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DETERMINING THE POTENTIAL IN A WAVE EQUATION WITHOUT A
GEOMETRIC CONDITION. EXTENSION TO THE HEAT EQUATION

KAIS AMMARI, MOURAD CHOULLI, AND FAOUZI TRIKT}

ABSTRACT. We prove a logarithmic stability estimate for the inverse problem of determining the potential
in a wave equation from boundary measurements obtained by varying the first component of the initial
condition. The novelty of the present work is that no geometric condition is imposed to the sub-boundary
where the measurements are made. Our results improve those obtained by the first and second authors in
[2]. We also show how the analysis for the wave equation can be adapted to an inverse coefficient problem
for the heat equation.

1. INTRODUCTION

Let Q be a C3-smooth bounded domain of R, n > 2, with boundary I" and consider the following
initial-boundary value problem, abbreviated to IBVP in the sequel, for the wave equation:
O?u — Au+ q(z)u =0 in@=9Qx(0,7),
(1.1) u=0 onX =T x(0,7),
u(-,0) = ug, dru(-,0) = u.
From here on
Eo = Hj(Q) @ L*(Q).
The unit ball of a Banach space X will denoted in the sequel by Bx.
By [4, Theorem A.3, page 493], for any (ug,u1) € Fo and ¢ € L>(f2), the IBVP (1.1) has a unique
solution
U= y;(uo,ul) € C([O,T];H&(Q))
so that
owu € C([0,7]; L*(R)) and d,u € L*(%).
Additionally, for any m > 0, there exists a constant C' = C(m, Q) > 0 so that, for each ¢ € mBp~ ) and
(uo,u1) € Ep,
10074 (uo, ur)l|2(s) < Ol (uo, ur)| -
Fix T a non empty open subset of I and set A = T x (0, 7). The inequality above says that the operator

%q'r : (’LLO,’LL1> € Fy— 81,(5”;(1;0,1;1)‘/\ S LQ(A>

is bounded and
(1.2) 163 |20, 2(a)) < C,
uniformly in ¢ € mBpe(q)-

Define the operator %;T by %;T(uo) = € (u0,0), ug € Hj(Q). Clearly %;T € B(HL(Q), L*(A)) and

(1.3) 164 |13 (9, L2y < C

again uniformly in ¢ € mBpe(q)-
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Recall that the space Ha () is given by
HA(Q) = {p € L*(); Ap € L*(Q)}.
With reference to Poincaré’s inequality, H = H}(Q) N Ha(Q) is a Banach space for the norm

el = Vel L2y + 18] L2 (0)-

When ug € H we easily see that 0,7 (uo,0) = 77 (0,Aug — qug). Then proceeding similarly as be-
fore we conclude that € restricted to H, still denoted by %, define a bounded operator from H into
HY((0,7); L3(Y)) and

(1.4) 165 a3, 111 (0,727 < C,
uniformly in ¢ € mBpe(q).
Let
W(y) = |Iny| 75 4,y >0,
extended by continuity at v = 0 by setting ¥(0) = 0.

Let m > 0 be fixed. In the rest of this text, unless otherwise stated, C, ¢, 7p and p denote generic
constants that can depend only on n, Q, T and m.

We aim to prove the following theorem.

Theorem 1.1. There exist two constants 1o > 0 and C' > 0 so that, for any T > 70, qo,q € mBpr(q)
satisfying qo > 0 and q — qo € mBy1. (),

Cllgo = all2) <V (H%”J - ﬂl\@m,m((o,r)wzw») :

The proof of Theorem 1.1 we present here follows the method initiated by the first and second authors
in [2]. This method is mainly based on a spectral decomposition combined with an observability inequality.
Due to the fact that we do not assume any geometric condition on the domain, the classical observability
inequality is no longer valid in our case. We substitute it by an interpolation inequality established by
Robbiano in [9]. It is worthwhile to mention that a spectral decomposition combined with an observability
inequality was also used in [3] to establish a logarithmic stability estimate for the problem of determining a
boundary coefficient in a wave equation from boundary measurements.

To our knowledge, using observability inequalities to solve inverse problems related to the wave equation
goes back to Puel and Yamamoto [8]. Later, Komornik and Yamamoto [7] applied this method to an inverse
point source problem for a wave equation. A general framework of this method is due to Alves, Silvestre,
Takahashi and Tucsnak [1] and extended recently to singular sources by Tucsnak and Weiss [10].

The rest of this paper consists in two sections. Section 2 is devoted to the proof of Theorem 1.1. In
Section 3, we adapt our approach to an inverse problem for the heat equation.

2. PROOF OF THEOREM 1.1

We firstly observe that a careful examination of the proof of [9, Theorem 1, page 98] allows us to deduce
the following result.

Theorem 2.1. There exist three constants o > 0, C' > 0 and p > 0 so that, for all T > 19, (ug,u1) € Ep,
q € mBpe(q) and € > 0,

1
Cll(uo,w)llp_, < ﬁH(uO,ul)HEO + )67 (w0, ur) | z2(a),

where E_1 = L?(Q) & H~1(Q).
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From now on, 7 > 7 is fixed, where 7 is as in the preceding theorem.
Let g € H((0, 7)) satisfying g(0) # 0 and consider the IBVP

Fv— Av+q(z)v =g(t)f(z) nQ,
(2.1) v=0 on X,
v(+,0) =0, dv(-,0) =0,

From [4, Theorem A.3, page 493], the IBVP (2.1) has a unique solution
v:=87(f.9) € C([0,7]; Hy (2))

so that
o € C([0,7); L3(Q)) and d,v € L*(D).

Applying Duhamel’s formula we get in a straightforward manner
t
S;—(fag)(at) = / g(t - S)qu(Oa f)(a S)dS.
0
Therefore .
CF U1 9)t) = A7 (1)) = [ alt = 67 (0.0)C,5)ds.
0

Let
Hy ((0,7), L*(T)) = {u € H'((0,7), L*(T)); u(0) =0}
and define the operator S : L?(A) — H}((0,7), L*(T)) by

(Sh)(t) = /0 g(t — s)h(s)ds.

From [2, Theorem 2.1] and its proof, S is an isomorphism and

12
\/5 7-”9 HLQ((%T))
PO ISRl ((0,m),22(7)) -

1Pl L2ay <

Consequently

2
V3 e

)
e PO CT(f, 9z ((0,0),22(7))-

15 (0, Pl L2(a) <

[A(0)]
In combination with the estimate in Theorem 2.1, this inequality yields, where € > 0 is arbitrary,
22) cif Ll + 2 ez, )
2.2 1) < —=fllzz) + e 1@ e"(Co(f, 9l H((0,7),L2(1))-
(€) Ve () 19(0)] q ((0,7),L2(T))

Let qo,q € mBpe(q) satistying go > 0 and ¢ — g0 € mBy1.(q)-
Consider the unbounded operator Ag : L2(Q2) — L*(Q) given by
Ao = —A+ g, D(Ao) = H(Q) N ().

Let 0 < A1 < Ao <...< Ag...— 400 be the sequence of eigenvalues of the operator Ay and (¢y) a sequence
of the corresponding eigenfunctions so that (¢;) form an orthonormal basis of L?((2).

It is a simple exercise to check that 7 (¢x,0) = gx(t)dx with gi(t) = cos(v/Axt).

Observing that

g (05,0) = L40 (5, 0) = S5 ((q — q0) % k),

we get

Co (o) — Cr (61) = CI((q — q0) bk, 9r)-
Hence (2.2) gives

1 T2 € ~T ~T
Cli(q — q0)drllm-1(0) < %H(q — q0)onllL2(o) + €7 et |E] (dn) — a0 (D) E2 ((0.7),L2(1)) -
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This and the fact that [|¢x ||l < vV Ak +m + A imply

1 7-2 . € ~T ~T
Cli(q — qo0)Pxll g1 () < ﬁﬂ(q = q0)Bllr2(0) + (VA +m+ Ap)e” et NCT — C ||, 11 ((0,),12(T)))-
But (vVAx +m+ M) < (ul_l/Q +mpu b+ 1N < e(“;1/2+m“71+1)>"€, where 1 is the first eigenvalue of the
Laplace operator under Dirichlet boundary condition. Whence

1 K € ~T ~T
Cll(qg — q)orll (o) < ﬁﬂ(q — q0) ¢kl L2(@) + €M e NG — G\l B30 ((0,7),L2(T)))-

Here k = 72 + ul_l/Q +mpt 41
Since |[(¢ — qo) ¢k r2(2) < m, we have
1 K € ~T ~T
Clita = a0)dllm—2oy < 7z + UG =B |awmo.m). 220
Using the usual interpolation inequality
1/2 1/2
Illz@) < elbllyzo bl 2 o) 7 € H(S),

we obtain

1 K € ~T ~T
Cll(g - QO)¢k||%2(Q) < I(g — q0)dxll 2 (o) (% + et 6, — %q0|@(H,Hl((o,r),m(r)))) :

Bearing in mind that ||g — qo|lw1. () < m, we get
(@ = q0) ¢kl 52 (@) < 1(a — 20)Vr| L2 + 96V (g — o)l 2()»
< mm +m
<m(+py )V Ak
<mpy P+ )N
Consequently

Ak K el|coT o
Cll(a = ao)dll 2oy < T2 + eI HGT — G || caae, 11 (0,7),L2(1))) -

Denote the scalar product of L2(Q2) by (-, ‘)r2(0)- By Cauchy-Schwarz’s inequality

[(a — 0, dx) 20| < 191"2]1(q = 90) ¢ || £2(00) -

Therefore
Ak K . € ~T ~T
(2.3) C(q— a0, $r)T2(0) < 7t NN GT — G s, 11 (0.7, 221))-

According to the min-max principle, there exists ¢ > 1 (depending on m but not on ¢) so that
(2.4) TR <\ < TR
We refer to [6] for a proof.

Estimates (2.3) and (2.4) entail

2/n Qk2/" e ||coT oT
=+ et 6] =G laeem 0,20y

k
(2.5) Cg— 0, $%)F2(0) <
with o =¢(k + 1).

1/2
Let N > 1 be an integer. Using that (Zk21(1 + M) ¢k)2L2(Q)) is an equivalent norm on H(),

lg = qoll3r oy < 19 (Hq — qoll 7oy +1IV(g - %)H%x(ﬂ)n) < callg = gollfy1. )
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and (2.4), we get
lg = qoll 720y = Z (¢ — q0, ¢%)720) + Z (4 — g0, P%) 720

k<N k>N
<> (40— 90,8720 +— Z Me(q = 90, 98) 720
k<N k>N
2
2 com
<> (40— g0, k)i + AN + 12
k<N

In combination with (2.5), this estimate yields

2 N1+2/n 1 N2/" Leneor o7
(2.6) Clla = @ollze@ = =7+ W e e 197 — ool me, 1 ((0,7),22(1)))-
For s > 1 a real number, let N be the unique integer so that N < s < N + 1. Then (2.6) implies
142/n

S s2/" LelcoT o1
Clla = aollZ2() < e T m T se?” |G — G llaae,ar(0,m),L2(0)))-

Taking € = s%/"%2 in this inequality, we find

Clla = aolzz(0) < 1/ + 52" et G — G0 s (0.m). 2200,
and then
(2.7) Ol — aolltaqe) <z + " IGT — Gl ms om0,
with 0 =1+ o+ p.
We use the temporary notation v = H‘gT — ¢ Gl w3, 11 ((0,7),L2(T)))- We consider the function x(s) =

52/"6958/n+2 > 1. Under the condition v < v* = e~%, there exist s* > 1 so that x(s*) =~~!. In that case
s=s"in (2.7) gives in a straightforward manner
1
(2.8) Cllg = qollr2(0) < [Iny| 572w,
When v > v*, we have trivially

(2.9) g — qollr2() < m|QY? < m|Q|1/2%_
In light of (2.8) and (2.9), we end up getting

Clla = qoll2@) < ¥ (II‘@T - ‘@2IIsam,Hl((o,T),L%T))))
as it is expected.

Remark 2.1. Fix g and ¢ in (2.1), and let C7(f) := C7(f,g). We can then use (2.2) to derive a stability esti-
mate for inverse source problem consisting in the determination of f from C7(f). A minimization argument
in € leads to the following result: there exist two constants 79 > 0 and C' > 0 so that, for any 7 > 79 and
[ € mBrz(qy,

Cllf -1 < @ (ICT(F)lm0,m),22(1)))
where ®(y) = [lny| 7%+, v > 0.

Remark 2.2. Let us explain briefly how one can get a stability estimate for the inverse problem of determining
the damping coefficient or the damping coefficient together with the potential, from boundary measurements,
again by varying the initial conditions. Let us substitute in the first equation of the IBVP (1.1) the operator
W =0} —Aby W, = 97 — A+ a(x)d;. The function a is usually taken bounded and non negative. It is
called the damping coefficient. In that case Theorem 2.1 holds if the operator W is substituted by W,. This
can be seen by examining the proof in [9]. The only difference between the two cases is that in the present
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case there is an additional term in the quantity between the brackets in [9, formula (8), page 109]. But this
supplementary term does not modify the estimate [9, formula (9), page 109]. The rest of the analysis remains
unchanged. These observations at hand, we can extend [2, Theorem 1.1, (1.3) and (1.4)] and [2, Theorem
4.2] to the case where no geometric condition is imposed to the sub-boundary where the measurements are
made. We leave to the interested reader to write down the details.

3. EXTENSION TO THE HEAT EQUATION

We begin with an inverse source problem associated to the following IBVP for the heat equation.
du — Au+q(z)u=g(t)f(z) inQ,
(3.1) u=0 on ¥,
u(-,0) = 0.
From now on 7 > 0 is arbitrary but fixed.
Recall that the anisotropic Sobolev space H*1(Q) is given as follows
H*1(Q) = L*((0,7), H*()) N H'((0,7), L*(€2)).
It is well known that for any f € L?(Q), g € L?(0,7) and ¢ € L>(2), the IBVP (3.1) has a unique solution

u=(f.9) € H>'(Q).
Moreover, there exist a constant ¢’ = C'(2,m) > 0 so that, for any ¢ € mBr~(q,

(3.2) 1-74(fs )21 @) < C'llgllLzco,m I fllL2@)-

We refer to [5, Theorem 1.43, page 27] and references therein for the statement of these results in the case
of a general parabolic IBVP with non zero initial and boundary conditions.

Under the additional assumption that g € H(0,7), it is not hard to check that d;u is the solution of the
IBVP (3.1) with g substituted by ¢’. Hence 8;.%,(f,g) € H*'(Q) and
(3.3) 10:74(f, D21 @) < Cllg 20,0 1 fll 2

uniformly in ¢ € mBre(q), where C” is the same constant as in (3.2).
As in the introduction, T is a non empty open subset of I' and A = T x (0, 7). In light of the preceding
analysis 9,.7,(f, g) is well defined as an element of H*((0,7); L*(Y)) and
1004 (fs Dl ((0,7):2 ) < CP gl 0,7 1 Fl L2 ()
for some constant C"" = C"(m, Q) uniformly in ¢ € mBr~(q).
The following interpolation inequality will be useful in the sequel.

Theorem 3.1. There exist two constants ¢ > 0 and C' > 0 so that, for any ¢ € mBr~(q), | € HY(Q) and
g € H'((0,7)) with g(0) # 0,

o' 112
1 T L g’T_ ce
(3.4) Clifllree) < ﬁllfllfzg(n) O 1004 (fs 9l (0.ry22ry)s €2 1.

Proof. Pick f € H}()) and ¢ € mBpe(q). Without loss of generality, we may assume that ¢ > 0. Indeed,
we have only to substitute u by ue™™! which is the solution of the IBVP (3.1) when ¢ is replaced by
g+ m € 2mBre(q)-
Let v := 8,(f) € H>1(Q) be the unique solution of the IBVP
Oov—Av+q(x)v=0 inQ,
v=20 on X,
v(-,0) = f.
Then 8,S8,(f) is well defined as an element of L?(A). As for the wave equation

0y S (f. a1 1) = / 9t — )08, () (> )ds.
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Therefore
g’ HL2 0,r
(3.5) 100Sq(F)llL2a) < me 9O 10, S (f, Ol ((0,7);2(T))-
On the other hand, as it is shown in [2], the following final time observability inequality holds
(3.6) 1Sq(F) (5 Dllp2@) < KNOuSq(F)llz2(a),
for some constant K > 0, independent on ¢ and f.
A combination of (3.5) and (3.6) implies
. g’ HLZ((() )
(3.7) ClISe(f)C5 )20 < me 9O 10,4 (f, 9l E1 ((0,7);22(1)) -

Denote by 0 < A1 < Ay < ... < Ag... = 400 the sequence of eigenvalues of the unbounded operator
A L%(Q) — L*(Q) given by
A=—-A+gq, D(A)=H;(Q)nH*Q).
Let (¢1) be a sequence of eigenfunctions, each ¢y, corresponds to Ag, so that (¢ ) form an orthonormal basis
of L?(€).
A usual spectral decomposition yields

Sy(f)( ) = Zef’\”(f, be)r2(Q)Pe-

>1

Here (-,-)r2(q) is the usual scalar product on L?(€). In particular

(f:00)i2(0) < €IS (N DZ2i) €21
Whence, for any integer N > 1,

N
D (6072 < NS, () T2y

£=1

1/2
This and the fact that e, 00)3 2 is an equivalent norm on H} () lead
1 L2(Q) 0

N

N
1172 = Z(f, $e)720) + Z (fs 007200
=1 (>N+1
) N
(fs00)72(0) + v s Z Ae(f500)F 20

=1 T1y>nNt

. 1
< NP8 () )22 + v Ml @

2

In light of (2.4), this estimate gives

a2y
(35 15150 < NPV 1S, ey + gy M o

Let € > 1 and N > 1 be the unique integer so that N < €*/2 < N + 1. We obtain in a straightforward
manner from (3.8)

CcT g
1F 11220y < €TSS E 20y + ~1 1 0)-

The proof is completed by using the elementary inequality va + b < v/a + Vb, a,b > 0 and (3.7). O
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When g € L>(Q) and g € H((0, 7)) satisfying g(0) # 0 are fixed, we set .7 (f) := .7,(f,g). In that case
(3.4) takes the simple form,

n
Ve

for any f € H (). Of course the constant C depends on ¢ and g.

Cllfllizz@) < —=flap ) + e“l100 (Ol (0.7):L2(x)) €= 1,

The last estimate enables us to get a logarithmic stability estimate for the inverse source problem consisting
in determining f from 9, (f)|a-

Corollary 3.1. Fiz q € L*>®(Q), g € H*((0,7)) satisfying g(0) # 0. There exists a constant C =

~

C(n,Q,q,9,T,m) >0 so that, for any f € mBri(a),

Clifllza@ < @ (1007 ()l 0.msL2cx)) »
where ®(7) = n~| ™2 4, v > 0.
Next, we consider the IBVP

u—Au+qgx)u=0 inQ,
(3.9) u=0 on Y,
u(-,0) = uo.

To any g € L>=(Q2) and ug € H}(Q2) corresponds a unique solution u := S,(uo) € H>1(Q) and

(3.10) 1S4 (o)l 21 (@) < C'lluollzzy (e
uniformly in ¢ € mBp (), where C” is the same constant as in (3.2).
Let Ho = {w € H}(Q); Aw € H}(Q)} that we equip with its natural norm
[ulley = lullmy @) + 1Aull gy @)-
When g € W (Q) and ug € Ho then it is straightforward to check that 9;S,(uo) = S,(Aug + quo). So
applying (3.10), with ug substituted by Aug — qug, we get

(3.11) 10¢Sq(uo)lr21(Q) < C' ol
uniformly in ¢ € mBy1,0 ().
Bearing in mind that the trace operator w € H*Y(Q) ~ d,w € L2?(A) is bounded, we obtain that
9,Sq(ug) € HY((0,7); L*(Y)) if up € Ho and ¢ € WH>°(Q), and using (3.10) and (3.11), we get
11008 ¢ (o)l mr1 ((0,7);z2¢r)) < Colluollr
uniformly in ¢ € mByy1, (@), for some constant Cy = Co(n, 2, 7, m).

In other words, we proved that the operator Ny : ug € Ho — 8,Sq(ug) € H'((0,7); L*(T)) is bounded
and

INall o, 1 ((0,7):22(0))) < Co,
uniformly in ¢ € mBy1.0 ().
From here on, for sake of simplicity, the norm of N, — N, in Z(Ho; H'((0,7); L*(T)) is simply denoted
by ||Nq _Nqu-
Theorem 3.2. There exists a constant C > 0 so that, for any qo, ¢ € mBy1.(q),
Clle=allzza <8 (Ne= Mol

Here ©(v) = |1n'y|7ﬁ + 7.
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Proof. Let qo, ¢ € mBy 1. (). As before, without loss of generality, we assume that go > 0.

Let Ag : L*(Q) — L2(£) be the unbounded operator given by Ag = —A+gqg and D(Ag) = Hg(Q)NH?*(Q).
Denote by 0 < A\; < Ay < ... < A;... — 400 the sequence of eigenvalues of the operator Ag, and (¢r) a
sequence of the corresponding eigenfunctions so that (¢5) form an orthonormal basis of L2().

Taking into account that S, (¢x) = e~ ¢y, we obtain

Sq(dr) — Seo(B1) = Z4((q — qo)dr, e ).
Therefore
Nq(@ﬁ) _Nqo(¢k) = &,yq((q - QO)Qﬁka@_)\kt)-

Hence, a similar argument as in the preceding section yields

100-Z4((q = q0) i, € )| a1 ((0.1y:220ry) < CAY 2Ny — N

which, in combination with estimate (3.4), implies, with € > 1 is arbitrary,
- \% )\k A2 ce
(3.12) C19|~2|(g - qo, x)r2) < Cll(q — qo0)Prllr20) < e + €™M e“ N[N — N |,

where we used the estimate [[(q — ¢o) ¢kl g1 () < CVAx.

A straightforward consequence of estimate (3.12) is

Ny

N
(3.13) O g = a0 00)7a() < == + NPT IAG — A |
k=1

for any arbitrary integer N > 1.
We pursue similarly to the proof of Theorem 3.1 in order to get, for arbitrary s > 1,

14+2/n
2 S 14+4/n 2
Clla = aol3a() < T+ o+ o2 e NG = NG 1
The proof is then completed in the same manner to that of Theorem 3.1. g
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