each other, we have that [H,K,L] = 1
if and only if H ≤ CG(K/CG(L)). Thus we may state the three subgroups lemma
as follows:

H ≤ CG(K/CG(L)) and K ≤ CG(L/CG(H)) imply L ≤ CG(H/CG(K)).

We show this statement, replacing all centralizers and containment by almost cen-
tralizers and almost containment, for ind-de�nable subgroups which normalize each
other in the following sense:

De�nition 2.13. Let H, K and L be three A-ind-de�nable subgroups of G. We say
that

• H strongly normalizes L if there is a set of A-type-de�nable subgroups {Lα :
α ∈ Ω} of G each normalized by H such that L is equal to

⋃
α∈Ω Lα.

• H and K similtaneously strongly normalize L if there is a set of A-type-
de�nable subgroups {Lα : α ∈ Ω} of G each normalized by H and K such
that L is equal to

⋃
α∈Ω Lα.

• L is a strongly normal subgroup of G if G strongly normalizes L.

Note that if L is a type-de�nable group, it is strongly normalized by H (or respec-
tively simultaneously strongly normalized by H and K) if and only if H normalizes
L (respectively H and K normalize L).

The almost three subgroups lemma can be deduced from the lemma below:

Lemma 2.14. Let H, K and L be three A-ind-de�nable subgroups of G. If H and
K simultaneously strongly normalize L, then the following is equivalent:

• H 6. C̃G
(
K/C̃G(L)

)
.

• For any cardinal κ, there exists an elementary extension G of G and elements
(hi : i ∈ κ) in H(G), (kn : n ∈ κ) in K(G) and (ls : s ∈ κ) in L(G) such that

[[h−1
i hj , k

−1
n km], l−1

s lt] 6= 1 ∀i, j, n,m, s, t ∈ κ, i 6= j, n 6= m, s 6= t.

Proof. Let {Lα : α ∈ ΩL} be a set of A-type-de�nable subgroups of G each normal-
ized by H and K such that L is equal to

⋃
α∈ΩL

Lα and {Kβ : β ∈ ΩK} be a set of

A-type-de�nable subgroups of G such that K is equal to
⋃
β∈ΩK

Kβ . Assume �rst
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that H 6. C̃G(K/C̃G(L)). Note that as K and H normalize L, they normalize as

well C̃G(L). So C̃G(K/C̃G(L)) is well de�ned and for any h 6∈ C̃G(K/C̃G(L)), we

have that [K : CK(h/C̃G(L))] is in�nite.

Let κ be a given cardinal greater than (2|T (A)|)+. Assume that G is (2(2κ))+-
saturated. The goal is to �nd elements (hi : i ∈ κ) in H, (kn : n ∈ κ) in K and
(ls : s ∈ κ) in L which satisfy the second condition of the Lemma.

By saturation of G, one can �nd a sequence (hi : i ∈ (2(2κ))+) of elements in
H such that for non equal ordinals i and j, the element h−1

i hj does not belong to

C̃G(K/C̃G(L)) or equivalently

K 6. CK(h−1
i hj/C̃G(L)). (∗)

Claim. There is a subset I of (2(2κ))+ of size κ+, β ∈ ΩK and α ∈ ΩL such that for

all distinct elements i and j in I, we have that Kβ 6. CKβ (h−1
i hj/C̃G(Lα)).

Proof of the claim. Let i and j be two di�erent arbitrary ordinal numbers less than

(2(2κ))+. By (∗) there exists a sequence (k
(i,j)
n : n ∈ (2κ)+) of elements in K such

that for non identical ordinals n and m less than (2κ)+, we have[
h−1
i hj , (k

(i,j)
n )−1k(i,j)

m

]
6∈ C̃G(L).

As K is the bounded union of A-type-de�nable subgroups Kβ , by the pigeon hole
principle we can �nd subset J of (2κ)+ of the same size and βi,j in ΩK such that

for all n in J , the element k
(i,j)
n is an element of Kβi,j . To simplify notation we may

assume that J is equal to (2κ)+. Now, by Erd®s-Rado, we can �nd a subset I of

(2(2κ))+ of size (2κ)+ and β ∈ ΩK such that for non equal i and j, we have that βi,j
is equal β. Again for convenience we assume that I equals (2κ)+.

To summarize, we have now found β in ΩK , a sequence of elements (hi : i ∈ (2κ)+)

in H and for any i di�erent than j in (2κ)+ a sequence (k
(i,j)
n : n ∈ (2κ)+) in Kβ

such that [
h−1
i hj , (k

(i,j)
n )−1k(i,j)

m

]
6∈ C̃G(L).

Fix again two distinct ordinal numbers i and j in (2κ)+. By Properties 2.6 (8), we
have that the almost centralizer of L in G is the intersection of the almost centralizers
of the Lα's in G. So for any non equal n and m in (2κ)+ one can �nd α

(i,j)
(n,m) in ΩL

such that [
h−1
i hj , (k

(i,j)
n )−1k(i,j)

m

]
6∈ C̃G

(
L
α
(i,j)
(n,m)

)
.

Now, we apply Erd®s-Rado to the sequences of the k
(i,j)
n 's. Doing so, we obtain a

subset I(i,j) of (2κ)+ of cardinality at least κ+ and α(i,j) in ΩL such that for all non
identical n and m in I(i,j), we have[

h−1
i hj , (k

(i,j)
n )−1k(i,j)

m

]
6∈ C̃G

(
Lα(i,j)

)
.

Next, we apply Erd®s-Rado to the hi's. So, there exists a subset I of (2κ)+ of
cardinality at least κ+ and α in ΩL such that α(i,j) is equal to α for i di�erent than
j in I and thus for any such tuples we have[

h−1
i hj , (k

(i,j)
n )−1k(i,j)

m

]
6∈ C̃G (Lα) .
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Thus, as for all non equal i and j in I, the index set I(i,j) is of cardinality κ
+ >

(2|T (A)|)+, we conclude that the centralizer of the element h−1
i hj/C̃G(Lα) has in�nite

index in Kβ (witnessed by the k
(i,j)
n 's). Hence, for all distinct i and j in the index

set I of cardinality κ+, we have that Kβ 6. CKβ (h−1
i hj/C̃G(Lα)) and the claim is

established. �claim

The claim together with a well known result of B. Neumann [15, Lemma 4.1] yield

that the group Kβ/C̃G(Lα) can not be covered by �nitely many translates of these
centralizers.

Now, observe that since Lα is a type-de�nable group, any relatively de�nable

subgroup of Lα has either �nite or unbounded index, whence the group C̃G(Lα) is
equal to the union of the following de�nable sets

Sφ,d =

g ∈ G : ∀l0, . . . , ld
d∧
i=0

φ(li)→
∨
i 6=j

l−1
i lj ∈ CG(g)

 ,

where φ(x) ranges over the formulas in the type πLα(x) which de�nes Lα and d over
all natural numbers.

By the two previous arguments, we conclude that the partial type below is con-
sistent.

π(xn : n ∈ κ) = {[h−1
i hj , x

−1
n xm] 6∈ Sφ,d : n 6= m ∈ κ, i 6= j ∈ I, d ∈ N, φ ∈ πLα}

∪{xn ∈ Kβ : n ∈ κ}

Take k̄ which satis�es π(x̄). By construction we have that [h−1
i hj , k

−1
n km] 6∈ C̃G(Lα).

Hence, Lα 6. CLα([h−1
i hj , k

−1
n km]). So Lα cannot be covered by �nitely many trans-

lates of these centralizers. So the partial type below is again consistent.

π′(xs : s ∈ κ) = {[[h−1
i hj , k

−1
i kj ], x

−1
s xt] 6= 1 : s 6= t ∈ κ, n 6= m ∈ κ, i 6= j ∈ I, }

∪{xs ∈ Lα : s ∈ κ}

As Lα is a subgroup of L, a realization of this type together with the (hi : i ∈ I)
and (kn : n ∈ κ) satis�es the required properties.

On the other hand, suppose that for any cardinal κ, there exists an extension G
of G and elements (hi : i ∈ κ) in H(G), (kn : n ∈ κ) in K(G), and (ls : s ∈ κ) in
L(G) such that[

[h−1
i hj , k

−1
n km], l−1

s lt
]
6= 1 ∀i, j, n,m, s, t ∈ κ, i 6= j, n 6= m, s 6= t.

So let κ be greater than 2|T (A)|. If H . C̃G(K/C̃G(L)) then one can �nd i 6= j such

that h−1
i hj is an element of C̃G(K/C̃G(L)). So the index of CK(h−1

i hj/C̃G(L)) in
K is bounded. Once more this implies that one can �nd n 6= m such that k−1

n km ∈
CG(h−1

i hj/C̃G(L)). Thus [h−1
i hj , k

−1
n km] is an element of C̃G(L) or equivalently the

index of CL([h−1
i hj , k

−1
n km]) has bounded index in L. Thus there exists s 6= t such

that [[h−1
i hj , k

−1
n km], l−1

s lt] = 1 which contradicts our assumption and the Lemma is
established. �

Now we are ready to prove the almost three subgroups lemma.

Theorem 2.15 (almost three subgroup lemma). Let G be a group and H, K and L
be three ind-de�nable subgroups of G which simultaneously strongly normalize each
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other. If

H . C̃G
(
K/C̃G(L)

)
and K . C̃G

(
L/C̃G(H)

)
then L . C̃G

(
H/C̃G(K)

)
.

Proof. Assume towards a contradiction that L 6. C̃G(H/C̃G(K)) and let κ be equal

to (2|T (A)|)+. By the previous lemma we can �nd (ls : s ∈ exp5(κ)+) in L, (kn : n ∈
(exp5(κ)+) in K and (hi : i ∈ exp5(κ)+) in H in a su�ciently saturated extension
of G such that[

[l−1
s lt, h

−1
i hj ], k

−1
n km

]
6= 1 ∀i, j, n,m, s, t ∈ (2κ)+, i 6= j, n 6= m, s 6= t.

By the Witt's identity [12, Satz 1.4], for every tuple i < j < n < m < s < t <
exp5(κ)+ either[

[h−1
j hi, k

−1
m kn], l−1

s lt
]
6= 1 or

[
[k−1
n km, l

−1
t ls], h

−1
j hi

]
6= 1.

By Erd®s-Rado we can �nd a subset I of cardinality κ+ such that for all i < j < n <
m < s < t in I the same inequality of the two holds, say [[h−1

j hi, k
−1
m kn], l−1

s lt] 6= 1.

Now let λ be the order-type of I and note that it is greater or equal to κ+. Identify
I with λ. Thus[

[h−1
j hi, k

−1
m kn], l−1

s lt
]
6= 1 for 0 ≤ i < j ≤ κ < n < m ≤ 2κ < s < t ≤ 3κ(1)

Arguing as in the proof of Theorem 2.10, we can �nd i, j, n,m, s and t such that
0 ≤ i < j ≤ κ < n < m ≤ 2κ < s < t ≤ 3κ and [[h−1

j hi, k
−1
m kn], l−1

s lt] = 1. This

contradicts (1) and the theorem is established. �

2.3. Generalized Neumann Theorem. We want to generalize a classical group
theoretical result due to B. H. Neumann [15, Theorem 3.1] (Any bounded almost
abelian group is �nite-by-abelian). To do so, let us �rst introduce the following
notion.

De�nition 2.16. A group G is almost abelian if the centralizer of any of its element
has �nite index in G. If there is a natural number d such that the index of the
centralizer of any element of G in G is smaller than d, we say that G is a bounded
almost abelian group.

Remark 2.17. If we consider a de�nable almost abelian subgroup of an ℵ0-saturated
group, we can always bound the index of the centralizers by some natural number d
by compactness. Hence, any de�nable almost abelian subgroups of any ℵ0-saturated
group is a bounded almost abelian group.

Analyzing and adapting the proof of B. Neumann result led to the following the-
orem:

Theorem 2.18. Let G be a group and let H and K be two subgroups of G. Suppose
that

• H normalizes K;

• H ≤ C̃G(K);

• K ≤ C̃G(H), moreover there is d ∈ N such that for all k in K the set of
conjugates kH has size at most d.

Then the group [K,H] is �nite.

In the proof, we use the following fact:
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Fact 2.19. [2] Let G be a group and let K and H be two subgroups of G such that
H normalizes K. If the set of commutators

{[k, h] : k ∈ K,h ∈ H}

is �nite, then the group [K,H] is �nite.

Proof of Theorem 2.18. Let d be the minimal bound for the size of conjugacy classes
of elements of K by H. Fix some element k of K for which the conjugacy class of
k in H has size d and let 1, h2, . . . , hd be a set of right coset representatives of H
modulo CH(k). Thus

k1 = k, k2 = kh2 , . . . , kd = khd

are the d distinct conjugates of k by H. We let C be equal to the centralizer

CK(h2, . . . , hd). As H is contained in C̃G(K), we have that the group C has �nite
index in K. Choose some representatives a1, . . . , an of right cosets of K modulo C.
Note that their conjugacy classes by H are �nite by assumption. Let F be the �nite
set kH ∪ aH1 ∪ · · · ∪ aHn and let E be the set {x0 · x1 · x2 · x3 : xi ∈ F ∪ F−1, i < 4}
which is �nite as well. Note that K is equal to CF .

Now, we want to prove that E contains the set

D := {[g, h] : g ∈ K,h ∈ H}.

So let g ∈ K and h ∈ H be a arbitrary elements. Choose c in C, f in F , such that
g = cf . We have that

[g, h] = [cf, h] = [c, h]f [f, h] = f−1[c, h] · fh

As f−1 belongs to F−1 and fh belong to F , it remains to show that [c, h] can be
written as a product of two elements in F ∪ F−1.

Let w = ck. As c commutes with h2, . . . , hd the conjugates

w = ck, wh2 = ck2, . . . , whd = ckd

are all di�erent. As d was chosen to be maximal, these have to be all conjugates of
w by H. So there are i and j less or equal than d, such that

h−1wh = cki and h−1kh = kj

and we have that

[c, h] = c−1h−1ch = c−1(h−1ckh)(h−1k−1h) = c−1ckik
−1
j = kik

−1
j .

As all ki's belong to F , we can conclude that D is a subset of E and therefore �nite.
Hence [K,H] is �nite by Fact 2.19. �

Corollary 2.20. Let G be an ℵ0-saturated group and let H and K be two de�nable
subgroups of G such that H normalizes K. Suppose that

K ≤ C̃G(H) and H ≤ C̃L(K).

Then the group [K,H] is �nite.

Proof. As G is ℵ0-saturated, the fact that K ≤ C̃G(H) implies that there is d ∈ N
such that for all k in K the set of conjugates kH has size at most d. So all hypotheses
of Theorem 2.18 are satis�ed and we can conclude. �
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2.4. M̃c-groups.

De�nition 2.21. A group G is called M̃c-group if for any two de�nable subgroups
H and N , such that N is normalized by H, there exists natural numbers nHN and
dHN such that any chain of centralizers

CH/N (h0N) ≥ . . . ≥ CH/N (h0N, . . . , hmN) ≥ . . . (hi ∈ H)

each having index at least dHN in its predecessor has length at most nHN .

Remark 2.22. Note that any de�nable subgroup, any de�nable quotient and any

elementary extension of G is again an M̃c-group.

One of the crucial property of subgroups of an M̃c-group G is that the iterated
almost centralizers are de�nable which we prove below.

Proposition 2.23. Let G be an M̃c-group, let H be a subgroup of G and let N be a
de�nable subgroup of G which is contained in and normalized by H.

(1) Then all iterated FC-centralizers FCnG(H/N) are de�nable.

(2) If H is an A-invariant group, then all iterated almost centralizers C̃nG(H/N)
are de�nable.

Proof. The proofs for the two cases are identical just replacing the iterated almost
centralizers by the iterated FC-centralizers and bounded by �nite. We give the proof

using the notion C̃nG(H/N).

For n equals to 0 there is nothing to show as N is de�nable by assumption.

Now, let n ∈ N and assume that C̃iG(H/N) is de�nable for all i ≤ n. This yields

that
⋂n
i=0NK(C̃iK(H/N)) is a de�nable subgroup of G and thus an M̃c-group as well.

Moreover, as C̃n+1
G (H/N) only contains elements which belong to this intersection we

may replace G by this intersection and assume that C̃nG(H/N) is a normal subgroup.

Since G is an M̃c-group, there are g0, . . . , gm ∈ C̃n+1
G (H/N) and d ∈ N such that for

all h ∈ C̃n+1
G (H/N):[

i=m⋂
i=0

CG
(
gi/C̃

n
G(H/N)

)
:
i=m⋂
i=0

CG
(
gi/C̃

n
G(H/N)

)
∩ CG

(
h/C̃nG(H/N)

)]
< d

Let D be equal to the de�nable group
⋂i=m
i=0 CG(gi/C̃

n
G(H/N)). Then the following

set is de�nable.

S :=
{
g ∈ G :

[
D : CD(g/C̃nG(H/N))

]
< d
}

We show that S = C̃n+1
G (H/N). The inclusion C̃n+1

G (H/N) ⊂ S is obvious by choice
of the gi's and d. So let g ∈ S. To prove the inverse inclusion, we may compute:

[H : CH(g/C̃nG(H/N))] ≤ [H : H ∩D] ·
[
H ∩D : CH∩D(g/C̃nG(H/N))

]
≤ [H : H ∩D] ·

[
D : CD(g/C̃nG(H/N))

]
< ∞ (i. e. �nite for 1. and bounded for 2.)

Thus g belongs to C̃n+1
G (H/N). Hence C̃n+1

G (H/N) is equal to S, and whence de�n-
able. �
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Remark 2.24. Note that all iterated centralizers of H in G are stabilized by any
automorphism which �xes H set wise. So, if H is an A-invariant group, all its
iterated almost centralizers are indeed de�nable over A. Moreover, for any (type-,
ind-) de�nable (resp. A-invariant) subgroup H, the iterated almost centers of H are
(type-, ind-) de�nable (resp. A-invariant).

3. Definable envelopes in M̃c-groups

In this section, we analyze arbitrary abelian, nilpotent and (normal) solvable sub-

groups of M̃c-groups. We prove the existence of de�nable envelopes up to �nite
index, which is inspired by the result in simple theories.

As the following remark shows, it is impossible to obtain the same result on
de�nable envelopes as for stable groups in groups with a simple theory and thus

M̃c-groups:

Remark 3.1. Let T be the theory of an in�nite vector space over Fp with p > 2
together with a non-degenerate skew symmetric bilinear form. Then T is supersimple
of SU-rank 1 and in any model of T one can de�ne an �extraspecial p-group� G, i. e.
G is in�nite, every non-trivial element of G has order p, the center of G is cyclic of
order p and is equal to the derived group of G. This group has SU-rank 1 and as any
centralizer has �nite index, one can �nd an in�nite abelian subgroup. On the other
hand, there are no abelian subgroups of �nite index in G. However, any de�nable
in�nite subgroup of G has SU-rank 1 and thus �nite index in G. Thus an in�nite
abelian subgroup of G cannot have a de�nable abelian envelope.

A model theoretic study of extra special p-groups can be found in [6].

So one has to �nd the modify the notion of de�nable envelopes which is adapted
to the new context. These are results due to Milliet.

Fact 3.2. Let G be a group de�nable in a simple theory and H be a subgroup of G.

• [14, Proposition 5.6.] If H is abelian, then there exists a de�nable �nite-by-
abelian subgroup of G which contains H.
• [13] If H is nilpotent (resp. solvable), then one can �nd a de�nable nilpotent
(resp. solvable) subgroup of class at most 2n which virtually contains H.

To �nd envelopes for M̃c-groups, we make use of a de�nable version of Schlichting's
Theorem [18], which can be found in [20, Theorem 4.2.4].

In the rest of the section we prove the following theorem:

Theorem 3.3. Let G be an M̃c-group and H be a subgroup of G. Then the following
hold:

(1) If H is almost abelian, then there exists a de�nable �nite-by-abelian subgroup
of G which contains H and which is normalized by NG(H).

(2) If H is almost nilpotent of class n, then there is a de�nable nilpotent subgroup
N of G of class at most 2n which is normalized by NG(H) and virtually
contains H.
In particular, if H is normal in G, we have that HN is a de�nable normal
nilpotent subgroup of G of class at most 3n which contains H.
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(3) If H is almost solvable of class n, then there exists a de�nable solvable sub-
group S of G of class at most 2n which is normalized by NG(H) and virtually
contains H.
In particular, if H is normal in G, the group HS is a de�nable normal solv-
able subgroup of G of class at most 3n which contains H.

3.1. Abelian groups. We �rst investigate the abelian case. The proof is inspired
by the one of the corresponding theorem for simple theories in [14].

Proof of 3.3(1). Let H be an almost abelian subgroup of the M̃c-group G. As G

is an M̃c-group there are elements h0, . . . , hn−1 in H and a natural number d such
that for every element h in H, the index [C : C ∩ CG(h)] is smaller than d for C :=⋂n−1
i=0 CG(hi). Observe additionally that H is virtually contained in C. Moreover,

the following set

F = {Ch : h ∈ NG(H)}
is a family of uniformly commensurable de�nable subgroups of G. Thus applying
Schlichting's Theorem to this family of subgroups, we obtain a de�nable subgroup D
which is normalized by NG(H) and commensurable with C. So D virtually contains
H and thus DH is a �nite extension of D and thus de�nable. Note that:

• Z̃(DH) is a de�nable almost abelian group as DH is a de�nable subgroup

of an M̃c-group.

• H ≤ Z̃(DH) as DH is commensurable with C and thus the centralizer of
any element of H has �nite index in DH.

• Z̃(DH) is normalized by NG(H) as both D and H are.

So the de�nable almost abelian (thus �nite-by-abelian) group Z̃(DH) contains H
and is normalized by NG(H). �

3.2. Solvable groups. To prove the solvable case we introduce the following nota-
tions:

De�nition 3.4. A group G is almost solvable if there exists a normal almost abelian
series of �nite length, i. e. a �nite sequence

{1} = G0 E G1 E · · · E Gn = G

of normal subgroups of G such that Gi+1/Gi is an almost abelian group for all i ∈ n.
The least such natural number n ∈ N is called the almost solvable class of G.

De�nition 3.5. Let G be a group and S be a de�nable almost solvable subgroup.
We say that S admits a de�nable almost abelian series of length n if there exists a
family of de�nable normal subgroups {Si : i ≤ n} of S such that S0 is the trivial
group, Sn is equal to S and Si+1/Si is almost abelian and normalized by S.

In an arbitrary group, a priori not every almost solvable group admits a de�nable
almost abelian series.

By the following Lemma we only need to concentrate on building a de�nable
almost series.



ALMOST GROUP THEORY 15

Lemma 3.6. Any de�nable almost solvable subgroup H of an ℵ0-saturated group G
which admits a de�nable almost series of length n

H = H0 D H1 D . . . D Hn = {1}.

Then H has a de�nable subgroup of �nite index which is solvable of class at most 2n
and which is normalized by

⋂
iNG(Hi).

The proof is analogous to the one of Corollary 4.12 in [13]. Although is done there
in the context of a simple theory, the proof is almost identically in our context. The
only di�erence is that in the beginning of the proof, one has to replace G by the
de�nable subgroup

⋂
iNG(Hi) and thus we may suppose that all Hi are normal in

G. Moreover, in the end, instead of taking the connected component, one has to take
the intersection of all normal subgroups of G of �nite index and so we have that the
de�nable solvable subgroup H we obtain is additionally normalized by

⋂
iNG(Hi).

Proposition 3.7. Let H be an almost solvable subgroup of class n of an M̃c-group G.
Then there exists a de�nable almost solvable subgroup of class n which is normalized
by NG(H) and admits a de�nable almost abelian series containing H.

Proof. Let {1} = H0 ≤ · · · ≤ Hn = H be an almost abelian series for H. We
construct recursively a de�nable almost abelian series

{1} = S0 ≤ · · · ≤ Sn
such that for all i ≤ n, Hi ≤ Si and Si is normalized by NG(H).

As S0 is the trivial group, we may let 0 < i < n and suppose that Si−1 has been
constructed. Since Si−1 is de�nable and normalized by NG(H), we can replace G by

the de�nable section Gi = NG(Si−1)/Si−1. Note that this is an M̃c-group and that
Hi/Si−1 is an almost abelian subgroup. Thus by the almost abelian case, there exists
a de�nable almost abelian subgroup Si of Gi which is normalized by NGi(Hi/Si−1)
containing Hi/Si−1. As Hi is a characteristic subgroup of H and Si−1 is normalized
by NG(H), the normalizer of Hi/Si−1 and thus of Si contains NG(H)/Si−1. Now
de�ning Si to be the pullback of Si in G, we conclude. �

Proof of 3.3(3). Proposition 3.7 applied to H gives us a de�nable almost solvable
group K of class n containing H which admits a de�nable almost series for which
each member is normalized by NG(H). By Lemma 3.6, the group K has a de�n-
able subgroup S of �nite index which is solvable of class at most 2n and which is
normalized by NG(H). �

3.3. Nilpotent groups.

De�nition 3.8. A group H is almost nilpotent if there exists an almost central series
of �nite length, i. e. a sequence of normal subgroups of H

{1} ≤ H0 ≤ H1 ≤ · · · ≤ Hn = H

such that Hi+1/Hi is a subgroup of Z̃(H/Hi) for every i ∈ {0, . . . , n − 1}. We call
the least such n ∈ N, the almost nilpotency class of H.

Remark 3.9. The iterated almost centers of any almost nilpotent group H of class
n form an almost central series of length n.
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In this section we prove that any almost nilpotent subgroup of class n is virtually
contained in a de�nable nilpotent group of class at most 2n. To do so, we need the
following consequences of Corollary 2.20 and Theorem 2.10.

Proposition 3.10. Let G be an M̃c-group. Then the commutator [Z̃(G), C̃G(Z̃(G))]
is �nite.

Proof. We may assume that G is ℵ0-saturated. As G is an M̃c-group, the normal

subgroups Z̃(G) and C̃G(Z̃(G)) are de�nable. As trivially C̃G(Z̃(G)) is contained in
itself and

Z̃(G) = C̃G(G) ≤ C̃G(C̃G(Z̃(G))),

we may apply Corollary 2.20 to these two subgroups and obtain the result. �

Corollary 3.11. Let G be an M̃c-group and H be an A-ind-de�nable subgroup of
G. Then

H . C̃G(C̃G(H))

Proof. Trivially, we have that C̃G(H) ≤ C̃G(H). Since G is an M̃c-group, the almost

centralizer C̃G(H) is de�nable and thus by symmetry, we obtain the result. �

Proof of 3.3(2). We construct inductively on i ≤ n the following subgroups of G:
In the ith step we �nd a de�nable subgroup Gi of G and two de�nable normal
subgroups N2i−1 and N2i of Gi all normalized by NG(H) such that:

• H ≤v Gi;
• FCi(H) ∩Gi ≤ N2i;
• [N2i−1, Gi] ≤ N2(i−1);
• [N2i, Gi] ≤ N2i−1;
• Gi ≤ Gi−1.

Once the construction is done, lettingN be equal toN2n gives a de�nable nilpotent
subgroup normalized by NG(H) and of class at most 2n which is witnessed by the
sequence

{1} = N0 ∩Gn ≤ N1 ∩Gn ≤ · · · ≤ N2n ∩Gn.

So, let N0 be the trivial group and G0 be equal to G.

Now, assume that i > 0 and that for j < i and k < 2i − 1 the groups Nk and
Gj have been constructed. We work in the quotient G = Gi−1/N2(i−1) which is

an M̃c-group and we let H = (H ∩Gi−1)/N2(i−1) which is obviously normalized by
NG(H). The �rst step is to replace G by a de�nable subgroup C which virtually

contains H and such that FCG(H) = Z̃(C). Observe that the preimage of FCG(H)
in Gi−1 contains FCi(H) ∩Gi−1 as FCi−1(H) ∩Gi−1 is contained in N2(i−1).

If there is g0/N2(i−1) ∈ FCG(H) \ Z̃(G), we consider the family

H = {CG(gh0/N2(i−1)) : h ∈ NG(H)}
Note that as H is normalized by NG(H) all members of H virtually contain H.

Moreover, as G is an M̃c-group there exists a �nite intersection F of groups in H
such that any K in H we have that the index [F : F ∩K] is at most d. Thus the
family

{Fh : h ∈ NG(H)}
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is uniformly commensurable. So, by Schlichting's Theorem there is a de�nable sub-
groupC0 ofG which is invariant under all automorphisms which stabilizes the family
setwise, thus normalized by NG(H), and commensurable with F. Moreover F∩H is
commensurable with CH(g0/N2(i−1)) as g0/N2(i−1) belongs to FCG(H). Over all we
obtain that

C0 ∩H =v H and C0 ≤v CG(g0/N2(i−1)). (∗)

If now, there is g1/N2(i−1) ∈ C̃C0(H ∩ C0) \ Z̃(C0), we can redo the same con-

struction and obtain a C1. By (∗) and g1 not belonging to Z̃(C0), we have that
CG(g0/N2(i−1), g1/N2(i−1)) has in�nite index in CG(g0/N2(i−1)). Then we can it-
erated this process. It has to stop after �nitely many steps, as for every j the
index of CG(g0/N2(i−1), . . . , gj+1/N2(i−1)) in CG(g0/N2(i−1), . . . , gj/N2(i−1)) is in�-

nite by construction, contradicting the fact that G is an M̃c-group. Letting C be

equal to
⋂
iCi, we found a de�nable subgroup of G (thus an M̃c-group), such that

FCC(H) = Z̃(C), which is normalized by NG(H) and whose intersection with H has
�nite index in H.

The next step is to de�ne Gi, N2i−1 and N2i. As C is an M̃c-group, Proposition

3.10 yields that the commutator Z = [Z̃(C), C̃C(Z̃(C))] is �nite. Since Z̃(C) and

C̃C(Z̃(C)) are characteristic subgroups ofC, we have that Z is normalized by NG(H)

and contained in Z̃(C). Note additionally that the group C̃C(Z̃(C)) has �nite index

in C by Corollary 3.11. Thus Gi = C̃C(Z̃(C))∩CC(Z) has �nite index in C. We let

N1 = Z ∩Gi, a �nite subgroup of the center of Gi, and N2 = Z̃(C) ∩Gi = Z̃(Gi),
which is contained in Z(Gi/N1). Note that all groups used to de�ne Gi, N1 and
N2 are all characteristic subgroups of C and thus Gi, N1 and N2 are normalized
NG(H). Moreover, N1 and N2 are normal subgroups of Gi. Let Gi, N2i−1 and N2i

be the preimages of Gi, N1 and N2 in G respectively. They satisfy all requirements,
�nishing the construction and therefore the proof. �

4. Fitting subgroup of M̃c-groups

In this section we analyze the Fitting subgroup F (G) and the almost Fitting

subgroup of an M̃c-group as well as locally nilpotent M̃c-groups.

The �rst step is to show that any locally nilpotent subgroup of an M̃c-group, thus
in particular the Fitting subgroup, is solvable.

Proposition 4.1. Any locally nilpotent subgroup of an M̃c-group is solvable. In

particular, the Fitting subgroup of an M̃c-group is solvable.

The proof is analog to the corresponding result for type-de�nable groups in simple
theories [16, Lemma 3.6].

In the next lemma we deal with a de�nable section of some M̃c-group acting via
conjugation on another de�nable section. We recall and introduce some facts and
notations:
Let G be a group that acts on an abelian group A by automorphisms. If B is a
subgroup of A and g an element of G we denote by CB(g) the group of elements b
in B on which g acts trivially, i. e. gb = b. Furthermore, if H is a subgroup of G and
a an element of A, we denote by CH(a) all elements h in H which act trivially on
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a. This yields the natural de�nition of an almost centralizer via this group action,
namely for any subgroup B of A and H of G, we have that

C̃B(H) = {b ∈ B : [H : CH(b)] is �nite}

C̃H(B) = {h ∈ H : [B : CB(h)] is �nite}
Note that this group action de�nes a semidirect product AoG. Within this group,

the above de�ned almost centralizer C̃B(H) (respectively C̃H(B)) corresponds to

the projection of C̃Bo1(1 oH) to its �rst coordinate (respectively C̃1oH(B o 1) to
its second coordinate). So one obtains immediately the following symmetry for the
above almost centralizer using Theorem 2.10 for AoG.

Lemma 4.2. Let G be a group that acts on an abelian group A by automorphisms.
Let H be a de�nable subgroup of G and B be a de�nable subgroup of A, then we have
that

H . C̃G(B) if and only if B . C̃A(H).

Remark 4.3. Let G be a group and K, A, N and M be subgroups of G such that:

M E K and N E A.

We say that the quotient K/M acts by conjugation on A/N if the action by K/M
on A/N via conjugation is well-de�ned, i. e.

• K ≤ NG(A) ∩NG(N);
• M ≤ CG(A/N).

Lemma 4.4. Let K and A be quotients of de�nable subgroups of an M̃c-group G

such that K acts by conjugation on A. Then the C̃K(A) and C̃A(K) are de�nable.

Proof. The lemma is an immediate consequence of the following fact which is an easy

consequence of the descending chain condition in M̃c-groups:
There are natural numbers n and d (resp. n′ and d′) such that any descending chain
of centralizers

CA(k0) ≥ CA(k0,k1) ≥ · · · ≥ CA(k0, . . . ,km) ≥ . . . (ki ∈ K)(
resp. CK(a0) ≥ CK(a0,a1) ≥ · · · ≥ CK(a0, . . . ,am) ≥ . . . (ai ∈ A)

)
each of index greater than d (resp. d′) in its predecessor has length at most n (resp.
n′). �

The proof of [16, Lemma 3.8] which is stated for groups type-de�nable in a simple
theory uses only symmetry of the almost centralizer and that they are de�nable.

Hence it remains true for M̃c-groups.

Lemma 4.5. Let K and A be de�nable sections of an M̃c-group G such that A is
abelian and K acts by conjugation on A. Suppose that H is an arbitrary abelian
subgroup of K and that there are a tuple h̄ = (hi : i < `) in H and natural numbers
(mi : i < `) such that

• (hi − 1)miA is �nite ∀i < `;
• for any h in H the index of CA(h̄,h) in CA(h̄) is �nite.

Then there is a de�nable subgroup L of K which contains H and a natural number

m such that C̃m
A

(L) has �nite index in A.
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Proof. Let

L = C̃CK(h̄)(CA(h̄)) = {k ∈ CK(h̄) : [CA(h̄) : CA(h̄,k)] <∞}

with h̄ given by the statement (note that CK(h̄) denotes the centralizer within the
group K and CA(h̄) denotes the centralizer given by the group action of K on A).
Observe that L contains H by assumption and that it is de�nable by Lemma 4.4.

Let m be equal to 1+
∑`−1

i=0(mi−1) and �x an arbitrary tuple n̄ = (n0, . . . , nm−1)
in `×m. By the pigeonhole principle and the choice of m there is at least one i less
than ` such that at least mi many coordinates of n̄ are equal to i. As the group ring
Z(H) is commutative and (hi − 1)miA is �nite for all i less than ` by assumption,
we have that

(hn0 − 1)(hn1 − 1) . . . (hnm−1 − 1)A

is �nite.

Note the following:

(†) Let k be an element of K and B be a subgroup of A. Then we have that the
set (k− 1)B is �nite if and only if B . CA(k)

So, applying (†) to B = (hn1 − 1) . . . (hnm−1 − 1)A, for all i ≤ n we obtain that

(hn1 − 1) . . . (hnm−1 − 1)A . CA(hi).

Thus

(hn1 − 1) . . . (hnm−1 − 1)A . CA(h̄).

Since for all k0 in L, we have that CA(h̄) . CA(k0), we have as well that

(hn1 − 1) . . . (hnm−1 − 1)A . CA(k0)

and again by (†) we deduce that

(k0 − 1)(hn1 − 1) . . . (hnm−1 − 1)A

is �nite. As L is contained in the centralizer of h̄, the previous line is equal to

(hn1 − 1) . . . (hnm−1 − 1)(k0 − 1)A.

We repeat the previous processm times and obtain that for anym-tuple (k0, . . .km−1)
in L we have that the set

(km−1 − 1) . . . (k1 − 1)(k0 − 1)A

is �nite. As the tuple is arbitrary, we have that for any k in L the group

(km−2 − 1) . . . (k1 − 1)(k0 − 1)A

is almost contained in the centralizer CA(k), i. e.

L ≤ C̃K((km−2 − 1) . . . (k1 − 1)(k0 − 1)A)

By symmetry we have that

(km−2 − 1) . . . (k1 − 1)(k0 − 1)A . C̃A(L)

By Lemma 4.4, we have that C̃A(L) is de�nable. Thus we may work modulo this
group as A is abelian and obtain that

(km−2 − 1) . . . (k1 − 1)(k0 − 1)A/C̃A(L)
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is �nite for all choices of an (m − 1)-tuple (k0, . . . ,km−2) in L. Thus as before we
obtain by (†) and symmetry that

(km−3 − 1) . . . (k1 − 1)(k0 − 1)A . C̃A(L/C̃A(L)) = C̃2
A(L)

Repeating this process m times yields that A . C̃m
A

(L). �

Theorem 4.6. The Fitting subgroup of an M̃c-group is nilpotent and de�nable.

Proof. Note �rst, that the Fitting subgroup F (G) of G is solvable by Proposition

4.1. So there exists a natural number r such that the rth derived subgroup F (G)(r)

of F (G) is trivial, hence nilpotent. Now we will show that if F (G)(n+1) is nilpotent,

then so is F (G)(n).

So, suppose that F (G)(n+1) is nilpotent. As it is additionally normal in G, using
Theorem 3.3 (2) we can �nd a de�nable normal nilpotent subgroup N of G containing

F (G)(n+1). Note additionally that the central series

{1} = N0 < N1 < · · · < Nk = N

with Ni = Zi(N) consists of de�nable normal subgroups of G such that [N,Ni+1] ≤
Ni.

Observe that it is enough to show that F (G)(n) is almost nilpotent: If F (G)(n)

is almost nilpotent it has a normal nilpotent subgroup F of �nite index by Theo-
rem 3.3(2). As F (G)(n) is a subgroup of the Fitting subgroup, any �nite subset is
contained in a normal nilpotent subgroup of G. Thus, there is a normal nilpotent
subgroup that contains a set of representatives of cosets of F in F (G)(n). Hence the

group F (G)(n) is a product of two normal nilpotent subgroups, whence nilpotent by
Fitting's Theorem [7].

As F (G)(n)/N is abelian and G/N is an M̃c-group, by Proposition 3.3(1) one

can �nd a de�nable subgroup A′ of G which contains F (G)(n) such that A′/N is an

FC-group, i. e. A′ ≤ C̃G(A′/N). Moreover, the group A′/N is normalized by the

normalizer of F (G)(n)/N and thus A′ is normal in G. The next step is to �nd a

de�nable subgroup A of A′ which still contains F (G)(n) and a natural number m

for which N ≤ C̃mG (A). This will imply that A ≤ C̃G(A/N) ≤ C̃G(A/C̃mG (A)) =

C̃m+1
G (A). As A contains F (G)(n), the group F (G)(n) would be nilpotent by the

above.

Fix now some i > 0. For any g in F (G)(n) there is some normal nilpotent subgroup
Hg which contains g. So NiHg is nilpotent by Fitting's Theorem [7]. Therefore, we
can �nd a natural number mg such that [Ni ,mg g] ≤ {1} or seen with the group
action as in Lemma 4.5

(g − 1)mgNi = {1}.

Additionally, asG is an M̃c-group, we can �nd a �nite tuple ḡ in F (G)(n) such that for

any g ∈ F (G)(n) the index [CNi(ḡ/Ni−1) : CNi(ḡ/Ni−1, g/Ni−1)] is �nite. So we may

apply Lemma 4.5 to G/N acting on Ni/Ni−1 and the abelian subgroup F (G)(n)/N .

Thus, there is a natural number mi and a de�nable group Ki that contains F (G)(n)

such that Ni . C̃miG (Ki/Ni−1). Then the �nite intersection A = A′ ∩
⋂
iKi is

a de�nable subgroup of G which still contains F (G)(n). As for A′, we have that
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A ≤ C̃G(A/N). Additionally:

Ni . C̃
mi
G (Ki/Ni−1) ≤ C̃miG (A/Ni−1)

and inductively

N . C̃mkG (A/Nk−1)

≤ C̃mkG (A/(C
mk−1

G (A/Nk−2))) = C
mk+mk−1

G (A/Nk−2)

≤ . . . ≤ Cmk+···+m1

G (A)

Using that A ≤ C̃G(A/N), we obtain that A ≤ C̃mG (A) for m = mk + · · ·+m1 + 1.

Overall, we get that F (G)(n) is nilpotent for all n. In particular, the Fitting
subgroup F (G) of G is nilpotent. And �nally by a result of Ould Houcine [11] we
deduce that it is de�nable as well. �

Now, we want to study the almost Fitting subgroup:

De�nition 4.7. The almost Fitting subgroup of a group G is the group generated

by all its normal almost nilpotent subgroups. We denote this subgroup by F̃ (G).

Hickin and Wenzel show in [10] that the product of two normal almost nilpotent
subgroups is again normal almost nilpotent. Hence the almost Fitting subgroup of
any group G is locally almost nilpotent but it might not be almost nilpotent. For

M̃c-groups we show the following:

Proposition 4.8. The almost Fitting subgroup of an M̃c-group is almost solvable.

Proof. Let G be an M̃c-group and g be an element of its almost Fitting subgroup.
Then there is a normal almost nilpotent subgroup H of G which contains g. By
Theorem 3.3(2), we deduce that H has a nilpotent subgroup of �nite index which is
normal in G. Thus, the quotient H/F (G) is �nite. Since additionally H is a normal
subgroup of G, we deduce that any element ofH has �nitely many conjugates modulo

F (G). Hence the group H and therefore F̃ (G) are contained in C̃G(G/F (G)). As

F (G) is nilpotent by Theorem 4.6 and C̃G(G/F (G))/F (G) is almost abelian, we

deduce that C̃G(G/F (G)) is almost solvable. As any subgroup of an almost solvable

group is almost solvable, we conclude that F̃ (G) is almost solvable which �nishes the
proof. �

We �nish this section with two proposition about locally nilpotent M̃c-group.

Proposition 4.9. Let G be a locally nilpotent ℵ0-saturated M̃c-group. Then G is
nilpotent-by-�nite.

Proof. Note �rst of all, that it is enough to show that G is almost nilpotent as any

almost nilpotent subgroup of an M̃c-group is nilpotent-by-�nite by Theorem 3.3(2).

As G is locally nilpotent, it is solvable by Proposition 4.1. So, we may inductively
assume that G′ is almost nilpotent. Thus G′ is virtually contained in a de�nable
normal nilpotent subgroup N of G by Theorem 3.3(2). We claim that it is enough to

show that for some natural number n, the group N is contained in Z̃n(G): If so, we

have that G/Z̃n(G) is an almost abelian group as G/N is an almost abelian group

and thus G is contained in Z̃n+1(G).
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Now, we prove inductively that for every natural number i ≤ m, we can �nd a

natural number j such that Zi(N) is contained in Z̃j(G).

For i equals 0 this is trivially true. Thus, suppose that for Zi(N) we have found

j such that Zi(N) is contained in Z̃j(G). We work in G = G/Z̃j(G) which is again

an M̃c-group. We set

N := NZ̃j(G)/Z̃j(G) and Ni+1 := Zi+1(N)Z̃j(G)/Z̃j(G).

As
[Zi+1(N), N ] ≤ Zi(N) ≤ Z̃j(G),

we have that [Ni+1,N] = 1. Moreover, since G/N is an almost abelian group, so is
G/N. We �x additionally the following notation:
For any subgroup H of G, by H∗ we denote H/N and for any element h of H we
write h∗ for its class modulo N. So, the group G∗ acts on Ni+1 by conjugation and
we may regard Ni+1 as an G∗-module as [Ni+1, N ] = 1.

Since G is an M̃c-group, we can �nd a �nite tuple ḡ = (g0, . . . , gm) of elements in
G such that for any g in G the index [CG(ḡ) : CG(ḡ, g)] is �nite. Let K be equal to
CG(ḡ/N) which has �nite index in G as G/N is almost abelian. For any a ∈ Ni+1,
we have that the group generated by a and ḡ is a �nitely generated subgroup of a
locally nilpotent group and must be nilpotent. Thus for a given a in Ni+1 there is
a choice h0, . . . , hda of elements all belonging to the tuple ḡ such that in the right
module notation

(h∗0 − 1)(h∗1 − 1) . . . (h∗da − 1)a = 0.

As Ni+1 is de�nable and G is ℵ0-saturated, there is an upper bound for the choice
of da which we denote by d.

Thus, for any choice of h0, . . . , hd each being an element of the tuple ḡ and any
element a of Ni+1 we have in the right module notation

(h∗0 − 1)(h∗1 − 1) . . . (h∗d − 1)a = 0.

As a was arbitrary in Ni+1, we obtain that

(h∗0 − 1)(h∗1 − 1) . . . (h∗d − 1)Ni+1 = 0.

Moreover, since h0 is an arbitrary element of ḡ, the previous equation yields that

(h∗1 − 1) . . . (h∗d − 1)Ni+1 ≤ CG(ḡ).

Let k0 be any element of K, by the choice of ḡ, we obtain that

(h∗1 − 1) . . . (h∗d − 1)Ni+1 . CG(k0)

or in other words

(k∗0 − 1)(h∗1 − 1) . . . (h∗d − 1)Ni+1 is �nite.

As k0 is an element of CG(ḡ/N) and Ni+1 is commutative, this �nite set equals

(h∗1 − 1) . . . (h∗d − 1)(k∗0 − 1)Ni+1

Iterating this process, we obtain that for any tuple of elements (k0, . . . , kd) in K we
have that

(k∗d − 1) . . . (k∗1 − 1)(k∗0 − 1)Ni+1 is �nite.

Since the tuple was taken arbitrary, we have that for any k in K the group

(k∗d−1 − 1) . . . (k∗1 − 1)(k∗0 − 1)Ni+1
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is almost contained in the centralizer CNi+1(k), i. e.

K ≤ C̃G((k∗d−1 − 1) . . . (k∗1 − 1)(k∗0 − 1)Ni+1)

By symmetry we have that

(k∗d−1 − 1) . . . (k∗1 − 1)(k∗0 − 1)Ni+1 . C̃Ni+1(K)

AsNi+1 is an M̃c-group, the group C̃Ni+1(K) is de�nable, thus we may work modulo

C̃Ni+1(K) and obtain that

(k∗d−1 − 1) . . . (k∗1 − 1)(k∗0 − 1)Ni+1/C̃Ni+1(K)

is �nite for all choices of an d − 1 tuple (k0, . . . , km−2) in K. Thus as before we
obtain by symmetry that

(k∗d−2 − 1) . . . (k∗1 − 1)(k∗0 − 1)Ni+1 . C̃Ni+1(K/C̃Ni+1(K)) = C̃2
Ni+1

(K).

Repeating this process m many times yields that Ni+1 . C̃d
Ni+1

(K) = C̃d
Ni+1

(G) ≤
Z̃d(G). Thus Zi+1(N) . C̃dG(G/Z̃j(G)) = Z̃d+j(G). As N and thus Zi+1(N) are

normal in G, this yields immediately that Zi+1(N) ≤ Z̃d+j+1(G) which �nishes the
proof. �

Proposition 4.10. Let G be a locally nilpotent M̃c-group such that G/Z̃k(G) has
�nite exponent for some natural number k. Then G is nilpotent-by-�nite.

Proof. First of all note, that it is enough to show that G/Z̃k(G) is almost nilpotent,
as this implies that G is almost nilpotent and any almost nilpotent subgroup of an

M̃c-group is nilpotent-by-�nite by Theorem 3.3(2). So let us replace G by G/Z̃k(G)

which is as well an M̃c-group by de�nition, locally nilpotent and of �nite exponent.

The rest of the proof is analogous to the previous one. Using the same notation
as before, the only di�erence is the way to �nd the bound d such that for any choice
of h0, . . . , hd each being an element of the tuple ḡ and any element of Ni+1 we have
in the right module notation that

(h∗0 − 1)(h∗1 − 1) . . . (h∗d − 1)a = 0.

In this context, we know that G has �nite exponent, say e. Thus, the group
generated by ḡ has �nite order, say f . So for any a ∈ Ni+1, the group generated by
a and ḡ has order at most d = ef · f and as it is a �nitely generated subgroup of a
locally nilpotent group, it is nilpotent. Thus it is nilpotent of class at most d which
gives the bound. �

5. Almost commutators and almost nilpotent subgroups of M̃c-groups

In section 2 we introduced the almost centralizer which is a centralizer �up to �nite
index�. Thus one might ask, if there exists a corresponding notion of an �almost
commutator�. In this section we introduce such a notion and establish its basic
properties. Even though, this notion might not have the desired properties in the

general context, it has once we work in M̃c-groups. This allows us to generalize

results on nilpotent group to almost nilpotent M̃c-groups.

For the rest of the section we �x a parameter set A and let G be an

|A|+-saturated and |A|+-homogeneous group.
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De�nition 5.1. Let G be family of all A-de�nable subgroups of G. For two A-ind-
de�nable subgroups H and K of G and , we de�ne:

[̃H,K ]̃A :=
⋂
{L ∈ G : L = LNG(H) = LNG(K), H . C̃G(K/L)}

and call it the almost A-commutator of H and K. If A is the empty set we omit the
index and just say the almost commutator.

By Theorem 2.10 the almost commutator is symmetric, i. e. for two A-ind-de�nable

subgroups H and K, we have [̃H,K ]̃A = [̃K,H ]̃A. Moreover, it is the intersection of
de�nable subgroups of G. Note that the ordinary commutator of two A-ind-de�nable
groups is not necessary de�nable nor the intersection of de�nable subgroups, and
hence one cannot compare it with its approximate version, contrary to the almost
centralizer.

As the �nal results on almost nilpotent subgroups of M̃c-groups we obtain only
deals with normal subgroups, we restrict our framework from now on to normal

subgroups. In this case, the subgroup [̃H,K ]̃ is the intersection of normal subgroups
inG which simpli�es not only the de�nition but also many arguments and ambiguities
in numerous proofs. Note anyhow that all results in this section could be generalized
to arbitrary subgroups.

So let from now on F be the family of all A-de�nable normal subgroups
of G. Note that this family is stable under �nite intersections and �nite products.

Then the de�nition of the almost commutator of two ind-de�nable normal sub-
groups H and K of G simpli�es to:

[̃H,K ]̃A :=
⋂
{L ∈ F : H . C̃G(K/L)}.

As H . C̃G(K/L) does not depend on the model we choose, the almost commutator
does not depend on G. In other words, in any elementary extension of G, it will
correspond to the intersection of the same A-de�nable groups.

To simplify notation in the rest of the section, we add A as constants to the

language and thus for any two A-ind-de�nable subgroups H and K of G, the

almost commutator [̃H,K ]̃ and the A-almost commutator [̃H,K ]̃A in the

new language coincide. Therefore, we may omit A in the index in the rest of the
section.

For two A-ind-de�nable normal subgroups H and K of G and L the intersection
of A-de�nable subgroups of G, we obtain immediately that

H . C̃G(K/L) implies [̃H,K ]̃ ≤ L.
The other implications is a consequence of the following result:

Lemma 5.2. For any A-ind-de�nable normal subgroups H and K of G, we have
that

H . C̃G
(
K
/

[̃H,K ]̃
)
.

Moreover, [̃H,K ]̃ is the smallest intersection of A-de�nable normal subgroups for
which this holds.

Proof. We let L be the family of all A-de�nable normal subgroups L of G such that

H . C̃G(K/L). Suppose that H 6. C̃G(K/̃[H,K ]̃). As [̃H,K ]̃ is the intersection of
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the normal subgroups L in L, Properties 2.6 (10) yields that there is an L in L such

that H 6. C̃G(K/L). This contradicts the choice of the L and the �rst part of the
lemma is established.

Now, let L be an intersection of A-de�nable normal subgroups such that H .
C̃G(K/L). Then, this holds for any of the de�nable subgroups in the intersection.

Thus, those subgroups contain [̃H,K ]̃ and therefore L contains [̃H,K ]̃. �

Using the previous lemma we obtain immediately the following corollaries.

Corollary 5.3. Let H and K be two A-ind-de�nable normal subgroups of G and
L be an intersection of A-de�nable normal subgroups of G. Then, we have that

H . C̃G(K/L) if and only if [̃H,K ]̃ ≤ L.

Corollary 5.4. For any almost commutator of two A-ind-de�nable normal subgroups
H and K and any intersection L of A-de�nable normal subgroups, we have that

[̃H,K ]̃ . L if and only if [̃H,K ]̃ ≤ L

Proof. The implication from right to left is trivial. So suppose that [̃H,K ]̃ . L.

Lemma 5.2 yields that H . C̃G(K/̃[H,K ]̃). Furthermore, by assumption we have

that the intersection of A-de�nable subgroups [̃H,K ]̃ ∩ L has bounded index in

[̃H,K ]̃, i. e. we have that [̃H,K ]̃ ∩ L ∼ [̃H,K ]̃. So Properties 2.6 (7) yields that

H . C̃G(K/(̃[H,K ]̃ ∩ L)). As [̃H,K ]̃ is the smallest subgroup for which this holds,
we obtain the result. �

Lemma 5.5. Let H, K, N and M be A-ind-de�nable normal subgroups of G.

(1) If N . H and M . K then [̃N,M ]̃ ≤ [̃H,K ]̃.

(2) If H (resp. K) is an intersection of de�nable groups [̃H,K ]̃ is contained in
H (resp. K).

Proof. (1) Let L be an arbitrary A-de�nable normal subgroup of G such that H

is almost contained in C̃G(K/L). Since K ∩M is a subgroup of K, we have

thatH is almost contained in C̃G(K∩M/L) as well. AsN is almost contained

in H, we may replace H by N and obtain N is almost contained in C̃G(K ∩
M/L). Additionally, the almost centralizer of two commensurate A-ind-
de�nable subgroups such as M and K ∩M coincides. Thus we conclude that

N is almost contained in C̃G(M/L) or in orther words [̃N,M ]̃ is a subgroup

of L. As L was arbitrary, the almost commutator [̃N,M ]̃ is contained in

[̃H,K ]̃.

(2) We have trivially that H ≤ C̃G(K/H). So if H is the intersection of de�nable
groups, we conclude that the almost commutator of H and K is contained
in H.

�

An easy application of compactness yields:

Lemma 5.6. Let H and K be two A-type-de�nable normal subgroups of an |A|+-
saturated group G. Fix {Hi : i ∈ I} and {Ks : s ∈ S} two projective systems of
A-de�nable sets such that H =

⋂
i∈I Hi and K =

⋂
s∈SKs (i. e. for any i, j in I and

s, t in S there exists n in I and m in S such that Hi∩Hj ⊇ Hn and Ks∩Kt ⊇ Km).
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Then, we have that

HK =
⋂

(i,s)∈I×S

HiKs.

Lemma 5.7. Let H, K, and L be A-ind-de�nable normal subgroups of G. Then we
have

[̃HK, L̃] ≤ [̃H, L̃] · [̃K, L̃].

Proof.

[̃H, L̃] · [̃K, L̃] =
⋂
{M ∈ F : H . C̃G(L/M)} ·

⋂
{N ∈ F : K . C̃G(L/N)}

5.6
=

⋂
{M ·N : M,N ∈ F , H . C̃G(L/M), K . C̃G(L/N)}

As the product of two groups in F is again a subgroup which belongs to F and since

H . C̃G(L/M) andK . C̃G(L/N), by Properties 2.6 we have thatH . C̃G(L/MN)

and K . C̃G(L/MN). So by Lemma 2.4 we obtain HK . C̃G(L/MN). Thus, the
previous set contains the following one:

⊇
⋂
{P ∈ F : HK . C̃G(L/P )}

= [̃HK, L̃]

This �nishes the proof. �

Another useful behavior of the almost centralizer is the following:

Lemma 5.8. Let H and K be two A-ind-de�nable normal subgroups of G and L

be an intersection of A-de�nable normal subgroups of G. If [̃H,K ]̃ ≤ L then H ≤
C̃2
G(K/L).

Proof. Let [̃H,K ]̃ be contained in L. By Corollary 5.3, we have that H . C̃G(K/L).

SoH/C̃G(K/L) is a bounded group and asH is normal in G, it contains hk ·C̃G(K/L)

for all h in H and k in K. Hence the set {hk : k ∈ K}/C̃G(K/L) of conjugates of

any element h in H by K modulo C̃G(K/L) is bounded. As the size of this set

corresponds to the index of CK(h/C̃K(K/L)) in K, the group H is contained in the

almost centralizer C̃G(K/C̃K(K/L)), i. e. the group H is contained in C̃2
G(K/L). �

5.1. Almost nilpotent subgroups of M̃c-groups. A consequence of the de�n-

ability of the almost centralizer in M̃c-groups (Proposition 2.23) is that the almost
commutator is �well behaved�. For example, we obtain the lemma below:

Lemma 5.9. Let G be an M̃c-group and H be an A-ind-de�nable normal subgroup
of G. For any natural number n, so we have that

[̃H, C̃nG(H )̃] ≤ C̃n−1
G (H)

Proof. We have that

[̃H, C̃nG(H )̃] =
[̃
H, C̃G

(
H
/
C̃n−1
G (H)

) ]̃
by de�nition of the almost centralizer. Moreover, the almost centralizer C̃n−1

G (H) is

an A-de�nable subgroup of G since G is an M̃c-group. Thus[̃
H, C̃G

(
H
/
C̃n−1
G (H)

) ]̃
≤ C̃n−1

G (H)
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as C̃G(H/C̃n−1
G (H)) is trivially contained in itself and we obtain the result. �

The main goal is to show a version of the Hall nilpotency criteria [9, Theorem 7]

for almost nilpotent M̃c-groups. To do so, we �rst have to state the approximate
three subgroups lemma in terms of the almost commutator.

Notation. LetH, K and L be A-ind-de�nable normal subgroups of a given group G.

We write [̃H,K, L̃] for [̃̃[H,K ]̃, L̃]. Note that the group [̃H,K ]̃ is an A-ind-de�nable

normal subgroup of G and thus [̃̃[H,K ]̃, L̃] is well de�ned.

Now, given an M̃c-group G, we have that the almost centralizer of any A-ind-
de�nable subgroup in G is de�nable. Thus for H, K and L such that H and K

normalize L, we have that H . C̃G(K/C̃G(L)) if and only if [̃H,K, L̃] is trivial.

With this equivalence, we may phrase Theorem 2.15 for M̃c-groups as below.

Corollary 5.10. Let H, K and L be three A-ind-de�nable strongly normal subgroups

of an M̃c-group G. Then for any M which is an intersection of A-de�nable normal
subgroups of G, we have that

[̃H,K, L̃] ≤M and [̃K,L,H ]̃ ≤M imply [̃L,H,K ]̃ ≤M.

Proof. Let M be equal to the intersection of de�nable subgroups Mi with i < κ. For
any i less than κ, we may work in the group G modulo Mi which is a quotient of

an M̃c-group by a de�nable normal subgroup and so an M̃c-group as well. Hence,
Theorem 2.15 (working modulo the de�nable group Mi) yields that

H . C̃G
(
K
/
C̃G(L/Mi)

)
and K . C̃G

(
L
/
C̃G(H/Mi)

)
imply

L . C̃G
(
H
/
C̃G(K/Mi)

)
.

Which we can translate to

[̃H,K, L̃] ≤Mi and [̃K,L,H ]̃ ≤Mi imply [̃L,H,K ]̃ ≤Mi

So the statement is true for any Mi and hence for the intersection. �

Now, we want to de�ne the notion of an almost lower central series and �nd a
characterization of being almost nilpotent via this series. In literature the ordinary
lower central series of a subgroup H of G is de�ned as follows:

γ1H = H and γi+1H = [γiH,H].

Analogously, we introduce a notion of the almost lower central series:

De�nition 5.11. We de�ne the almost lower A-central series of an A-ind-de�nable
subgroup H of G as follows:

(γ̃1H)A = H and (γ̃i+1H)A = [̃γ̃iH,H ]̃A.

We also refer to (γ̃nH)A as the iterated nth almost commutator of H. Again, if A is
the empty set we omit the index.

As we have added A as constants to the language, we may omit it again

in the subscript of the iterated nth almost commutator for the rest of the

section.
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Remark 5.12. The almost lower center series is well-de�ned as [̃H,H ]̃ is the inter-
section of A-de�nable groups and hence A-type-de�nable. Thus, by induction we see

that γ̃i+1H = [̃γ̃iH,H ]̃ is again an A-type-de�nable subgroup.

To make the proofs more readable, we �x the following notation:

Notation. If K1, . . . ,Kn are A-ind-de�nable subgroups of G, let

γ̃n(K1, . . . ,Kn) := [̃ . . . [̃̃[K0,K1̃],K2̃], . . . ,Kñ].

If Ki, . . . ,Ki+j−1 are all equal to K we can replace the sequence by Kj , i. e. write
γ̃n(K1, . . . ,Kn) as γ̃n(K1, . . .Ki−1,K

j ,Ki+j , . . . ,Kn). Also,

γ̃i+0+j(K1, . . .Ki,K
0,Ki+1, . . . ,Ki+j) = γ̃i+j(K1, . . .Ki,Ki+1, . . . ,Ki+j).

Observe that γ̃n(Hn) is another way of writing (γ̃nH).

We want to establish a connection between the triviality of the nth iterated almost
commutator of a normal subgroup H of G and the almost nilpotency class of H.

Lemma 5.13. If H is an A-ind-de�nable normal subgroup of an M̃c-group G and
almost nilpotent of class n, then γ̃n+1H is trivial. Conversely, if γ̃n+1H is trivial,
then H is almost nilpotent of class at most n+ 1.

Proof. To prove the �rst result, we show by induction on i ≤ n that the almost

commutator γ̃i+1H is contained in C̃n−iG (H). As H is almost nilpotent of class n, i.

e. H ≤ C̃nG(H), the inclusion is satis�ed for i equals to zero. Now suppose it holds
for all natural numbers smaller or equal to i. The induction hypothesis together

with Lemma 5.5(1) implies that γ̃i+2H = [̃γ̃i+1H,H ]̃ is contained in [̃C̃n−iG (H), H ]̃.

Moreover, by Lemma 5.9 we have that [̃C̃n−iG (H), H ]̃ is contained in C̃n−i−1
G (H).

Hence γ̃i+2H is also contained in C̃n−i−1
G (H) which �nishes the induction. Letting

i be equal to n, we obtain that γ̃n+1H is contained in C̃0
G(H) which is the trivial

group by de�nition.

For the second result, we �rst show the following inclusion by induction that for
i less or equal to n− 1:

γ̃(n+1)−iH ≤ C̃iG(H).

For i = 0, the inequality holds by hypothesis. Now we assume, the inequality holds

for i < n − 1. Thus γ̃(n+1)−iH ≤ C̃iG(H) or in other words [̃γ̃(n+1)−(i+1)H,H ]̃ ≤
C̃iG(H). By Corollary 5.3, we have that

γ̃(n+1)−(i+1)H . C̃G
(
H
/
C̃iG(H)

)
= C̃i+1

G (H).

By Corollary 5.4, as (n+ 1)− (i+ 1) is at least 2, �nally we obtain γ̃(n+1)−(i+1)H ≤
C̃i+1
G (H) which �nishes the induction.

Now, we let i be equal to n − 1 we obtain: [̃H,H ]̃ ≤ C̃n−1
G (H). Then by Lemma

5.8 we have that H ≤ C̃n+1
G (H) and hence H is almost nilpotent of class n+ 1. �

The next three lemmas are the preparation to �nally show the approximate version
of Hall's nilpotency criteria.
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Lemma 5.14. Let N be a normal subgroup of an M̃c-group G. Then for all positive
natural numbers n and m, we have that

[̃γ̃nN, γ̃mN ]̃ = γ̃n+mN.

The proof is an easy induction on m.

Lemma 5.15. Let N be an A-ind-de�nable normal subgroup of an M̃c-group G.
Then, for any natural numbers n ≥ 2, i and j we have that[̃

γ̃nN, γ̃i+j(N
i, Gj)

]̃
≤ γ̃n+iN

where
[̃
γ̃nN, γ̃i+j(N

i, Gj)
]̃
for i = j = 0 equals γ̃nN .

Proof. Note �rst that as n is at least 2, the group γ̃nN is an intersection of normal

A-de�nable groups. Thus for i equal to 0, we have that [̃γ̃nN, γ̃jG]̃ ≤ γ̃nN by Lemma
5.5(2).

Now, let i be equal to 1. Note �rst that by Lemma 5.5(1)+(2),[̃
γ̃nN, γ̃1+j(N,G

j)
]̃
≤
[̃
γ̃nN, [̃N,G]̃̃

]
. (∗)

Furthermore, we have the following:[̃̃
[γ̃nN,G]̃, N

]̃ 5.5(1)+(2)

≤ [̃γ̃nN,N ]̃ = γ̃n+1N,

[̃̃
[γ̃nN,N ]̃, G

]̃ 5.5(2)

≤ [̃γ̃nN,N ]̃ = γ̃n+1N.

Hence, as γ̃n+1N is the intersection of A-de�nable subgroups, the three subgroups

lemma (Corollary 5.10) yields that [̃γ̃nN, [̃N,G]̃̃] is contained in γ̃n+1N . Now, by (∗)
we conclude for i equals to 1.

If i is greater than 1, we have that[̃
γ̃nN, γ̃i+j(N

i, Gj)
]̃ 5.5(1)+(2)

≤ [̃γ̃nN, γ̃iN ]̃.

By Lemma 5.14, we obtain that [̃γ̃nN, γ̃iN ]̃ is contained in γ̃n+iN which �nishes the
proof. �

The following lemma is [9, Lemma 7] generalized to our framework.

Lemma 5.16. Let N be a A-ind-de�nable normal subgroup of an M̃c-group G and

suppose that there exists a natural number m > 0 such that γ̃m+1(N,Gm) . [̃N,N ]̃.
Then, for all natural numbers r > 0 we have that

γ̃rm+1(N r, Grm−r+1) ≤ γ̃r+1N.

Proof. We start this proof with the following claim.

Claim. Let X be an ind-de�nable normal subgroup of G. Then for any n > 0, we
have that

γ̃n+2(X,N,Gn) ≤
n∏
i=0

[̃
γ̃i+1(X,Gi), γ̃n−i+1(N,Gn−i)

]̃
.(2)
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Proof of the claim. We prove the claim by induction on n > 0. Let n be equal to 1.
Trivially we have that

[̃N,G,X ]̃ ≤
[̃
X, [̃N,G]̃

]̃
·
[̃̃
[X,G]̃, N

]̃
and

[̃G,X,N ]̃ ≤
[̃
X, [̃N,G]̃

]̃
·
[̃̃
[X,G]̃, N

]̃
.

The three subgroups lemma (Corollary 5.10) insures that

[̃X,N,G]̃ ≤
[̃
X, [̃N,G]̃

]̃
·
[̃̃
[X,G]̃, N

]̃
and so the claim holds for n = 1.

Now, assume the claim holds for some n > 0. We compute:

γ̃n+3(X,N,Gn+1) =
[̃
γ̃n+2(X,N,Gn), G

]̃
IH
≤

5.5(1)

[̃ n∏
i=0

[̃
γ̃i+1(X,Gi), γ̃n−i+1(N,Gn−i)

]̃
, G
]̃
.

As all factors are invariant normal subgroups of G we may apply Lemma 5.7 �nitely
many times to the last expression and continue the computation:

≤
n∏
i=0

[̃[̃
γ̃i+1(X,Gi), γ̃n−i+1(N,Gn−i)

]̃
, G
]̃
.(3)

To simplify notation, we let Xi = γ̃i+1(X,Gi) and Nj = γ̃j+1(N,Gj). Now, �x some
i less or equal to n. We obtain that[̃[̃

γ̃i+1(X,Gi), G
]̃
, γ̃n−i+1(N,Gn−i)

]̃
=

[̃
γ̃i+2(X,Gi+1), γ̃n−i+1(N,Gn−i)

]̃
= [̃Xi+1, Nn−ĩ]

and [̃[̃
γ̃n−i+1(N,Gn−i), G

]̃
, γ̃i+1(X,Gi)

]̃
=

[̃
γ̃n−i+2(N,Gn+1−i), γ̃i+1(X,Gi)

]̃
= [̃Nn−i+1, Xĩ]

= [̃Xi, Nn−i+1̃].

As the groups on the right are intersection of de�nable subgroups of G, using the
approximate three subgroups lemma (Corollary 5.10), we obtain the following in-
equation for the ith factor of (3):[̃[̃

γ̃i+1(X,Gi), γ̃n−i+1(N,Gn−i)
]̃
, G
]̃
≤ [̃Xi+1, Nn−ĩ] · [̃Xi, Nn−i+1̃].

Over all, we get that

γ̃n+3(X,N,Gn) ≤
n+1∏
i=0

[̃Xi, Nn−i+1̃] =

n+1∏
i=0

[̃
γ̃i+1(X,Gi), γ̃n+1−i+1(N,Gn+1−i)

]̃
.

�claim

Now, we prove the Lemma by induction on r > 0. By Corollary 5.4, the almost in-

equality γ̃m+1(N,Gm) . [̃N,N ]̃ implies immediately γ̃m+1(N,Gm) ≤ [̃N,N ]̃. Thus,
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for r equals to 1 the lemma holds trivially by the hypothesis. Assume that the result
holds for a given r greater or equal to 1. We want to prove that

γ̃(r+1)m+1(N r+1, G(r+1)m−r) ≤ γ̃r+2N.

Now consider equation (2) with n = (r + 1)m − r and X replaced by γ̃rN
r. This

gives us:

γ̃(r+1)m+1(N r+1, G(r+1)m−r) = γ̃((r+1)m−r)+2(γ̃rN,N,G
(r+1)m−r)(4)

≤
(r+1)m−r∏

i=0

[̃
γ̃i+1(γ̃rN,G

i), γ̃n−i+1(N,Gn−i)
]̃
.(5)

The group on the left hand side is the one we want to analyze. The goal is to prove
that all factors on the right hand side are contained in γ̃r+2N . So, we consider the
factor indexed by i.

Supoose �rst that i is greater than rm− r. By induction hypothesis, we have that

γ̃rm+1(N r, Grm−r+1) ≤ γ̃r+1N.

As γ̃rm+1(N r, Grm−r+1) is normal in G and an intersection of A-de�nable groups,
using Lemma 5.5 (2) we obtain that γ̃r+i(N

r, Gi) ≤ γ̃r+1N and[̃
γ̃i+1(γ̃rN,G

i), γ̃n−i+1(N,Gn−i)
]̃ 5.5(1)

≤
[̃
γ̃r+1N, γ̃n−i+1(N,Gn−i)

]̃
5.15
≤ γ̃r+2N.

Now, assume that i ≤ rm − r. By the case r = 1, we have that γ̃m+1(N,Gm) ≤
[̃N,N ]̃. As n − i is greater than m and γ̃m+1(N,Gm) is an intersection of normal

subgroup of G, we also have that γ̃n−i+1(N,Gn−i) ≤ [̃N,N ]̃. So we may compute:[̃
γ̃i+1((γ̃rN

r), Gi), γ̃n−i+1(N,Gn−i)
]̃ 5.5(1)

≤
[̃
γ̃i+r(N

r, Gi), [̃N,N ]̃
]̃

5.15
≤ γ̃r+2N.

Hence all factors, and therefore γ̃(r+1)m+1(N r+1, G(r+1)m−r), are contained in γ̃r+2N .
This �nishes the proof. �

Now, we are ready to generalize Hall's nilpotency criteria to M̃c-groups.

Corollary 5.17. Let N be an A-ind-de�nable normal subgroup of an M̃c-group G.

If N is almost nilpotent of class m and G/̃[N,N ]̃ is almost nilpotent of class n then

G is almost nilpotent of class at most
(
m+1

2

)
n−

(
n
2

)
+ 1.

Proof. By hypothesis and Lemma 5.13 we have that

γ̃m+1N = 1 and γ̃n+1G ≤ [̃N,N ]̃. (∗)
Hence

γ̃n+1(N,Gn) ≤ [̃N,N ]̃

and whence N satis�es the hypothesis of Lemma 5.16. Thus

γ̃rn+1(N r, Grn−r+1) ≤ γ̃r+1N(6)

holds for all natural numbers r. Let f(x) =
(
x+1

2

)
n −

(
x
2

)
. For every i greater than

1, we obtain that
γ̃f(i)+1G ≤ γ̃i+1N
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Choosing i to be m we get that

γ̃f(m)+1G ≤ γ̃m+1N = {1}.

So Lemma 5.13 yields that G is almost nilpotent of class at most
(
m+1

2

)
n−
(
n
2

)
+1. �

Corollary 5.18. Let H and K be A-ind-de�nable normal subgroups of an M̃c-group
G.

(1) If [̃H,H ]̃ = [̃G,G]̃, then for all r ≥ 2, we have γ̃rH = γ̃rG.

(2) If [̃H,K ]̃ and [̃H,H ]̃ are contained in [̃K,K ]̃, then for all r ≥ 2, the almost
commutator γ̃rH is contained in γ̃rK.

Proof. (1) As H is a subgroup of G, we have that γ̃rH ≤ γ̃rG holds trivial for
all r ≥ 2. We prove the inverse inclusion by induction on r. For r equals to
2, the statement holds by hypothesis. Now suppose that the statement holds
for all natural numbers smaller than r > 2. Thus,

γ̃rG ≤ γ̃r(Hr−1, G).

Furthermore, [̃H,G]̃ ≤ [̃H,H ]̃, hence we may apply Lemma 5.16 with m = 1
and obtain that

γ̃r(H
r−1, G) ≤ γ̃rH

which �nishes the proof.
(2) Consider L = HK. Then we can compute that

[̃L, L̃] = [̃HK,HK ]̃
5.7
≤ [̃H,H ]̃ · [̃K,K ]̃ · [̃H,K ]̃ = [̃K,K ]̃.

By the �rst part of the corollary we can conclude that γ̃rH
r ≤ γ̃rLr = γ̃rK

r.
�

5.2. Other applications of the almost three subgroups lemma and results

on almost nilpotent groups. Using symmetry of the almost centralizer, the three
subgroups lemma and the de�nabilily of the almost centralizer, we may generalize a
theorem due to Hall [12, Satz III.2.8] for the ordinary centralizer to our context.

Proposition 5.19. Let G be an M̃c-group, N0 ≥ N1 ≥ · · · ≥ Nm ≥ . . . be a de-
scending sequence of A-de�nable normal subgroups of G, and H be an A-ind-de�nable

normal subgroup of G. Suppose that for all i ∈ N, we have H . C̃G(Ni/Ni+1). We
de�ne for i > 0,

Hi :=
⋂
k∈N

C̃H(Nk/Nk+i).

Then we have that for all positive natural numbers i and j, the group Hi is almost con-

tained in C̃G(Hj/Hi+j), the group H is almost contained in C̃iG

(
H
/
C̃G(Nj−1/Ni+j)

)
and therefore [̃γ̃i+1H,Nj−1̃] ≤ Ni+j.

Remark 5.20. The non-approximate version [12, Satz III.2.8] states that for Hi

de�ned as
⋂
k∈NCH(Nk/Nk+i) we have that for all positive natural numbers i and

j, [Hi, Hj ] ≤ Hi+j and [γi+1H,Nj−1] ≤ Ni+j .
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Proof. Note that H is equal to
⋂
k∈N C̃G(Nk/Nk+i) ∩ H and thus the intersection

of an ind-de�nable subgroup and boundedly many de�nable subgroups. So Hi is as
well an ind-de�nable subgroup of G.

As C̃G(Nk/Nk+i+j) is de�nable for any natural number k, Properties 2.6 (9) yields
that

Hi . C̃G(Hj/Hi+j) = C̃G

(
Hj

/ ⋂
k∈N

C̃G(Nk/Nk+i+j)

)
if and only if for all natural number k we have that

Hi . C̃G
(
Hj

/
C̃G(Nk/Nk+i+j)

)
.

So it is enough to show the latter result for any natural number k ∈ N. So �x some

k, i and j in N. By the de�nition of Hj we have that Hj ≤ C̃G(Nk+i/Nk+i+j).
Symmetry modulo de�nable subgroups for almost centralizers yields that Nk+i .
C̃G(Hj/Nk+i+j). This implies that

Hi ≤ C̃G (Nk/Nk+i) ≤ C̃G
(
Nk

/
C̃G(Hj/Nk+i+j)

)
.(7)

Exchanging the role of i and j we obtain as well that

Hj ≤ C̃G

(
Nk

/
C̃G(Hi/Nk+j+i)

)
= C̃G

(
Nk

/
C̃G(Hi/Nk+i+j)

)
.(8)

Using again symmetry modulo de�nable subgroups for almost centralizers to (7), we
get:

Nk . C̃G

(
Hi

/
C̃G(Hj/Nk+i+j)

)
.(9)

Working in G/Nk+i+j , we can apply the three subgroups lemma (Theorem 2.15) to
the equalities (8) and (9) since all Ni's and all Hi's normalize each other and obtain

Hi . C̃G
(
Hj

/
C̃G(Nk/Nk+i+j)

)
.

As k was arbitrary, this establishes the �rst part of the theorem.

In particular, we have that for any natural numbers i and j greater than 0

H1 . C̃G(H1/H2) . C̃G
(
H1

/
C̃G(H1/H3)

)
= C̃2

G(H1/H3)

. . . . . C̃iG(H1/Hi+1) . C̃iG
(
H1

/
C̃G(Nj−1/Ni+j)

)
By hypothesis we have that H1 is a bounded intersection of groups which are com-
mensurate with H and whence it is itself commensurate with H. As two commen-
surate groups have the same almost centralizer, the same almost inclusion holds for
H which �nishes the proof. �

Using the previous result and de�nability of the almost centralizers, we may �nd
a version of [4, Lemma 2.4] in terms of the almost centralizer:

Corollary 5.21. Let H be an A-ind-de�nable normal subgroup of an M̃c-group G.
Then for any 0 < i < j, we have that

H . C̃iG
(
H
/
C̃G

(
C̃jG(H)

/
C̃j−i−1
G (H)

))
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Proof. For k < 2j− 1, we let Nk = C̃2j−1−k
G (H) and for k ≥ 2j− 1, we let Nk be the

trivial group. As G is an M̃c-group, all Nk are de�nable. Note that for any natural

number n, the almost centralizer C̃nG(H) is de�nable and C̃n+1
G (H) = C̃G(H/C̃nG(H))

is contained in itself. Hence, symmetry of the almost centralizer (Theorem 2.10) yield
that

H . C̃G
(
C̃n+1
G (H)

/
C̃nG(H)

)
and whence

H . C̃G(Nk/Nk+1).

So we may apply Proposition 5.19 to the ind-de�nable subgroup H and the sequence
of de�nable groups Ni. This gives us that

H . C̃iG
(
H
/
C̃G(Nj−1/Ni+j)

)
= C̃iG

(
H
/
C̃G

(
C̃jG(H)

/
C̃j−i−1
G (H)

))
�

Using the new notion of almost commutator and the fact that the almost central-

izer of any subgroup in an M̃c-group is de�nable, we may state the previous lemma
in this terminology which resembles more to the ordinary result.

Corollary 5.22. Let H be an A-ind-de�nable normal subgroup of the M̃c-group G.
Then for any 0 < i < j, we have that

[̃γ̃i+1H, C̃
j
G(H )̃] ≤ C̃j−i−1

G (H).

In the next lemma, we use the almost three subgroups lemma in terms of the
almost commutator to generalize [4, Lemma 2.5] to our framework.

Lemma 5.23. Let H and K be two A-ind-de�nable normal subgroups of G with
K ≤ H and ` > 0. If

C̃G(γ̃tK) ∼ C̃G(γ̃tH) t = 1, . . . , `

then C̃`G(K) ∼ C̃`G(H).

Proof. The case ` equals 1 is trivial. So let's assume that the lemma holds for `− 1.
We need to prove the following intermediate result:

Claim. [̃γ̃`−tH, C̃
`
G(K )̃] ≤ C̃tG(H) holds for all t = 0, . . . , `− 1.

Proof. We show the claim by induction on the tuple (`, t) (ordered lexicographically)
with t < `. First we treat the cases (`, 0) for any natural number `:

Replacing H by K, i by `−1, and j by ` in Corollary 5.22, we obtain [̃γ̃`K, C̃
`
G(K )̃] =

1. This implies that C̃`G(K) is almost contained in C̃G(γ̃`K) which is, by the hy-

pothesis of the lemma, commensurate with C̃G(γ̃`H). Thus C̃`G(K) . C̃G(γ̃`H) or

in other words [̃γ̃`H, C̃
`
G(K )̃] = 1. Hence the claim holds for (`, 0) with ` > 0.

Now, let 0 < t < ` and assume additionally that the claim holds for any tuple
(k, s) < (`, t) in the lexicographical order.
Then using Lemma 5.5 (1) and the induction hypothesis for (`, t−1) (in the equation
marked as (∗) below) and for (` − 1, t − 1) (in the equation marked as (∗∗) below)
we may compute

[̃̃[γ̃`−tH,K ]̃, C̃`G(K )̃]̃]
5.5(1)

≤
K≤H

[̃̃[γ̃`−tH,H ]̃, C̃`G(K )̃] = [̃γ̃`−(t−1)H, C̃
`
G(K )̃]

(∗)
≤ C̃t−1

G (H)
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and

[̃γ̃`−tH, [̃K, C̃
`
G(K )̃]̃] ≤ [̃γ̃`−tH, C̃

`−1
G (K )̃] = [̃γ̃(`−1)−(t−1)H, C̃

`−1
G (H )̃]

(∗∗)
≤ C̃t−1

G (H).

Thus by Corollary 5.10 we have

[̃̃[γ̃l−tH, C̃
`
G(K )̃],K ]̃ ≤ C̃t−1

G (H).

As t−1 is less than `, we have, by the hypothesis of the outer induction, that C̃t−1
G (H)

is commensurate with C̃t−1
G (K) and so [̃̃[γ̃`−tH, C̃

`
G(K )̃],K ]̃ is almost contained in

C̃t−1
G (K). As C̃t−1

G (K) is A-de�nable, using Corollary 5.4, we obtain that

[̃̃[γ̃`−tH, C̃
`
G(K )̃],K ]̃ ≤ C̃t−1

G (K).

Thus [̃γ̃`−tH, C̃
`
G(K )̃] is almost contained in C̃tG(K) which is commensurate once

more with C̃tG(H) by the outer induction hypothesis. Again by Corollary 5.4 almost
contained can be replaced by contained, which gives us

[̃γ̃`−tH, C̃
`
G(K )̃] ≤ C̃tG(H).

Thus the claim holds for the tuple (`, t) which �nishes the induction and hence the
proof of the claim. �(claim)

Now taking t equals to `−1, we obtain [̃H, C̃`G(K )̃] ≤ C̃`−1
G (H) which implies that

C̃`G(K) is almost contained in C̃`G(H). On the other hand, we have that

[̃K, C̃`G(H )̃]
5.5(1)

≤
K≤H

[̃H, C̃`G(H )̃]
5.9
≤ C̃`−1

G (H)
hyp.∼ C̃`−1

G (K).

Again by Corollary 5.3 we obtain that [̃K, C̃`G(H )̃] ≤ C̃`−1
G (K) and so C̃`G(H) is

almost contained in C̃`G(K). Combining these two results, we obtain that C̃`G(K) is

commensurate with C̃`G(H) which �nishes the proof. �

We �nish this section with another result on almost nilpotent M̃c-groups which
do not use the almost three subgroups lemma.

Lemma 5.24. Let G be almost nilpotent M̃c-group and N be a nontrivial intersection

of A-de�nable normal subgroups of G. Then [̃N,G]̃ is properly contained in N and

N ∩ Z̃(G) is a nontrivial subgroup of G. In particular, any minimal A-invariant
normal subgroup of G is contained in the almost center of G.

Proof. As N is an intersection of A-de�nable normal subgroups of G and we have

trivially that N . C̃G(G/N), the group [̃N,G]̃ is contained in N . Additionally,

the commutator [̃N,G]̃ is also contained in [̃G,G]̃ by Lemma 5.5. Inductively we
obtain γ̃i+1(N,Gi) ≤ N ∩ γ̃i+1G. As G is almost nilpotent γ̃mG is trivial for some

natural number m. Hence [̃N,G]̃ has to be properly contained in N because if not
γ̃m(N,Gm−1) would be equal to N as well. This proves the �rst part of the Lemma.

Moreover, again by Lemma 5.5, we have that γ̃m(N,Gm−1) ≤ γ̃mG and thus it is
also trivial. Now choose n such that γ̃n+1(N,Gn) is trivial and properly contained
in γ̃n(N,Gn−1). Hence

γ̃n(N,Gn−1) . Z̃(G).
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Since the almost center of G is de�nable, Corollary 5.4 yields that γ̃n(N,Gn−1) is

actually contained in Z̃(G). As additionally the group γ̃n(N,Gn−1) is nontrivial and

contained in N , the subgroup N ∩ Z̃(G) is nontrivial as well. �
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