
Reconfigurable architecture for computing
histograms in real-time tailored to

FPGA-based Smart Camera

Luca Maggiani1,2, Claudio Salvadori1, Matteo Petracca2, Paolo Pagano2, Roberto Saletti3

1TeCIP Institute, Scuola Superiore Sant’Anna, Pisa, Italy
2National Laboratory of Photonic Networks, CNIT, Pisa, Italy

3Dipartimento Ingegneria dell’Informazione, University of Pisa, Pisa, Italy

Abstract—The design and development of distributed innova-
tive services leveraging pervasive smart camera network solutions
requires the use of reconfigurable low-cost smart cameras. In
this respect, FPGA based Smart Cameras enabled to wireless
communication that follow the Internet of things paradigm are
a promising solution. The paper proposes an optimized design
of the histogram extractor algorithm targeted to low-complexity
and low-cost FPGA based Smart Cameras. The proposed solution
is the basis for a wide range of distributed computer vision
applications. We first define a general architecture for the image
histogram core, then we evaluate its performance with a real
implementation.

I. INTRODUCTION
Smart Camera Network (SCN) is the natural evolution

of state-of-the-art centralized computer vision applications
towards distributed and pervasive systems. Differently from
Wireless Sensor Networks (WSNs) which generally perform
basic sensing tasks, SCNs consist of autonomous devices,
Smart Cameras (SCs), performing on-board image processing
algorithms strongly optimized to fit to the limited amount of
available resources [1].

One of the biggest efforts in designing pervasive SCNs
based on low-end devices is the porting of complex, and
computational intensive, computer vision algorithms to re-
source constrained embedded devices. For instance, an op-
timized/approximated version of Gaussian Mixture Model
(GMM) is proposed in [2], with the goal of a real instan-
tiation in low-complexity micro-controllers lacking Floating
Point Unit (FPU). Although the authors proved that a micro-
controller can reach real-time performance in performing
GMM-based tasks, the limits of such CPU-based solution in
performing heavy computer vision tasks have been outlined.
An innovative architecture for smart cameras acting as nodes
of a network following the Internet of Things (IoT) paradigm
has been proposed in [3], to overcome the computational limits
in the SCs design. In such a work, a visual IoT node (i.e., IoT
smart camera) consists of a micro-controller and an FPGA. The
former is in charge of managing the network communications
and the high-level organization of the computer vision pipeline.
The latter handles the heavy processing operations (i.e., pixel-
wise or machine learning algorithms) according to the stream-
ing paradigm (data are processed directly when they appear at
the input port without any buffering stages). A key feature of
the proposed SC architecture is a flexible and reconfigurable

FPGA internal structure, managed by a SoftCore through the
CPU data bus.

A challenging computer-vision algorithm to be ported to
FPGA-based smart cameras is the Histogram of Oriented
Gradient (HOG) [4]. The algorithm basically extracts image
features by deploying a histogram of the pixel edge directions,
with the aim of identifying pedestrians in the scene. Even
though the histogram software implementation is a simple task
used in several light-weight detection algorithms [5], [6], the
hardware realization of such algorithm in not a trivial task.
A possible hardware oriented histogram extractor has been
proposed in [7], [8]. The data dependency issues are directly
managed at the hardware level in these cases, by deploying a
linear pipeline elaboration cell. On one side this approach has
the advantage of processing multiple data in a single clock
cycle, on the other side it represents a dedicated solution
designed to process buffered data.

This paper proposes an optimized design of the histogram
extractor algorithm targeted to low-complexity and low-cost
SCs node based on a mid-range FPGA. This histogram core
can work with a continuous input data flow, thus following the
streaming paradigm. As pointed out in [9], parallel histogram
computation requires a complete algorithm redesign. In this
context, our work removes the memory access conflicts from
the histogram computation, leading to more flexible and effi-
cient ways to exploit parallelism. This solution reaches better
performance with respect to the state-of-the-art solutions, while
being fully compatible with the reconfigurable SC architecture
proposed in [3]. More in detail, we first define a general
architecture for the image histogram core in this paper, then
we evaluate its performance in terms of FPGA resource
occupancy, memory footprint and latency.

The rest of the paper is organized as follows. A detailed de-
scription of the methodology followed to design the histogram
core is given in Sec. II. The implementation details and the
performance results are shown in Sec. III. Conclusions are
finally highlighted in Sec. IV.

II. METHODOLOGY
As briefly introduced in Sec. I, the realization of a his-

togram core is a challenging task, and requires a complete
algorithm re-design with respect to a software-oriented solu-
tion. Indeed, in low-complexity FPGA-based SCs performing



real-time image processing a high degree of parallelism is
necessary to process data directly when they appear at the
input port, in order to minimize the output latency. Moreover,
the proposed histogram core has to be both reconfigurable
and integrated with other blocks, to satisfy the requirements
of an IoT oriented design compliant with the architecture
shown in [3]. Following these main requirements, the proposed
histogram core can be seen as a black-box with two inputs,
the data-stream and the data-valid signals (to trigger a new
data acquisition), and one output, the histogram stream to be
stored into the memory. Moreover, as proposed in [3], the
block is connected to the CPU data bus, thus enabling a direct
communication with the SoftCore in charge of managing the
reconfiguration tasks.

In general, a simple histogram computation core can be
represented according to the diagram depicted in Fig. 1.
In this configuration each pixel updates the value of the
corresponding histogram bin by performing a read-modify-
write operation. The whole operation requires four clock cycles
per pixel. Thus, if the first pixel appears as input at time T0,
the complete histogram is available as output at the instant
T0+4 ·Np ·Tp = T0+4 ·Tf , where Np is the number of pixels
of the whole image, Tp is the pixel period, and Tf the frame
period. The above described histogram evaluation method is
not based on a streaming paradigm, since the processing of a
new pixel requires the completion of the previous pixel, and
strongly limits the development of real-time image processing
applications.

We propose a new circuit based on the module depicted
in Fig. 2 and called histogram-subcell, to reduce the compu-
tational time for evaluating the image histogram. This block
is essentially composed by a dual-port RAM memory array,
which has the same size of the histogram, and a Finite State
Machine (FSM), which controls the data flow. By deploying
a dual-port RAM module, the system can jointly execute read
and write operations in the same clock cycle. At the same
time, the internal FSM (subcell FSM in Fig. 2) controls the
elaboration as a sequence of pipeline operations (reported in
Fig. 3): READ, LOAD, ADD, and WRITE. When a pixel comes
to the input port, a data valid signal is enabled and the internal
FSM starts a new elaboration cycle. In the READ state the
circuit reads the bin addressed by the current pixel value and
then stores the bin content in a register during the LOAD state.

Figure 1: Typical histogram computation block.

Figure 2: Histogram-subcell module.

In the ADD state, the bin value is updated by an incremental
operation and finally the memory array is updated with the
new value during the WRITE state. The transitions occur every
clock cycle.

Though the designed pipeline architecture supports the
streaming paradigm (every FSM state needs only one clock
cycle to be executed), it introduces a memory access conflict to
be solved. Indeed, the above described FSM does not provide
an atomic read-modify-write operation. As matter of example,
suppose that the i-th bin is addressed at time T0, and that the
same bin is required at the following data-valid signal, at time
T1 (= T0 + 1). The memory content in T1 is not consistent
because the previous elaboration phase is not completed and
the bin value is not updated. A FSM-controlled parallel archi-
tecture called Histogram cell is proposed to address the above
described issue. Since the histogram-subcell circuit requires
four clock cycles to complete the read-modify-write iterations,
we deploy four histogram-subcell instances to handle groups
of four consecutive pixels as parallel flows.

The module computes four different sub-histogram data
structure for the same image, where the j-th pixel updates
the (j mod 4)-th histogram-subcell instance. Splitting the
pixel operation in parallel processing flows prevents memory
access conflicts, because each histogram-subcell instance is not
considered until the previous operation has been completed
(i.e., four clock cycles). The Histogram cell behavior is shown
in Fig. 5.

When an image is completely acquired, the four sub-

Figure 3: Histogram-subcell FSM.



Figure 4: Histogram cell.

histograms has to be merged into the complete histogram. The
final histogram can be obtained by using a final adder stage to
sum the sub-histogram memory cells each other (i.e., the sub-
histogram bin) sequentially: this last hardware block introduces
a latency of N + 2 clock cycles, where N is the number of
bins. The Histogram core block diagram is depicted in Fig. 6.
By considering the latency introduced by each block of the
Histogram core, the overall latency Ltotal (after the arrival of
the last image pixel) can be evaluated as:

Ltotal = N + 6 (1)
The total latency depends on the number of bins plus 6 clock
cycles (4 for the FSM plus 2 for the final adder stage). The
histogram is completed after the adder stage and is eventually
stored in memory.

Advantages with respect to the state-of-the-art solu-
tions [7], [8] are hereby pointed out. First, this design permits
an on-line re-configuration of the number of bins, giving the
possibility of having histograms with different resolutions.
Moreover, the streaming paradigm is realized using a single
clock source, thus permitting to run the system at the maximum
allowable frequency, unlike state-of-the-art solutions in which
a second faster clock source is used for the FSMs [8], [10].

The final Histogram core reported in Fig. 6 is the basis
for successfully evaluating image histograms. Because of the
streaming paradigm, the system has to be able to manage a
continuous pixel flow, thus being able to handle multiple con-
secutive images. Considering the total latency of the Histogram
core, the circuit is capable to process an image in a period
equal to Tf + Ltotal, where Tf is the frame period (see the
time diagram in Fig. 7). The Histogram core cannot consider
a new image until the previous one is completely processed,
thus limiting again the real-time capabilities of the system. To
avoid this problem it is possible to duplicate the histogram core

Figure 5: Streaming pixel flow.

Figure 6: Histogram core.

as described in Fig. 8. In such a situation a new FSM, called
Store FSM, directs the current image to the available active
Histogram cell instance thus enabling a continuous histogram
extraction.

III. PERFORMANCE EVALUATION

The proposed histogram core has been first tested on
a cycle accurate Verilog simulator [11], then it has been
synthesized on a mid-range FPGA. We adopted the Terasic
DE0-nano development board [12] which embeds an Altera
Cyclone IV FPGA with 22k Logic Elements (LE), 600 kbits
on-board memory, and 144 9x9 bits DSP modules for the
final implementation. A 1.3MPixels Omnivision CMOS Cam-
era [13] was used as a real video source.

A. Algorithm footprint
As previously described, the proposed solution has the

capability to re-configure at run-time the number of bins N ,
after having fixed at compilation-time the allocated memory
M (in bits) and the bin resolution R (in bits). It is possible to
vary N under according to the following equation:

N ≤
⌊M/8

R

⌋
(2)

where the factor 8 derives from the instantiation of 8 histogram
subcells (in Fig. 2) in the definition of the Histogram core of
Figs. 4 and 8. For instance, considering to allocate a memory
array of 65536 bits (i.e., 8192 Bytes) and to set a resolution
of 32 bits, it is possible to configure the core for a histogram
with a maximum of 256 levels.

To keep a memory constrained design, the circuit has to
be carefully sized especially in terms of the amount of the
instantiated memory. Thus in the scenario of [3], let us suppose
to have K histogram-based algorithms, such that each one

Figure 7: Time diagram.



Figure 8: Standard image histogram core scheme.

requires a number of bins equal to Ni, with i ∈ {1...K}.
The memory to be instantiated at compilation-time equals to:

M = 8 ·MAX(Ni) ·R. (3)
B. Timing

As described in Eq. 1, the latency introduced by the
Histogram core of Fig. 6 directly depends on the number of
bins. The latencies introduced by the above mentioned core
are detailed in Tab. I as a function of the number of bins N .

N Latency
(#bins) (Clock cycles)

8 14
16 22
32 38
256 262

Table I: Histogram core latencies as a function of N .

It must be pointed out as the total latency is completely
independent of the image resolution expressed as number
of pixels. By considering the final implementation histogram
core design, which uses only 4% of the Altera Cyclone IV
resources, and a clock frequency of 100 MHz, a VGA video
stream can be processed at a rate of 260 frame per seconds.

C. Performance comparison with state-of-the-art
In this subsection the streaming based approach proposed

in the paper is compared with respect to two state-of-the-art
solutions. More in detail, the comparison is with [7], where a
histogram is implemented making use of a linear array of bin-
cells in which the computation proceeds in a pipelined fashion.
We also compared our approach with [8], where the same ap-
proach of [7] is optimized using the C-slow retiming technique,
thus reducing the critical path delay into the feedback loops,
and improving the execution frequency. Both the considered
solutions have been implemented in consumer Xilinx FPGAs.

Tab. II shows the allowed working frequency and the
number of Logic Elements (LEs) used in each implementation.
As far as system frequency is concerned, the proposed work,
implemented in the Altera Cyclone IV EP4CE22 FPGA, is
capable to process histograms with a maximum system clock
over 100 MHz. The comparison in number of LEs between
different chip vendors has been done by making use of the
converter in [14]. The proposed work overcomes the state-of-
the-art solutions with at least a factor 2, in terms of FPGA
resource occupancy.

Moreover, the memory footprint and the latency are com-
pared in Tab. III. Although the proposed work uses a bigger
amount of memory with respect to [7], its memory footprint
is half of the implementation proposed in [8]. However, for
a fair comparison, it should also be taken into account the

Frequency LEs
[MHz] [#]

System as in [7] 144 2422
System as in [8] 238 ≈ 4800
Proposed solution > 100 850

Table II: Allowed frequency and LEs occupancy comparison.

reconfigurability feature of the proposed solution. Both of
the considered state-of-the-art works are not reconfigurable
because of their architectural design, while the proposed ap-
proach can extract histograms with a configurable number of
bins up to N . Finally, the latency of the proposed solution is
lower than the compared works for all N > 6. In fact, both
compared techniques have to wait N clock cycles to end the
processing of the last pixel, and additional N clock cycles to
empty the histogram structure.

Memory Latency
[bits] [clock cycles]

Realization in [7] N ×R 2N
Realization in [8] 8×N ×R 2N
Proposed solution 4×N ×R N + 6

Table III: Memory footprint and latency comparison.

IV. CONCLUSION

A reconfigurable parallel histogram core for real-time
image processing in FPGA based low-cost smart cameras is
presented in this paper. The main feature of the proposed core
is the ability of working according to the streaming paradigm,
while providing a full compatibility with the reconfigurable SC
architecture presented in [3]. The core performance, obtained
through a real implementation in the Altera Cyclone IV chip,
shows the benefits of the proposed solution in terms of working
frequency, LEs occupancy, and required memory, with respect
to state-of-the-art solutions. The final implementation of the
histogram core is able to process a 260 frame per seconds
VGA video stream, thus enabling a wide range of applications
in the smart camera networks scenario.

REFERENCES

[1] B. Rinner, T. Winkler, W. Schriebl, M. Quaritsch, and W. Wolf, “The
evolution from single to pervasive smart cameras,” in Proceedings of
ACM/IEEE International Conference on Distributed Smart Cameras,
2008, pp. 1–10.

[2] C. Salvadori, D. Makris, M. Petracca, J. Martinez del Rincon, and
S. Velastin, “Gaussian mixture background modelling optimisation
for micro-controllers,” in Advances in Visual Computing, vol. 7431
of Lecture Notes in Computer Science, pp. 241–251. Springer Berlin
Heidelberg, 2012.

[3] L. Maggiani, C. Salvadori, M. Petracca, P. Pagano, and R. Saletti,
“Reconfigurable fpga architecture for computer vision applications in
smart camera networks,” in Proceedings of ACM/IEEE International
Conference on Distributed Smart Cameras, 2013.

[4] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proceedings of IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2005, vol. 1, pp. 886–893.

[5] M.U. Chowdhury, R. Rahman, J. Sana, and S.M.R. Kabir, “Fast scene
change detection based histogram,” in Proceedings of IEEE/ACIS
International Conference on Computer and Information Science, 2007,
pp. 229–233.

[6] P.R.R. Hasanzadeh, A. Shahmirzaie, and A.H. Rezaie, “Motion de-
tection using differential histogram equalization,” in Proceedings of
IEEE International Symposium on Signal Processing and Information
Technology, 2005, pp. 186–189.



[7] J.O. Cadenas, R.S. Sherratt, P. Huerta, and Wen-Chung Kao, “Parallel
pipelined array architectures for real-time histogram computation in
consumer devices,” IEEE Transactions on Consumer Electronics, vol.
57, no. 4, pp. 1460–1464, 2011.

[8] J. Cadenas, R.S. Sherratt, P. Huerta, Wen-Chung Kao, and G.M.
Megson, “C-slow retimed parallel histogram architectures for consumer
imaging devices,” Consumer Electronics, IEEE Transactions on, vol.
59, no. 2, pp. 291–295, 2013.

[9] B. Guthier, S. Kopf, M. Wichtlhuber, and W. Effelsberg, “Parallel
algorithms for histogram-based image registration,” in Proceedings of
International Conference on Systems, Signals and Image Processing,
2012, pp. 172–175.

[10] E. Garcia, “Implementing a histogram for image processing applica-
tions,” Tech. Rep., Xilinx Xcell Magazine, 2000.

[11] ModelSim, “ModelSim HDL simulator,”
http://www.mentor.com/products/fpga/model, 2013.

[12] Terasic Technologies Inc., “DE0-nano,” www.terasic.com, 2012.
[13] OmniVision Technologies Inc., “OV9650 datasheet,”

www.dragonwake.com/download/arm9-download/OV9650.pdf.
[14] Altera, “Device comparison,” http://www.altera.com/cgi-

bin/device compare.pl, 2013.


