
HAL Id: hal-01206473
https://hal.science/hal-01206473

Submitted on 29 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Byzantine Leader Election in Dynamic Networks
John Augustine, Gopal Pandurangan, Peter Robinson

To cite this version:
John Augustine, Gopal Pandurangan, Peter Robinson. Fast Byzantine Leader Election in Dynamic
Networks . DISC 2015, Toshimitsu Masuzawa; Koichi Wada, Oct 2015, Tokyo, Japan. �10.1007/978-
3-662-48653-5_19�. �hal-01206473�

https://hal.science/hal-01206473
https://hal.archives-ouvertes.fr


Fast Byzantine Leader Election in
Dynamic Networks

John Augustine1,?, Gopal Pandurangan2,??, and Peter Robinson3,? ? ?

1 Indian Inst. of Tech. Madras, Chennai, TN, India
2 Department of Computer Science, University of Houston, TX, USA

3 Queen’s University Belfast, United Kingdom

Abstract. We study the fundamental Byzantine leader election problem
in dynamic networks where the topology can change from round to round
and nodes can also experience heavy churn (i.e., nodes can join and leave
the network continuously over time). We assume the full information
model where the Byzantine nodes have complete knowledge about the
entire state of the network at every round (including random choices made
by all the nodes), have unbounded computational power and can deviate
arbitrarily from the protocol. The churn is controlled by an adversary that
has complete knowledge and control over which nodes join and leave and
at what times and also may rewire the topology in every round and has
unlimited computational power, but is oblivious to the random choices
made by the algorithm.
Our main contribution is an O(log3 n) round algorithm that achieves
Byzantine leader election under the presence of up to O(n1/2−ε) Byzantine
nodes (for a small constant ε > 0) and a churn of up to
O(
√
n/polylog(n)) nodes per round (where n is the stable network size).

The algorithm elects a leader with probability at least 1 − n−Ω(1) and
guarantees that it is an honest node with probability at least 1− n−Ω(1);
assuming the algorithm succeeds, the leader’s identity will be known to a
1− o(1) fraction of the honest nodes. Our algorithm is fully-distributed,
lightweight, and is simple to implement. It is also scalable, as it runs
in polylogarithmic (in n) time and requires nodes to send and receive
messages of only polylogarithmic size per round. To the best of our
knowledge, our algorithm is the first scalable solution for Byzantine leader
election in a dynamic network with a high rate of churn; our protocol
can also be used to solve Byzantine agreement in a straightforward way.
We also show how to implement an (almost-everywhere) public coin with
constant bias in a dynamic network with Byzantine nodes and provide a
mechanism for enabling honest nodes to store information reliably in the
network, which might be of independent interest.

? John Augustine was supported by IIT Madras New Faculty Seed Grant, IIT Madras
Exploratory Research Project, and Indo-German Max Planck Center for Computer
Science (IMPECS).

?? Gopal Pandurangan was supported in part by NSF grant CCF-1527867.
? ? ? Peter Robinson was partly supported by the European Community’s Seventh Frame-

work Programme (FP7/2007-2013) under the ASAP project, grant agreement no.
619706.



1 Introduction

Motivated by the need for robust and secure distributed computation in large-
scale (sparse) networks such as peer-to-peer (P2P) and overlay networks, we
study the fundamental Byzantine leader election problem in dynamic networks,
where a large number of nodes can join and leave the network continuously and
the topology can also change continuously. The Byzantine leader election problem
in dynamic networks is challenging because the goal is to guarantee that an
honest (i.e., non-Byzantine) node is elected as a leader with probability at least
1−o(1) and whose identity is known to most honest nodes4 despite the adversarial
network dynamism and the presence of Byzantine nodes. Byzantine leader election
is related to another fundamental and central problem in distributed computing,
namely, Byzantine agreement. In fact, in our setting, Byzantine leader election
is a harder problem, since it can be used to solve almost-everywhere Byzantine
agreement in a straightforward way.

Byzantine agreement and leader election have been challenging problems
even in static networks. Indeed, until recently, almost all the work known in
the literature (see e.g., [14, 19, 20, 22, 31]) have addressed the Byzantine almost-
everywhere agreement problem only in static networks. Unfortunately, these
approaches fail in dynamic networks where both nodes and edges can change
by a large amount in every round. For example, Upfal [31] showed how one can
achieve almost-everywhere agreement under up to a linear number — up to εn,
for a sufficiently small ε > 0 — of Byzantine faults in a bounded-degree expander
network (n is the network size). However, the algorithm requires knowledge of the
global topology, since at the start, nodes need to have this information hardcoded.
The work of King et al. [23] is important in the context of P2P networks, as
it was the first to study scalable (polylogarithmic communication and number
of rounds) algorithms for Byzantine leader election and agreement. However,
as pointed out by the authors, their algorithm works only for static networks.
Similar to Upfal’s algorithm, the nodes require hardcoded information on the
network topology to begin with and thus the algorithm does not work when
the topology changes (in particular, when the edges are also changing in every
round). In fact, this work ([23]) raised the open question of whether one can
design Byzantine leader election and agreement protocols that can work in highly
dynamic networks with a large churn rate.

The work of [4] was the first to study the Byzantine agreement problem in
a dynamic network with a large churn rate. However, this algorithm does not
directly solve the leader election problem, since the value that (most of) the
honest nodes agree may be a value that was generated by a Byzantine node; using
the agreement algorithm in a straightforward way does not give any guarantee
that an honest node will be elected as leader. Hence, a more involved approach
is needed for Byzantine leader election.

4 In sparse, bounded-degree networks, an adversary can always isolate some number
of honest nodes, hence “almost-everywhere” is the best one can hope for in such
networks (cf. [14]).



Our Main Result. We study Byzantine leader election in dynamic networks
where the topology can change from round to round and nodes can also experience
heavy churn (i.e., nodes can join and leave the network continuously over time).
Our goal is to design a fast distributed algorithm (running in a small number of
rounds) that guarantees, despite a relatively large number of Byzantine nodes
and high node churn, that an honest node is elected as leader and almost all
honest nodes know the identity of this leader.

Before we state our results, we briefly describe the key ingredients of our
model here. (Our model is described in detail in Section 1.1, it is similar to the
model considered in prior work, e.g., [6, 4, 5].) We consider a dynamic network as
a sparse bounded degree expander graph whose topology — both nodes and edges

— can change arbitrarily from round to round and is controlled by an adversary.
However, we assume that the total number of nodes in the network is stable.
Note that our model is quite general in the sense that we only assume that the
topology is an expander5 at every step; no other special properties are assumed.
Indeed, expanders have been used extensively to model dynamic P2P networks
in which the expander property is preserved under insertions and deletions of
nodes (e.g., [26, 29]). Since we do not make assumptions on how the topology is
preserved, our model is applicable to all such expander-based networks. (We note
that various prior work on dynamic network models make similar assumptions
on preservation of topological properties — such as connectivity, expansion etc.

— at every step under dynamic edge insertions/deletions — cf. Section 1. The
issue of how such properties are preserved are abstracted away from the model,
which allows one to focus on the dynamism. Indeed, this abstraction has been a
feature of most dynamic models e.g., see the survey of [10].) Furthermore, our
results are applicable to dynamic network models with good expansion where
only edges change (and no churn) —such models have been studied extensively
in recent years (cf. Section 1).

The number of node changes per round is called the churn rate or churn
limit. We consider a churn rate of up to O(

√
n/polylog(n)), where n is the stable

network size. Furthermore, we assume that a large number of nodes can be
Byzantine. We allow up to O(n

1
2−ε) Byzantine nodes in any round, where ε > 0

is a small constant. Byzantine nodes (who have unbounded computational power)
are “adaptive”, in the sense that they know the entire states of all nodes at the
beginning of every round and thus can take the current state of the network
into account when determining their next action. In each round, an oblivious
adversary chooses some O(

√
n/polylog(n)) nodes that are replaced by new nodes.

The oblivious adversary has complete control over what nodes join and leave and
at what time and also may rewire the edges in every round and has unlimited
computational power but is oblivious to the random choices of the nodes. (Note
that an adaptive churn adversary that knows the current state of all the nodes is
not very interesting in the context of leader election, since it can churn out the
leader as soon as it is elected.)

5 In principle, our results can potentially be extended to graphs with weaker expansion
guarantees as well; however the amount of churn and Byzantine nodes that can be
tolerated will be reduced correspondingly.



Our main contribution is a randomized distributed algorithm that achieves
leader election with high probability6 even under a large number of Byzantine
nodes and continuous adversarial churn in a number of rounds that is polylog-
arithmic in n (where n is the stable network size). In particular, we show the
following theorem:

Theorem 1 (Main Theorem). Let ε > 0 be any fixed constant. Consider a
synchronous dynamic n-node (n is the stable network size) expander network

where up to O(n
1
2−ε) nodes are Byzantine (who can behave arbitrarily and who

have full knowledge of the current network state including past random choices
made by other nodes), and suppose that up to O(

√
n/polylog(n)) nodes are

subjected to churn per round determined by an oblivious adversary. There exists
an algorithm that elects a leader with probability 1− n−Ω(1) who is known by all
except o(n) nodes, and the leader is an honest node with probability 1− n−Ω(1).
The algorithm runs in O(log3 n) rounds and uses messages of O(polylog(n)) size.

Our algorithm is the first-known, decentralized Byzantine leader election
algorithm in highly dynamic networks. Our algorithm is localized (does not
require any global topological knowledge), simple, and easy to implement. It
can serve as a building block for implementing other non-trivial distributed
coordination tasks in highly dynamic networks with churn.
Technical Overview. The main technical challenge that we have to overcome
is designing and analyzing distributed algorithms with the presence of Byzantine
nodes in networks where both nodes and edges can change by a large amount
continuously in each round. The same challenge was present in solving the
Byzantine agreement problem in such networks which was addressed in [4].
However, this does not directly solve the leader election problem, since the value
that (most of) the honest nodes agree may be a value that was generated by a
Byzantine node; using the agreement algorithm in a straightforward way does
not give any guarantee that an honest node will be elected as leader. Hence,
a more involved approach is needed for Byzantine leader election. We outline
key ingredients of our approach here (Sections 2.1 and 2.2 give a more detailed
overview).

While Byzantine agreement itself does not directly help, it can be used to
generate an almost-everywhere public coin, i.e., an almost fair public coin that
is known to most honest nodes. This is the first key ingredient. To the best of
our knowledge, we present the first solution to such an almost everywhere (AE)
common coin in a highly dynamic network.

Our protocol requires nodes to independently generate “lottery tickets” which
are bit strings of certain length. Essentially, a node that has the winning lottery
ticket becomes part of the small set of finalists from which a leader will be chosen
eventually. However, there is a problem in naively implementing this approach.
The Byzantine nodes, who know the current network state including random
choices of other nodes, can change location and might lie about their lottery
ticket number, thus claiming to be the winner. To overcome this, we implement

6 In this paper, with high probability refers to a probability of > 1− n−Ω(1).



a verification mechanism that allows the honest nodes to check whether the
Byzantine nodes are lying. This mechanism is as follows. Once a node generates
its lottery ticket it “stores” it in about

√
n (randomly chosen) nodes (exceeding

the number of Byzantine nodes by an nε factor). To verify whether a node is
indeed the owner of the lottery ticket that it claims, honest nodes will check with
these

√
n nodes. This prevents a Byzantine node from falsely claiming a lottery

ticket that it did not generate in the first place. We show how such a storage
and verification mechanism can be implemented efficiently despite the presence
of Byzantine nodes in a dynamic network. The last ingredient of the protocol
is an efficient and fault-tolerant mechanism to disseminate the identity of the
leader to almost all the honest nodes.

We use random walks as the main tool for communication in our protocol.
Previously, flooding techniques proved useful in solving the agreement problem
under high churn but without Byzantine nodes [6]. In the presence of Byzantine
nodes, however, flooding is less useful as it enables Byzantine nodes to disseminate
lots of (corrupting) information along with those sent by honest nodes. On the
other hand, if honest nodes use random walks (which are lightweight and local)
in their information spreading protocol, the Byzantine nodes are no longer
able to congest the network without bound. This proves crucial for getting a
scalable protocol that uses only polylogarithmic message sizes per round and
finishes in polylogarithmic rounds. We use a key technical result on random
walks in a dynamic network with Byzantine nodes and adversarial churn called
the “dynamic random sampling theorem” (cf. Theorem 2) that shows mixing
properties of random walks (despite Byzantine nodes and large adversarial churn)
and enables us to communicate efficiently among honest nodes.

Our protocol can tolerate up to O(n
1
2−ε) Byzantine nodes (for a small constant

ε > 0) and up to O(
√
n/polylog(n)) churn. This is essentially the best that our

protocol can handle for two reasons. Our storage and verification mechanism
needs to store each lottery ticket in about

√
n nodes, and to be scalable in terms of

the number of messages generated, it can handle only about
√
n nodes (each such

node generates a ticket, thus overall there will be about n polylog(n) messages
— anything significantly more than this will cause much more congestion). The
second reason is that for solving Byzantine agreement, we use a majority rule to
progress towards agreement [12, 4]. This majority rule algorithm works as long
as the number of Byzantine nodes are bounded by O(

√
n).

Related Work. There has been a lot of recent work on distributed agreement,
byzantine agreement, and fault-tolerant protocols in dynamic networks. We refer
to [17, 6, 4, 3] and the references therein for details on these works. Here we
restrict ourselves to those works that are most closely related.

There has been significant work in designing peer-to-peer networks that are
provably robust to a large number of Byzantine faults [15, 18, 27, 30]. These focus
only on robustly enabling storage and retrieval of data items. The problem of
achieving almost-everywhere agreement among nodes in P2P networks (modeled
as an expander graph) is considered by King et al. in [23] in the context of
the leader election problem; essentially, [23] is a sparse (expander) network
implementation of the full information protocol of [22]. More specifically, [23]



assumes that the adversary corrupts a constant fraction b < 1/3 of the processes
that are under its control throughout the run of the algorithm. The protocol of [23]
guarantees that with constant probability an uncorrupted leader will be elected
and that a 1−O( 1

logn ) fraction of the uncorrupted processes know this leader. We

note that the algorithm of [23] does not work for dynamic networks, in particular,
when just the edges are rewired from round to round (while still preserving
expander topology). In another recent work [21], the authors use a spectral
technique to “blacklist” malicious nodes leading to faster and more efficient
Byzantine agreement in static networks. The idea of blacklisting, unfortunately,
won’t work in our dynamic network model, since the adversary can change the
identities of Byzantine nodes by churning out old ones and introducing new ones
(cf. Section 2).

The work of [6] addresses the agreement problem in a dynamic P2P network
under an adversarial churn model where the churn rates can be very large, up
to linear in the number of nodes in the network. (It also crucially makes use
of expander graphs.) This introduced the dynamic model with churn that is
used subsequently in other papers ([3, 4]), including this paper. However, the
algorithms and techniques of [6] will not work under the presence of Byzantine
nodes; even one malicious node can foil their algorithms. The work of [3] presented
storage and search algorithms for a highly dynamic network that can have churn
rate up to n/polylog n. However, these algorithms do not work in the presence of
Byzantine nodes. The random walk approach to dynamic sampling was introduced
in this paper and subsequently extended to Byzantine nodes in [4]. [17] presents
a solution for maintaining a clustering of the network where each cluster contains
more than two thirds honest nodes with high probability in a setting where the
size of the network can vary polynomially over time.

The work of [4] presents Byzantine almost-everywhere agreement algorithms
that can tolerate the same amount of churn as the present paper, i.e.,

√
n/polylog n,

but it works even under adaptive churn. For this algorithm, only the “rewiring”
adversary, which controls the edges between the adaptively churned nodes, needs
to be oblivious — this is needed for the random walk approach to work. We use
this algorithm as a key building block for implementing our almost-everywhere
common coin. [4] also presented an almost tight (up to polylog n factor) lower
bound of Ω(

√
n/polylog n) for the amount of churn that can be tolerated if one

requires polylogarithmic round algorithms. This lower bound crucially makes use
of the adaptive nature of the churn adversary. It is not clear if the same lower
bound holds for the oblivious adversary as considered in this paper.

Expander graphs and spectral properties have been applied extensively to
improve the network design and fault-tolerance in distributed computing (cf.
[31, 14, 9]). The work of [26] provides a distributed algorithm for maintaining an
expander in the presence of churn with high probability by using Hamiltonian
cycles.

In recent years, adversarial models for dynamic networks have been studied
extensively by [7, 11, 28, 25] and others; see the recent survey of [10] and the
references therein. Unlike many early works on dynamic networks (e.g., [1, 13, 16,
2, 8]) these recent works do not assume that the network will eventually stabilize



and stop changing. On the other hand, we would prefer distributed algorithms to
work correctly even if the network is changing continuously over time (as assumed
in our paper). The works of [25, 7, 11] study a model in which the communication
graph can change completely from one round to another, with the only constraint
being that the network is connected at each round ([25] and [11] also consider a
stronger model where the constraint is that the network should be an expander
or should have some specific expansion in each round). The model has also
been applied to agreement problems in dynamic networks; various versions of
coordinated consensus (where all nodes must agree) have been considered in [25].
We note that the model of [24] allows only edge changes from round to round
while the nodes remain fixed. The model considered here is more general than
the model of [24], as it captures dynamic settings where edges change and nodes
are subjected to churn. It is impossible to solve Byzantine agreement when only
assuming the (oblivious) adversary of [24] that keeps the graph connected in
each round; for example, a Byzantine node placed at a bottleneck point of the
network can forever prevent any reasonable information flow between the two
separated parts of the network. For the case where the “edge adversary” of [24]
adheres to our expansion and regularity assumption, we can apply our results to
this model as well.

1.1 Computing Model and Problem Definition
We consider a synchronous dynamic network with Byzantine nodes represented
by a graph with a dynamically changing topology (both nodes and edges change)
whose nodes execute a distributed algorithm and whose edges represent connec-
tivity in the network. The computation is structured into synchronous rounds,
i.e., we assume that nodes run at the same processing speed (and have access
to a synchronized clock) and any message that is sent by some node u to its
neighbors in some round r > 1 will be received by the end of r. The dynamic
network is represented by a sequence of graphs G = (G0, G1, . . .) where each
Gr = (V r, Er). Nodes might be subjected to churn, which means that in each
round, up to C(n) nodes (C(n) ∈ O(

√
n/ logk n)) can be replaced by new nodes;

the constant k will be fixed in the analysis. We require that, for all r > 0,
|V r \ V r+1| = |V r+1 \ V r| 6 C(n). Furthermore, we allow the edges to change
from round to round, but we assume that each Gr is a d-regular expander graph
with constant spectral gap. The churn and the evolution of the edges are under
the control of an oblivious adversary who has to choose the entire sequence of
(G0, G1, . . . ) in advance.

Up to B(n) ∈ O(nα/2) nodes can be Byzantine and deviate arbitrarily from
the given protocol, where α > 0 is a constant adhering to Equation(1) on Page
8. We say that a node u is honest if u is not a Byzantine node and use Vcorr to
denote the set of honest nodes in the network. Byzantine nodes are “adaptive”,
in the sense that they know the entire states of all nodes at the beginning of
every round and thus can take the current state of the computation into account
when determining their next action. This setting is commonly referred to as the
full information model. We consider the usual assumption that Byzantine nodes
cannot fake their identity, i.e., if a Byzantine node w sends a message to nodes
u and v, then both u and v can identify w as the same sender of the message.



Note that this does not stop Byzantine nodes from forwarding fake messages
on behalf of other nodes as we do not assume any authentication service. We
assume, without loss of generality, that the adversary only subjects honest nodes
to churn, i.e., Byzantine nodes remain in the network permanently. (The analysis
of our algorithms can be extended easily to the case where Byzantine nodes are
subject to churn as well).

We assume that if a node u enters the network at some later round r, then u
knows the number of rounds that have passed since the start of the computation.
Any information about the network at large is only learned through the messages
that node u receives and u has no a priori knowledge about who its neighbors
will be in the future.

We now describe the sequence of events that occur in each round r > 1.
Firstly, we modify the network Gr−1 = (V r−1, Er−1) by subjecting up to C(n)
nodes to churn (yielding V r) and then changing the edge connectivity; recall that
these changes are predetermined by the oblivious adversary. At this point, we
emphasize that Byzantine nodes are always adaptive in the sense that they can
observe the current network state including all past random choices. After the
adversary has made its moves, the algorithm operates on the graph Gr = (V r, Er)
in round r. Each honest node u becomes aware of its current neighbors in Gr,
can perform local computation and is able to reliably exchange messages with its
neighbors according to the edges in Er.

As stated above, our algorithm tolerates O(nα/2) Byzantine nodes and churn
per round. Let c1 > 2 be any fixed constant. Our algorithm requires the following
condition on α:

α 6 −log(1− 1/c1)/log c1 − 8 log log n/log n− 1/c21 (1)

We now present the formal definition of the Byzantine leader election problem.
Note that since we assume a dynamic network which is a sparse expander in each
round, we cannot hope to obtain an algorithm where every honest node eventually
knows the leader; for example, the adversary could simply keep churning out all
neighbors of a node u, effectively isolating u throughout the run. This motivates
us to consider the following “almost everywhere” variant of leader election:
Byzantine Leader Election (BLE). Suppose that there are B(n) Byzantine
nodes in the network. We say that an algorithm A solves Byzantine Leader
Election in T rounds if, in any run of A, there is exactly 1 node u` such that
(a) all honest nodes terminate in T rounds whp,
(b) all except B(n) + o(n) honest nodes accept u` as the leader, and

(c) node u` is honest with probability > 1− B(n)
n − o(1).

2 The Byzantine Leader Election Algorithm

In this section we present an algorithm for electing a leader in the presence of
O(nα/2/ polylog(n)) Byzantine nodes and churn. Before presenting the details
of our algorithm, we first discuss why more straightforward approaches do not
work: At a first glance, it appears as if we might be able to simply use the
Byzantine almost everywhere agreement (BAE) algorithm of [4] to elect a leader.
For example, running bitwise BAE agreement on the node ids will inevitably



yield almost everywhere agreement on some specific node id. (After agreeing on
the i-th bit v, we only consider nodes as candidates whose id has v as the i-th
bit.) This, however, is poised to fail, since the adversary will simply choose the
initial node ids in a way such that the BAE algorithm yields a decision on an id
of a Byzantine node.

An immediate but insufficient improvement of the above approach is to
initially instruct each honest node to generate a random id, and then run bitwise
BAE agreement on these random ids to elect a leader. In this case, the oblivious
adversary, who has to choose the churn and the initial nodes in advance, has
no advantage in making an initial guess on the elected id. Byzantine nodes, on
the other hand, have full knowledge of the current network state including past
random choices in the full-information model. Thus, a Byzantine node u that
announces an initially chosen value idu, can adaptively lie about the actual value
of idu as soon as the outcome of the agreement algorithm becomes apparent,
and subsequently claim leadership. Of course, if the network topology was static,
the neighbors of u will notice that u has changed its initial value and could
simply inform the remaining network to blacklist u as being malicious. In our
model, however, the adversary has the power to rewire the topology over time
and to subject nodes to churn, possibly causing all initial neighbors of u to be
several hops away from u (or even churned out) during later rounds. This makes
it difficult for an honest node v to conclude whether u has deviated from its
initial choice, if u and v were not neighbors initially. In fact, any information
that v has learned about u while not being a neighbor of u was learned indirectly
via other nodes. As we neither assume an authentication service nor make any
assumptions on how Byzantine nodes are distributed in the network, an easy
indistinguishibility argument shows that v has no way of knowing if the learned
information was injected by other Byzantine nodes.

2.1 Preliminaries and Technical Tools

Random Walk Implementation. To ensure lightweight communication costs, our
algorithm relies on random walks as a means of communication. We now describe
a simple token-passing implementation of random walks in our model (cf. [3, 4]):
When an honest node u initiates a random walk, it generates a token with its
id, a counter initialized to the length of the walk, and possibly attaches some
piece of information of O(log n) size. This token is then forwarded to a (current)
neighbor of u chosen uniformly at random, which in turn forwards the token and
so forth. The counter is decreased by 1 each time the token is forwarded, until it
reaches 0, which marks the final destination of this walk. Since Byzantine nodes
can deviate arbitrarily from this protocol, honest nodes only forward tokens that
are legit, which means that they adhere to above described data format. Our
algorithm requires nodes to initiate h log n random walks simultaneously, for a
sufficiently large constant h. During the run of the algorithm, an honest node u
might receive a large number of tokens (possibly generated by Byzantine nodes).
More precisely, the random walks that arrive at a node u are placed in a FIFO
buffer according to the order of their arrival. To prevent Byzantine nodes from
congesting the entire network with fake tokens, node u forwards up to h log n of



the tokens from its buffer in each step. This ensures (whp) passage of random
walks that matter to us.

Our algorithm employs a technical result that shows almost uniform mixing
for most random walks in our dynamic network. Its proof relies on a combination
of several technical results and is related to Theorem 1 of [4]; we defer the details
to the full paper and will focus on the new aspects of our leader election algorithm
here. Intuitively speaking, Theorem 2 says that there is a large set Core of honest
nodes such that, after walking for Θ(log n) steps, tokens originating from these
nodes have probability of ≈ 1/n to be at any node in Core. It is important to
keep in mind that, since the size of Core is only guaranteed to be > n − o(n),
there is a nonzero probability for such a token to end up at nodes that are not in
Core; for example, by being forwarded to a Byzantine node.

Theorem 2 (Dynamic Random Sampling). Let T = Θ(log2 n) and consider
a dynamic n-node expander network G under an oblivious adversary, and suppose
that at most O(nα/2) nodes are Byzantine and at most O(

√
n/ logk n) nodes are

subjected to churn in each round, where k is a sufficiently large constant and for
any fixed constant α < 1. Then, there exists a set of honest nodes Core of size
> n − O(

√
n/ logk−6 n) such that, in every time interval [iT + 1, (i + 1)T ] for

0 6 i 6 Θ(log n) the following hold:
1. A random walk token originating from a node in Core has probability in

[ 1n −
1
n3 ,

1
n + 1

n3 ] to terminate at any particular node in Core.

2. At most O(
√
n/ logk−8 n) nodes in Core receive tokens that did not originate

in Core, and > n−O(
√
n/ logk−9 n) nodes in Core only receive tokens that

took all their steps among nodes in Core.

Byzantine Almost-Everywhere Agreement. The following BAE agreement algo-
rithm is given in [4]: Each honest node initially starts with an input bit (either 0
or 1) and instances of the random walk implementation by generating tokens that
contain its input bit. Once such an instance is complete (after Θ(log2 n) rounds),
each honest node tries to update its current input value with the majority value
of the triple consisting of its input value and 2 of its received tokens. In particular,
it follows from the analysis in [4] that Θ(log n) repetitions suffice to converge
to almost-everywhere agreement among all except O(

√
n/ logk−6 n) nodes with

high probability.
The following result lower bounds the number of nodes that agree in all

instances when we run Θ(log n) instances of this BAE agreement algorithm in
parallel. (This is what we do when flipping the common coin in Phase 3 of our
algorithm for choosing the winning lottery ticket.)

Corollary 1 (Parallel BAE agreement, follows from [4]). Let T = Θ(log3 n)
and suppose that at most O(nα/2) nodes are Byzantine, while up to O(

√
n/ logk n)

nodes are subjected to churn in any round, for any constant α < 1. Suppose that
the honest nodes execute ` 6 Θ(log n) parallel instances of the BAE algorithm of
[4]. Then, with high probability, there is a set Agr ⊆

⋂
06r6T V

r of honest nodes
such that in each BAE agreement instance i (1 6 i 6 `), all nodes in Agr decide on
a common bit bi within T = Θ(log3 n) rounds, and |Agr| = n−O(

√
n/ logk−7 n).



Good and Bad Nodes. For convenience, we define Badr = V r \ (Agr ∪ Core);
that is, Badr is of size O(

√
n/ logk−7 n), contains all Byzantine nodes, and all

honest nodes that are in the network in round r and that are either not part of
our Core set given by Theorem 2 or decided wrongly in at least one of the parallel
BAE agreement algorithm instances. We also define the set Good = Agr ∩ Core.

2.2 A Byzantine Leader Election Algorithm

We now describe the details of our leader election algorithm and provide some
intuition for its correctness.
Phase 1. Determining Candidates: To keep the overall message complexity
per node polylogarithmic, we first subsample a set of candidates Cand, by in-
structing each node to randomly choose to become a candidate with probability
8 log n/

√
n. Our algorithm heavily depends on the sampling capabilities provided

by Theorem 2. Recall that the churn and the changes of the communication links
are chosen obliviously (cf. Section 1.1), while Byzantine nodes can adapt their
behavior by taking into account the current network state. Intuitively speaking,
the following lemma shows that the Byzantine nodes have no influence over which
honest nodes end up in the set Core, as the Core set is solely determined by the
churn and the topology changes, both of which are chosen in advance by the
oblivious adversary (cf. Section 1.1):

Lemma 1 (Independence of Core). The membership of nodes in the set Core
(as defined in Theorem 2) is independent of the behaviour of the Byzantine nodes.

Observing that each node chooses to become a candidate uniformly at random,
it follows by a simple Chernoff bound that |Cand| > 4

√
n log n whp. According

to Lemma 1, the number of candidates that are in Core cannot be biased by
the Byzantine nodes, but depend only on the churn and the topology changes,
which are chosen in advance by an oblivious adversary. This motivates us to
restrict ourselves to core candidates defined as CCand = Core ∩ Cand ∩ Agr,
which are the candidates that agree in all instances of the BAE agreement
algorithm (cf. Corollary 1) and are part of the Core set. From Corollary 1, it
follows that |Agr| > n − o(

√
n) and from Theorem 2 we know that |Core| >

n−O(
√
n/ logk−6 n) > n− o(

√
n). Therefore, the independence of Core from the

behaviour of Byzantine nodes implies the following:

Corollary 2 (Number of agreeing core candidates). With high probability,
we have |CCand| > 2

√
n log n.

Phase 2. Obtaining and storing lottery tickets: In this phase, we first
instruct the candidate nodes to participate in the “leader lottery” by generating
tickets. To this end, each candidate generates a lottery ticket represented as a
private random bit string of length d logn

2 log c1
e, where c1 > 0 is a constant depending

on the bias of the “almost everywhere common coin” introduced in Phase 3.
Note that all Byzantine nodes can pretend to be candidates and can collude
to generate lottery tickets that maximize their chances. Next, we implement a
storage mechanism to ensure that this information persists in the network despite
the high churn rate and the dynamic topology changes.



Recall that we allow nodes to attach additional information onto their random
walk tokens that they generate. Therefore, when referring to some information I
communicated by a node v, we mean the additional information (of size O(log n))
that v has piggybacked onto a random walk token message, as described in
the random walk implementation (cf. Section 2.1). We say that node u has
stored information I in the network, if u has generated I and there exist at least
Θ(
√
n log n) honest nodes that are witnesses regarding I. Keep in mind that

Byzantine nodes are omniscient regarding the current network state, enabling
them to claim to be witnesses for some arbitrary (possibly fake) information.

Since we assume a sparse network with a dynamically changing topology
and only allow messages of polylogarithmic size, we cannot leverage techniques
commonly used in static networks; in particular, we cannot bind Byzantine nodes
to their initial choice by broadcasting this information to all nodes or requiring
neighbors to keep track of each other’s choices. Instead, we invoke a storage
mechanism, which allows us to keep track of the initial choice of Byzantine nodes.

In more detail, we initiate the following branching process: When an (honest)
candidate u invokes store(z), for some ticket z, it generates a random walk of
sufficient length and piggybacks z onto the random walk token message. Suppose
that the walk has reached only honest nodes and terminated at some honest node
v. Node v in turn starts Θ(log n) new random walks, each of which contains z.
Each of these walks that reaches only honest nodes will in turn spawn Θ(log n)
new random walks and so forth; we repeat this branching process Θ(log n) times.
We can think of the branching process as creating a tree having Ω(

√
n log n) leafs.

Every honest node that corresponds to a leaf of this tree, locally stores z and
becomes a witness of ticket z of node u. In the following, we say that u plays
ticket z if z has been stored successfully.

Lemma 2. Suppose that all candidates execute Procedure store(I) in parallel.
Then, with high probability, each of the core candidate (i.e. set CCand ⊂ Good) is
able to play its tickets.

To ensure that nodes in Bad (which includes all Byzantine nodes) have a small
chance to guess the winning ticket, we upper bound the number of distinct tickets
that Byzantine nodes can play:

Lemma 3. Let I be the set of distinct tickets generated by nodes in Bad such
that each I ∈ I is stored in the network, i.e., I has Ω(

√
n log n) (fake or honest)

witnesses. Then |I| ∈ O(nα/2 log4 n).

Phase 3. Running the lottery to determine the winning ticket: While
we cannot directly use Byzantine almost everywhere (BAE) agreement to obtain
an honest leader with good probability, we will use the time-tested method
of employing such an BAE agreement algorithm as a subroutine to obtain an
almost-everywhere common coin (cf. Definition 1 below), which is one of the
tools used by our algorithm. The goal of this phase is to determine the finalists,
i.e., the nodes who generated the winning lottery ticket. To this end, we generate
the winning ticket by flipping an almost-everywhere common coin:



Definition 1 (Almost Everywhere (AE) Common Coin). Consider an
algorithm P where every honest node outputs a bit and let CommQ be the event
that all nodes in a set Q output the same bit value b. If there exist a constant
c1 > 2 and a set Q of size n− o(n) such that (A) P [CommQ] > 1− n−Ω(1), and
(B) 1

c1
6 P [b = 0 | CommQ] 6 1− 1

c1
, then we say that P implements an almost

everywhere common coin (AE common coin) on set Q and we say that P has
bias at most 1/2− 1/c1.

We will now show that the BAE agreement algorithm given by Corollary 1 can
be modified to yield such an AE common coin.

Theorem 3 (AE Common Coin). Consider a synchronous dynamic n-node
expander network under the control of an oblivious adversary where up to B(n) =
O(nα/2) nodes are Byzantine, and suppose that up to C(n) = O(

√
n/ polylog(n))

nodes are subjected to churn per round. There exists a polylogarithmic messages
and time algorithm that implements an almost everywhere coin on a set of
n−O(B(n) + C(n)) nodes with a bias bounded by a constant c < 1/2.

The honest nodes jointly perform dlog n/2 log c1e flips of this AE common
coin to yield the winning ticket that will be known to almost all nodes.

Lemma 4. We partition the set of stored tickets into the set CoreTickets of
tickets generated by nodes in Good and the set BadTickets, which contains the
tickets played by (honest and Byzantine) nodes in Bad. Consider the winning
lottery ticket s yielded by the d logn

2 log c1
e invocations of the AE common coin

algorithm. Then, it holds that (a) P [∀x ∈ BadTickets : x 6= s] > 1− n−Ω(1). (b)
P [∃y ∈ CoreTickets : y = s] > 1− n−Ω(1).

Recalling that the bits of the winning ticket comprises exactly the common
decision values of the parallel BAE agreement instances, it follows that all nodes
in set Agr know the winning ticket. Thus, each u ∈ Agr knows whether it is itself
a winner (and thus becomes a finalist) or if it is among one of the Θ(

√
n log n)

witnesses of the finalist nodes. If so, u adds itself to the set of propagators Pv,
for finalist v.
Phase 4. The final competition and leader election: In the final phase,
one of the finalists must be chosen as the leader despite the fact that Byzantine
nodes can behave like finalists and/or witnesses. In particular, we wish to reach
a consensus on the finalist f with the smallest id.

We subdivide Phase 4 into logn
2 log logn + Θ(1) sub-phases, each of O(log2 n)

rounds. Each honest node u samples O(log n) nodes per sub-phase via random
walks. During this sampling process, u tries to discover the finalist f with the
smallest id. Node u maintains a variable min-id initialised to ∞. During phase 4,
the honest nodes will only pass O(log n) random walk tokens per time step. At
the start of each sub-phase, every honest node u initiates Θ(log n) random walk
tokens: if u is a witness for a ticket, then that ticket and the min-id value are
included in the token; the token is blank otherwise7. Each random walk must take

7 The blank tokens cannot be discarded because they provide the congestion required
to ensure that the number of tokens injected by Byzantine nodes are kept in check.



Θ(log n) random walk steps in order to mix; this can be achieved in O(log2 n)
rounds (cf. Theorem 2). At the end of the sub-phase, each node looks at all the
tokens that terminated on it and checks to see if v has an id smaller than its
current min-id and, if needed, updates min-id with the smaller id. We now argue
that at the end of logn

2 log logn +Θ(1) sampling sub-phases, n− o(n) nodes will have
their min-id set to f . This completes the proof of Theorem 1.

Lemma 5. Let Finalists be the set of all candidates in CCand that played the
winning ticket z and assume that z was stored among Ω(

√
n log n) honest wit-

nesses. Suppose that f ∈ Finalists is the node with the smallest id in Finalists.
Then, by the end of Phase 4, n−o(n) nodes accept f as the leader with probability
at least 1− o(1).

3 Conclusion

In this paper, we take a step towards designing secure, robust, and scalable algo-
rithms for large-scale dynamic networks. We presented a scalable and lightweight
distributed protocol for the fundamental Byzantine leader election in dynamic
networks, tolerating near O(

√
n/ polylog(n)) Byzantine nodes and churn per

round while using only polylogarithmic amount of messages per node. A key
open problem is to show a lower bound that is essentially tight with respect to
the amount of Byzantine nodes that can be tolerated, or show a leader election
algorithm that can tolerate significantly more Byzantine nodes and churn. The
latter might be possible, since we are dealing with an oblivious churn adversary
(unlike the adaptive churn adversary of [4]).

References

1. Yehuda Afek, Baruch Awerbuch, and Eli Gafni. Applying static network protocols
to dynamic networks. In FOCS’87, pages 358–370, 1987.

2. Yehuda Afek, Eli Gafni, and Adi Rosen. The slide mechanism with applications in
dynamic networks. In ACM PODC, pages 35–46, 1992.

3. John Augustine, Anisur Rahaman Molla, Ehab Morsy, Gopal Pandurangan, Peter
Robinson, and Eli Upfal. Storage and search in dynamic peer-to-peer networks. In
SPAA, pages 53–62, 2013.

4. John Augustine, Gopal Pandurangan, and Peter Robinson. Fast byzantine agreement
in dynamic networks. In PODC, pages 74–83, 2013.

5. John Augustine, Gopal Pandurangan, Peter Robinson, Scott Roche, and Eli Upfal.
Enabling efficient and robust distributed computation in highly dynamic networks.
In FOCS, 2015. (To appear.).

6. John Augustine, Gopal Pandurangan, Peter Robinson, and Eli Upfal. Towards
robust and efficient computation in dynamic peer-to-peer networks. In SODA,
pages 551–569, 2012.

7. Chen Avin, Michal Koucký, and Zvi Lotker. How to explore a fast-changing world
(cover time of a simple random walk on evolving graphs). In ICALP, pages 121–132,
2008.

8. Baruch Awerbuch, Boaz Patt-Shamir, David Peleg, and Michael E. Saks. Adapting
to asynchronous dynamic networks. In STOC’92, pages 557–570, 1992.

9. Amitabha Bagchi, Ankur Bhargava, Amitabh Chaudhary, David Eppstein, and
Christian Scheideler. The effect of faults on network expansion. Theory Comput.
Syst., 39(6):903–928, 2006.



10. Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro.
Time-varying graphs and dynamic networks. CoRR, abs/1012.0009, 2010. Short
version in ADHOC-NOW 2011.

11. Atish Das Sarma, Anisur Molla, and Gopal Pandurangan. Fast distributed compu-
tation in dynamic networks via random walks. In DISC, 2012.

12. Benjamin Doerr, Leslie Ann Goldberg, Lorenz Minder, Thomas Sauerwald, and
Christian Scheideler. Stabilizing consensus with the power of two choices. In SPAA,
pages 149–158, 2011.

13. Shlomi Dolev. Self-stabilization. MIT Press, Cambridge, MA, USA, 2000.
14. Cynthia Dwork, David Peleg, Nicholas Pippenger, and Eli Upfal. Fault tolerance

in networks of bounded degree. SIAM J. Comput., 17(5):975–988, 1988.
15. Amos Fiat and Jared Saia. Censorship resistant peer-to-peer content addressable

networks. In SODA, pages 94–103, 2002.
16. E. Gafni and B. Bertsekas. Distributed algorithms for generating loop-free routes

in networks with frequently changing topology. IEEE Trans. Comm., 29(1):1118,
1981.

17. Rachid Guerraoui, Florian Huc, and Anne-Marie Kermarrec. Highly dynamic
distributed computing with byzantine failures. In PODC, pages 176–183, 2013.

18. Kirsten Hildrum and John Kubiatowicz. Asymptotically efficient approaches to
fault-tolerance in peer-to-peer networks. In DISC, volume 2848 of Lecture Notes in
Computer Science, pages 321–336. Springer, 2003.

19. Bruce M. Kapron, David Kempe, Valerie King, Jared Saia, and Vishal Sanwalani.
Fast asynchronous byzantine agreement and leader election with full information.
ACM Transactions on Algorithms, 6(4), 2010.

20. Valerie King and Jared Saia. Breaking the O(n2) bit barrier: scalable Byzantine
agreement with an adaptive adversary. In PODC, pages 420–429, 2010.

21. Valerie King and Jared Saia. Faster agreement via a spectral method for detecting
malicious behavior. In SODA, pages 785–800, 2014.

22. Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election.
In SODA, pages 990–999, 2006.

23. Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Towards secure and
scalable computation in peer-to-peer networks. In FOCS, pages 87–98, 2006.

24. Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed computation in
dynamic networks. In ACM STOC, pages 513–522, 2010.

25. Fabian Kuhn, Rotem Oshman, and Yoram Moses. Coordinated consensus in
dynamic networks. In PODC, pages 1–10, 2011.

26. C. Law and K.-Y. Siu. Distributed construction of random expander networks. In
INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer
and Communications. IEEE Societies, volume 3, pages 2133 – 2143 vol.3, march-3
april 2003.

27. Moni Naor and Udi Wieder. A simple fault tolerant distributed hash table. In
IPTPS, pages 88–97, 2003.

28. Regina O’Dell and Roger Wattenhofer. Information dissemination in highly dynamic
graphs. In DIALM-POMC, pages 104–110, 2005.

29. Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal. Building low-diameter
p2p networks. In FOCS, pages 492–499, 2001.

30. Christian Scheideler. How to spread adversarial nodes?: rotate! In STOC, pages
704–713, 2005.

31. Eli Upfal. Tolerating a linear number of faults in networks of bounded degree. Inf.
Comput., 115(2):312–320, 1994.


