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ABSTRACT

Sheet metal forming processes are commonly associated with strain-path changes in 

the material. Macroscopic softening/hardening transient effects can appear due to the 

plastic anisotropy induced by these deformation stages. Such characteristic effects can 

mainly be ascribed to the intragranular microstructure development and its evolution. It 

subsequently becomes necessary to accurately describe the dislocation patterning during 

monotonic and sequential loading paths in order to obtain a relevant constitutive model. 

In the present work, three types of local dislocation densities are taken to represent the 

spatially heterogeneous distributions of dislocations inside the grain. The resulting large 

strain single crystal constitutive law, based on crystal plasticity, is incorporated into a 

self-consistent scale-transition scheme. With the help of a rate-independent 

regularization technique, this new extended multiscale model is able to calculate plastic 

slip activity for each grain, and it can also characterize the evolution of the dislocation

microstructure. We show that our model successfully reproduces several mechanisms of 

intragranular substructure development that have been observed in TEM micrographs in 

the context of various loading conditions. Our approach is also capable of quantitatively 

predicting the macroscopic behavior of both single-phase and dual-phase polycrystalline 

steels in the context of changing strain paths.

Keywords: Micromechanical model; Crystal plasticity; Intragranular substructure; 

Dislocations; Changing strain paths; Stress–strain behavior.

* Corresponding author. Tel.: +(33) 3.87.37.54.79; Fax: +(33) 3.87.37.54.70.
E-mail address: farid.abed-meraim@metz.ensam.fr

* 3. Manuscript

mailto:farid.abed-meraim@metz.ensam.fr
http://ees.elsevier.com/msea/viewRCResults.aspx?pdf=1&docID=12610&rev=1&fileID=371239&msid={BABE6CC4-8A80-405E-AF1F-32E163915961}


Page 2 of 46

Acc
ep

te
d 

M
an

us
cr

ip
t

2

1. Introduction

Sheet metal forming processes often involve strain-path changes together with large 

deformations. Predicting the main features of the macroscopic behavior of 

polycrystalline aggregates during complex loading sequences requires an accurate 

modeling framework that takes into account the different sources of plastic anisotropy. 

The main physical cause of the softening/hardening transient effects that appear during 

sequential loading paths can be attributed to the evolution of intragranular dislocation

patterns. In order to construct a relevant constitutive model, it is necessary to build an 

accurate description of the dislocation patterning in the context of monotonic and

complex strain paths.

For many years, substantial effort has been devoted to accurate modeling of these 

softening/hardening effects, since such phenomena can significantly affect the strain 

distribution and may eventually cause flow localization and failure in the material. For 

this purpose, two main approaches have been concurrently developed in the literature: 

continuum (phenomenological) models and multiscale (micro-macro) descriptions. The 

main difference between the various attempts to capture these important macroscopic 

features lies in the scale of modeling chosen to describe these characteristic 

softening/hardening transient effects.

In the context of continuum approaches, the consequences of the multiple sources of 

plastic anisotropy are accounted for by means of macroscopic scale modeling. The 

initial texture anisotropy of the material has been successively represented by various 

types of yield functions, ranging from quadratic functions, such as the Hill’48 yield 

criterion, to more elaborate non-quadratic descriptions. Isotropic, kinematic, or 

combined hardening laws are commonly used to reproduce the work-hardening 

behavior for various strain paths. Teodosiu and Hu [1] have proposed a continuum 

model capable of successfully reproducing the macroscopic softening/hardening effects 

observed during sequential loadings. In this semi-phenomenological model, which 

represents an extension of an earlier contribution by Hu et al. [2], three internal state 

variables are introduced at a macroscopic scale to describe the specific aspects of the 

evolution of the dislocation substructure. The constitutive equations combine both

isotropic and kinematic hardening, while the shape of the yield surface is expressed 

using the Hill’48 criterion together with the three internal state variables. An 

improvement over this model was subsequently proposed by Hiwatashi et al. [3], who
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incorporated the crystallographic yield locus developed by Van Houtte et al. [4]. 

Despite the well-recognized benefits of continuum models in terms of computational 

efficiency, practical usability, and reduced implementation effort, these approaches do 

have certain limitations. Drawbacks include the fact that the initial texture and 

substructural plastic anisotropy are merely approximated at the macroscopic scale, the 

lack of direct and physical linkages between the various scales for the purposes of 

material parameter identification, and the difficulty in accounting for textural evolution.

By contrast, micromechanics-motivated multiscale models provide descriptions of 

the multiple sources of plastic anisotropy at their appropriate scales. In this context, the 

material is considered as a set of grains with different crystallographic orientations, and 

the overall behavior is modeled by integrating the specific behavior of each elementary 

constituent. As a result, the constitutive equations can be expressed at the slip-system 

level, which corresponds to the microscopic scale. The characteristic features due to 

dislocation can then be partially reproduced by evolving the mean dislocation density 

across each slip system and calculating its coupling using the hardening law. In an 

attempt to improve our ability to model internal stresses associated with the 

intragranular microstructure, a number of multiscale models have been proposed based 

on dislocation distribution morphology (see, for instance, Muller et al. [5], Lemoine et 

al. [6], and Langlois and Berveiller [7]). These models rely on Mughrabi’s two-phase 

composite description [8] for the intragranular microstructure. Dislocation walls with 

high local dislocation density (hard phase) are separated by regions with low local 

dislocation density (soft phase). Because the development of dislocation distributions

during plastic deformation takes place at the mesoscopic scale, Peeters et al. [9,10] 

proposed a new multiscale model that combines a micro-macro approach (using a full-

constraints Taylor model [11]) with mesoscopic modeling. They showed that the 

evolution of the dislocation substructure can be accurately described using their

methodology, due to the specific properties of the dislocation walls (with respect to 

polarity and latent hardening). Peeters and co-workers confirmed that the 

softening/hardening transient effects observed experimentally during sequential 

loadings can also be correctly reproduced using their approach.

In the present paper, a crystal plasticity-based model coupled with an accurate 

description of the heterogeneous dislocation distribution is incorporated into a self-

consistent scale-transition scheme to reproduce the evolution of intragranular 

substructure during plastic deformation. We then investigate the impact of the 
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dislocation arrangement on the macroscopic effects by considering two constitutive 

descriptions, namely, the current modeling approach and a simpler model that does not

precisely account for the intragranular microstructure. We compare results from each of 

the two models and conclude that these data emphasize the impact of intragranular 

substructure evolution on the plastic behavior of multiphase steels.

2. Mesoscopic modeling – single crystal behavior

This section describes the elastic–plastic single crystal behavior within the large 

strain framework. This can be used for both B.C.C. and F.C.C. materials; however, 

because modeling at the microscopic scale is based on experimental observations of 

intragranular microstructures for B.C.C. metals, application of this model will be 

restricted to these types of materials. 24 independent slip systems are associated with

B.C.C. crystals, which are given by the two families <1 1 1> (1 1 0) and <1 1 1> (1 1 2).

The local incremental elastic–plastic constitutive law gives the relation between the 

nominal stress rate tensor n and the velocity gradient   v xg as

 n l g ,        (1)

where l is the fourth-order tangent modulus. Our new model is based on the pioneering 

contributions [12-16]; however, we also introduce certain improvements, especially 

with regard to slip system activity. In particular, we have devised a new criterion for 

determining the set of active slip systems along with a new formula for calculating slip 

rates [17,18]. This regularization technique considerably reduces the computational 

effort, as compared to more classical methods for selecting active slip systems. In the

following analysis, we will use Einstein’s conventions unless otherwise specified.

The velocity gradient g classically consists of a symmetric part d , which expresses

the total strain rate, and a skew-symmetric part w , which represents the total rotation 

rate. These two tensor quantities can further be decomposed into elastic and plastic 

components, indicated with superscripts e and p , respectively:

   ,      ,   .e p e p     g d w d d d w w w        (2)

The plastic parts of d and w are related to the slip rates  by

   ,    ,p g g p g g

g g

   d R w S         (3)
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where gR and gS denote the symmetric and skew-symmetric parts, respectively, of the 

Schmid tensor for slip system g . These tensors are defined using the unit vector n


,

normal to the slip plane, and the unit vector m


, which is parallel to the slip direction, as

   1 1
   ,    ,

2 2
       R m n n m S m n n m

       
       (4)

where  designates the tensor product.

2.1. Regularization method for the detection of active slip systems

Classical thermodynamics-based analysis defines the plastic dissipation rate per unit

volume isd as

: :is
p g gd  d R   .        (5)

It follows that the resolved shear stress, g , for a slip system g , defined as

:g g  R ,        (6)

corresponds to the thermodynamic driving force associated with the variable g .

In order to satisfy the material invariance requirements, we calculate the resolved 

shear stress rate g using an objective derivative for the Cauchy stress tensor  . This is 

achieved by the introduction of a lattice spin-based derivative ̂ such as

ˆ :g g  R  .        (7)

This co-rotational lattice derivative ̂ follows the crystallographic rotation during 

loading, and is expressed as

ˆ e e    w w    ,        (8)

where  is the Cauchy stress rate tensor.

According to the Schmid law, for plastic behavior, the definition of plastic yield or 

critical resolved shear stress leads to the following flow rule for a given slip system g :

0

 and 0 0

 and 0 0 ,

g g g
c

g g g g
c

g g g g
c

τ τ τ γ

τ τ τ γ

  


 

  

   
  







       (9)

where g and g
c are the resolved shear stress acting on system g and the 

corresponding critical resolved shear stress, respectively.
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Within the potentially active slip systems (i.e., c  ), several subsets of active 

systems (i.e., c  and c   ) may exist. According to Franciosi and Zaoui [19], one 

should define as truly active the combination of slip systems that minimizes the

deformation energy. From a numerical point of view, this requires performing a 

combinatorial analysis, which is generally excessively time consuming. A new 

approach [17,18] is adopted here in order to avoid lengthy combinatory analyses and to 

significantly reduce the computing time. Accordingly, relation (9) is replaced with a 

rate-independent regularization technique  , ,g g g g g g
ck       .

Among several possible regularization functions, we adopt the following form:

0 1 2

1 1 1 1
1 tanh 1 tanh 1 1 tanh

2 2 2

g g g
g

g
ref c ref

k k k k
H

  
  

         
                              




,      (10)

where H is a hardening parameter, and 0 1,  k k , 2k , ref , and ref are purely numerical 

parameters. For an active slip system g , this regularized form of Schmid’s law leads to

ˆ :g g gk R  , (without summation over g ).      (11)

Hooke’s law takes the following form within the large strain framework:

 ˆ :  tre C d d  ,      (12)

where C is the fourth-order elasticity tensor, and  tr  denotes the trace operator. After 

mathematical development of the consistency condition, the slip rate can be expressed as

  : :g gh h   R C 1 d M  ,      (13)

where   1
: :gh hg h g


  R C RM is obtained by inverting a matrix in which hg

denotes the identity matrix, h h hkR R , and 1  is the second-order identity tensor.

2.2. Local incremental elastic–plastic constitutive law

The relation between the co-rotational derivative of the Cauchy stress tensor, ̂ , and 

the nominal stress rate, n , is given by

 ˆ trp p         n w w d d w      .      (14)

Combining the previous equations with the large strain single crystal incremental 

constitutive law (1), the local elastic–plastic tangent modulus is obtained in the form
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   

   

1 1

2 2

 ,

ijkl ijkl ik lj il kj ik lj il jk

g g g gh h
ijpq pq ip pj ip pj mn mnkl mn kl

l C

C R S S M R C

       

   

        
    

     (15)

where ghM is a shorthand notation for the components of matrix ghM .

3. Microscopic modeling – intragranular microstructural evolution

This part of the present multiscale model, based on experimental observations of

B.C.C. grains, is inspired by the work of Peeters et al. [9,10]. Microscopic modeling 

allows the softening/hardening transient effects, which are observed at the macroscopic 

scale during sequential loadings, to be related to the evolution of the dislocation

distribution inside the crystals.

Many experimental studies on deformed B.C.C. metals, including uniaxial tensile 

tests [20-23], simple shear tests [23,24], plane strain tensile tests and biaxial expansion 

tests [22], as well as sequential loadings, e.g., reverse tests or cross tests [22-24], have 

shown that dislocations are generally distributed heterogeneously, with alternating 

planar regions of high local dislocation density, namely, the dislocation sheets, and low 

local dislocation density zones, i.e. the cell interiors (see Fig. 1a).

3.1. Intragranular substructure description

In order to describe this intragranular substructure based on physical elementary 

mechanisms of creation, storage, and annihilation of dislocations, it is necessary to 

associate three different types of dislocation densities (see Fig. 1b). These are 

introduced as internal variables in our model and are relevant to both of the zones that

define the heterogeneous dislocation distribution.

The randomly distributed dislocations inside cells are represented by a single local 

dislocation density  his dislocation density is considered to produce isotropic 

hardening. Two additional types of dislocation densities are associated with the dense 

dislocation walls. The first, denoted wd , represents immobile dislocations that are 

stored in the dislocation sheets. This density parameter conveys the dislocation tangle 

during plastic deformation, which is responsible for latent hardening during strain-path 

changes. The second one, denoted wp , is the local, directionally movable or polarized

dislocation density. It reflects the dislocations that are immobilized on both sides of the 
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sheet, but which can move again during reverse tests. This latter density has a polarity 

or sign that reproduces asymmetry in slip resistance.

3.2. Formation of dense walls of dislocations

The dislocation sheets are generated to offer minimal resistance to the slip activity 

under a given deformation mode [25]. This implies that these walls should be 

constructed parallel to the crystallographic planes on which the slip activity is greatest. 

Hence, in B.C.C. crystals, the dense dislocation walls will logically have to belong to 

the families of planes that exhibit {110} or {112} orientations. However, experimental 

evidence suggests that these sheets are instead only ever parallel to {110} planes. 

Moreover, most TEM micrographs that are taken after mechanical tests performed on 

B.C.C. materials [23] show one or two families of dense dislocation sheets (see Fig. 2).

In agreement with these observations, our microscopic model will construct at most 

two families of dislocation sheets, parallel to the {110} planes on which the highest and 

second highest slip activity rates occur. Six independent families of dislocation walls 

can be defined in this way (see Table 1).

In order to account for the effect of the pre-existing microstructure and thus for the 

strain-path history of the material, the model will necessarily have to distinguish a set of 

existing generated sheets (one or two in number) from formerly existing sheets (four or 

five according to the number of walls present in the current step). The model thereby 

takes into account both evolution and interaction between dislocation substructures as 

developed during sequential strain paths.

Sections 3.3 and 3.4 describe the evolution equations that model the currently 

existing dislocation walls and the previously existing dislocation sheets, respectively.

3.3. Evolution of dislocation densities associated with currently existing walls

During plastic deformation, the mobile dislocations can either get trapped inside cells 

and in walls or get annihilated with immobile dislocations of opposite sign or through 

pencil glide. These phenomena are accounted for through the evolution equations of 

three types of dislocation densities, using two different terms of hardening, which 

express the mechanisms of immobilization (or creation) and recovery (or annihilation).

Intensity of dense dislocation sheets
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According to the earlier work of Kocks [26], the evolution of the local density of 

immobile dislocations wd stored in walls can be further decomposed into a storage 

term and a recovery term.

The evolution of the intensity of local dislocation density for each of the existing

generated dislocation sheets will thus be expressed as

 1wd wd wd wd wd
i i i iI R

b
     ,      (16)

with b representing the magnitude of the Burgers vector and i the total slip rate on 

the crystallographic plane on which the thi greatest slip activity occurs. The first part 

(storage term) of the above equation characterizes the construction of the dense sheets,

and the immobilization parameter wdI reproduces the way in which the mobile 

dislocations can be caught inside walls. The second part (recovery term) represents the 

recovery mechanisms, and the recovery parameter wdR reproduces the annihilation of 

the immobile dislocations through disintegration of edge dislocations of opposite sign.

Polarity assigned to dense dislocation sheets

During monotonic loading, the dense dislocation sheets get polarized. Polarization is 

due to mobile dislocations being arrested on slip systems that are non-coplanar to the 

walls. Consequently, dislocations of opposite sign will be concentrated on either side of 

the wall. The flux wp
i of the dislocations covering the boundaries of each existing

generated wall i is thus expressed in terms of the slip rates of all the slip systems non-

coplanar to that family i . It is calculated as follows:

1

sn
wp s w
i i

s b




  m n


.      (17)

The slip rate s on slip system s can be positive or negative; it thus integrates the 

different slip directions on a particular slip system. In Eq. (17), n denotes the number 

of slip systems ( n = 24 for B.C.C. crystals). To select only those slip systems that are 

non-coplanar to the considered family of walls, each slip rate is multiplied by the scalar 

product of the unit vector sm , assigned to the slip direction of system s, and the unit 

vector w
in , perpendicular to the existing generated dense sheet i .
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As before, the evolution of the polarized dislocation density associated with existing

generated walls can be expressed by means of the summation of two contributions

  signwp wp wp wd wp wp wp wp
i i i i i iI R       ,      (18)

where wpI is a parameter that characterizes the storage of the directionally movable 

dislocations, while parameter wpR accounts for the mechanism of annihilation of the 

polarized dislocations associated with the walls. The storage of mobile dislocations on 

the border of walls is achieved from their interactions with other mobile dislocations but 

also with other directionally movable dislocations already stored in these dense walls. 

For that reason, in Eq. (18), the immobilization term is expressed in terms of both the 

polarized dislocation densities wp and immobile dislocation densities wd stored in 

dense walls. The annihilation process only takes place between mobile dislocations of 

opposite sign.

In a reverse test, most of the active slip systems during prestrain remain active, but in 

the opposite direction. The dislocation flux associated with a family of currently 

generated dense walls i is then reversed. The polarity dislocations that have already 

been accumulated along walls can easily move away and be annihilated by dislocations 

of opposite sign, a phenomenon which can be expressed by the following equation:

wp wp wp
i rev i iR   ,      (19)

where revR corresponds to the rate of annihilation of the mobile dislocations responsible 

for the polarity of the dense dislocation sheets consistent with the reversal of the flux.

Polarity allows us to account for the phenomena that occur during Bauschinger tests

(strain reversal). During the prestrain, mobile dislocations of opposite sign will 

accumulate on both sides of the walls, leading to their polarization. The polarity 

dislocation density will grow (in absolute value) according to Eq. (18). During the 

reversal of the load, the directionally movable dislocations responsible for the polarity 

will recover in movement and will be annihilated by dislocations of opposite sign. The 

polarity dislocation density will logically decrease (in absolute value) according to Eq.

(19), which only takes into account the mechanism of annihilation. Existing generated 

dislocation walls will then depolarize gradually, which will be revealed at the 

macroscopic behavior level by strain-hardening stagnation. Finally, after this transition 

regime, when the dense walls are depolarized, polarized dislocations of opposite sign 



Page 11 of 46

Acc
ep

te
d 

M
an

us
cr

ip
t

11

will again accumulate along the walls, consistent with the current deformation mode. 

Therefore, there will be a new increase (in absolute value) of the directionally movable 

dislocation density, which can be described by Eq. (18), exactly as during the prestrain.

3.4. Evolution of dislocation densities associated with former walls

A strain-path change or a rotation of the grain towards a stable orientation will lead 

to the activation of new slip systems. The mobile dislocations moving along the newly 

activated slip systems will generate new families of dense walls corresponding to the 

current strain path and will disintegrate previously generated dislocation sheets.

According to microstructural observations after a cross test, it would seem that the 

previously existing dense walls coexist with the newly formed ones, but without storing

dislocations any further. These previously generated walls are then slowly removed by 

interaction with non-coplanar mobile dislocations associated with the newly activated 

systems. The disintegration of the former intragranular substructure is modeled by the 

following equations:

ncgwd wd
i i new

R

b
    ,      (20)

ncgwp wp
i i new

R

b
    ,      (21)

with new representing the total slip rate on both of the crystallographic planes that 

feature the highest slip activity and ncgR indicating a parameter that characterizes the 

destruction of former dislocation walls.

3.5. Formation and evolution of statistically stored dislocations in the cell interiors

We assume that the statistically stored dislocations in the cell interiors are 

responsible for the isotropic hardening in the material. The evolution of the dislocation

density is expressed by the summation of a storage term and an annihilation term, 

according to the Kocks law

 
1

1 n
s

s

I R
b

   


   ,      (22)

where I and R are, respectively, the immobilization parameter and recovery parameter 

associated with the randomly distributed dislocation network.
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During a reverse test, most of the slip systems that were active during prestrain 

remain active, but in the opposite direction. As already mentioned, the dense dislocation

sheets generated during prestrain will continue to exist and further develop, changing 

only their polarity. It was experimentally observed that the statistically stored 

dislocation density in the cell interiors tends to decrease during load reversal. The 

directionally movable dislocations, responsible for the polarity of the dense walls, are 

very likely to be at the origin of this annihilation. An additional source of annihilation is 

added to Eq. (22) to account for this phenomenon as follows:

  2
1 1

1

2

bauschn n
s s

wp
s ssat

I R R
b

    
 

      ,      (23)

where y y if 0y  ; 0y  otherwise. Parameter 2R reflects the importance of 

the annihilation of the statistically stored dislocations in the cell interiors by the 

remobilized directionally movable dislocations associated with the dense dislocation

sheets. The switch parameter  will activate ( 1  ) or inactivate ( 0  ) this 

additional term, depending on whether or not there is reversal of the flux associated 

with a family of currently generated walls. The value of bausch will be different

according to the number of reversed fluxes. In summary, if only one flux is reversed, 

then bausch wp
i  ; otherwise, 1 2

bausch wp wp    .

3.6. Isotropic hardening, latent hardening and polarity

It is necessary to relate the critical resolved shear stress on each slip system s to the 

three above-defined dislocation densities, i.e., the dislocation density in the cell 

interiors, the immobile dislocations stored in the dense walls, and the polarized 

dislocation density associated with the dislocation sheets. Following Mughrabi’s 

composite model [8], the intragranular microstructure in deformed metals is 

decomposed into two phases. The dislocation sheets, due to their high concentration of

dislocations, are considered the hard phase, while the cell interiors, with low local 

dislocation density, correspond to the soft phase. The resulting critical resolved shear 

stress is thus obtained from the summation of the stresses in the cell interiors and in the 

dislocation sheets as

   
6

0
1

1s s cell wd wp
c c is is

i

f f    


     ,      (24)
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where f is the volume fraction of the dislocation sheets and 0
s
c is the initial critical 

resolved shear stress.

The contribution to the critical resolved shear stress of the isotropic hardening,

caused by the statistically stored dislocation density in the cell interiors, is given by the 

classical Taylor equation

cell b   ,      (25)

where  is the dislocation interaction parameter and  is the shear modulus.

The dislocation sheets are associated with latent hardening, as they prevent the 

mobile dislocations from moving on non-coplanar slip system planes. The contribution 

to the critical resolved shear stress on slip system s of the immobile dislocation density,

stored in a family of dense walls i , can be given by adapting the Taylor equation:

wd wd s w
is i ib   m n .      (26)

The dislocation wall polarity implies the existence of slip resistance asymmetry. 

When the same slip systems remain active, but in the opposite direction, the 

directionally movable dislocations are not hindered by the dense walls. Hence, the

contribution to the critical resolved shear stress on slip system s of the polarized 

dislocation density, associated with a family of dislocation walls i , can be written as

   signwp wp s w wp
is i i ib    m n .      (27)

3.7. Prediction of the intragranular microstructure

The following results arise from simulations on single crystals of IF-steel depicting 

various crystallographic orientations. The initial orientation of the crystals, which was 

not available experimentally, needs to be known in order to predict the substructure 

shown on TEM micrographs. However, the initial orientation of the crystals under 

investigation can be determined by following the simulated evolution of the Euler 

angles during plastic deformation. The material parameters, given in Table 2, have been 

identified by Peeters et al. [9,10] using experimental results at a macroscopic scale, i.e.,

stress–strain curves in the context of complex strain paths.
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3.7.1. Monotonic simple shear

Fig. 2a shows a longitudinal plane view TEM micrograph of a (-27.7, 133.5, 51.7°)-

oriented grain in a 15% sheared specimen. The shear direction (SD) is parallel to the 

rolling direction (RD), and the shear plane normal (SPN) is parallel to the transverse 

direction (TD). A single family of dislocation walls can be seen in this grain, which is 

parallel to the (101) crystallographic slip plane and roughly parallel to the macroscopic 

shearing direction.

Fig. 2b shows a longitudinal plane view TEM micrograph of a (-41.6, 135.2, 38.7°)-

oriented grain in a 30% sheared specimen with SD parallel to RD and SPN parallel to 

TD. Two families of dislocation walls can be observed in this grain, the most 

pronounced one running parallel to the (101) crystallographic slip plane, and the second 

running parallel to the (011) crystallographic slip plane.

The model predictions for the heterogeneous dislocation distribution in these crystals 

can be depicted by means of the intensity and the polarity of the dislocation walls as 

functions of the shear strain (see Figs. 3–5).

Our model correctly predicts both families of dislocation walls in the crystals, 

whatever the grain orientation, as illustrated in Figs. 3–5.

It is predicted that a crystal with an initial orientation of (-34.5, 135.7, 51.5°) will 

rotate during 15% simple shear towards an orientation close to that experimentally 

observed, as illustrated in the TEM micrograph of the crystal presented in Fig. 2a. For 

this particular crystal, the model predicts essentially one pronounced family of 

dislocation sheets, parallel to the (101) crystallographic slip plane, in agreement with 

the experimental observations (see Fig. 3). Note that a second minor family of 

dislocation walls, with lower intensity, is partially detected during simple shear. This 

family has also been detected by Peeters et al. [10]. Two families of dislocation walls 

initially seem to be generated but it quickly becomes apparent that only one actually

comes into existence. This can be explained by a change of slip activity during plastic 

deformation caused by the grain rotation. If a crystal with an initial orientation of (-27.2,

133.4, 53°), similar to that used by Peeters et al. [10], is considered, our result is clearly 

improved. Consistently, only the pronounced family of dislocation walls revealed by the 

TEM micrograph is then predicted (see Fig. 4). Figs. 3–4 reveal that the predicted 

polarity for the dislocation wall families, parallel to the (101) crystallographic slip 

plane, is about ten times smaller than their intensity. We note that the polarity 

corresponds to an accumulation of directionally movable dislocations due to non-
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coplanar slip systems. During the loading process, only one slip system is dominantly 

activated, and few dislocations are in motion on the other slip system planes at that 

time. Therefore, the obtained levels of polarized dislocation density are quite realistic. 

This conclusion is confirmed by comparing Fig. 3 and Fig. 4. Indeed, when we predict 

the traces of two families of dislocation walls, the polarity of these walls is higher than 

in the case where we can only identify a single family.

For the second studied crystal, the initial predicted orientation is (-57.5, 138.3,

35.6°). The model generates two pronounced families of dense walls, parallel to the 

crystallographic planes (101) and (011), in agreement with experimental observations 

(see Fig. 5). Contrary to the intragranular microstructure developed in the first crystal, 

the dislocation sheets predicted here are highly polarized. For this initial orientation, the 

crystal undergoes large rotations during plastic deformation, which promotes the 

activation of several slip systems, leading to a higher polarized dislocation density for

the families of walls. Note that our results are similar to those of Peeters et al. [10].

3.7.2. Bauschinger shear test

Fig. 6a shows a longitudinal plane view TEM micrograph of a (95.6, 124.3, 53.4°)-

oriented grain in a specimen after a reverse shear test of -30%/30% with SD parallel to 

RD and SPN parallel to TD. A single family of dislocation walls is observed, lying 

parallel to the (1-10) crystallographic slip plane and roughly parallel to the macroscopic 

shearing direction.

Fig. 6b shows a longitudinal plane view TEM micrograph of a (43.8, 127.8, -42.4°)-

oriented grain in a specimen after a reverse shear test of -30%/30% with SD parallel to 

RD and SPN parallel to TD. Two pronounced families of dislocation walls are clearly 

observed, parallel to the (011) and (10-1) crystallographic slip planes.

The model predictions in terms of the heterogeneous dislocation distribution in these 

crystals can be depicted using the intensity and the polarity of the dislocation walls as 

functions of the accumulated shear strain (see Figs. 7–8).

As previously, the families of dislocation sheets are correctly predicted for the two 

crystals (see Figs. 7–8).

According to the model, a crystal with an initial orientation of (92, 124.7, 55.7°) 

rotates during the 30%-preshear towards the orientation of (99.6, 126.9, 52°), then 

rotates, during the reverse shear, towards an orientation close to that experimentally 

observed (see the TEM micrograph of the crystal presented in Fig. 6a). In agreement 
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with the experimental observations, only one pronounced family of dense walls is 

predicted (see Fig. 7), parallel to the (1-10) crystallographic slip plane. Again, the 

model suggests a second family of walls, with much lower intensity, which is not 

observed experimentally. This is consistent with the results reported in [10], and is 

probably due to the phenomenon already described for simple shear. Since the predicted 

lattice rotation is larger than in [10], we find different initial orientations. The slight

drop in immobile dislocation density stored in the family of walls parallel to the (1-10) 

crystallographic slip plane at the beginning of the reversal of simple shear (see Fig. 7),

is due to those slip systems becoming active during the prestrain, but no longer 

remaining active immediately after the loading is reversed. This family of dislocation

sheets cannot be currently generated - i.e., the family essentially becomes a previously 

generated wall - during certain deformation steps and will thus be slightly annihilated. 

Moreover, the activation of only one pronounced slip system leads to a low 

directionally movable dislocation density (see Fig. 7).

For the second studied crystal, the predicted initial orientation is (43.3, 127.7, -

42.8°). The model generates two pronounced families of dislocation sheets, parallel to 

the crystallographic slip planes (10-1) and (011), in agreement with experimental 

observations (see Fig. 8). During the prestrain, an intragranular substructure is 

predicted, which consists of two families of dislocation sheets, parallel to the (011) and 

(10-1) crystallographic slip planes. The (10-1) family of walls becomes latent at 25% of 

shear strain due to an evolution of slip activity. After a sufficient amount of reverse 

shear strain, this family becomes currently generated and stores dislocations once again. 

At the end of the reverse test, the predicted dislocation distribution is in agreement with 

the TEM micrograph depicted in Fig. 6b. In contrast to the first crystal, several slip 

systems are active, which in turn leads to higher polarity (see Fig. 8). During load 

reversal, the excess of directionally movable dislocations accumulated at the boundaries 

of dense walls will move in the opposite direction and disintegrate with polarized 

dislocations of opposite sign. Consequently, the polarity associated with the two 

families of dense walls will decrease during the second loading stage, until possible 

opposite polarization is achieved (see Fig. 8).

3.7.3. Cross test

Fig. 9 shows a longitudinal plane view TEM micrograph of a (33.9, 55.9, 137.4°)-

oriented grain in a specimen after a cross test, consisting of 10% tensile deformation in 

RD followed by 20% simple shear with SD parallel to RD and SPN parallel to TD. Two 
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families of dislocation walls can be observed in this grain, but only that parallel to the 

(011) crystallographic slip plane and the macroscopic shearing direction is clearly 

identifiable. The traces of a second family of walls, parallel to the (110) crystallographic 

slip plane, appear to be present as well.

The model predictions for the heterogeneous dislocation distribution in this crystal 

will be depicted by means of the intensity and the polarity of the dislocation walls as 

functions of the von Mises equivalent strain (see Fig. 10).

A crystal with a predicted initial orientation of (32.9, 55.9, 137.4°) will rotate 

towards the orientation of (33.4, 55.9, 137°) during 10% uniaxial tension. A 20% simple 

shear loading allows us to obtain an orientation close to that experimentally observed

(see the TEM micrograph of the crystal presented in Fig. 9). During uniaxial tensile 

prestrain, two families of dislocation sheets are predicted (see Fig. 10), parallel to the 

(110) and (01-1) crystallographic slip planes. The TEM micrograph, shown in Fig. 9, is 

not sufficient to determine which intragranular substructure was present before the 

simple shear test. However, it reveals the traces of certain dislocation walls parallel to 

the (110) crystallographic slip plane. Peeters and co-workers [10] also predicted two 

families of walls during prestrain, parallel to the (110) and (10-1) crystallographic 

planes. During the simple shear phase, a new microstructure, which consists of only one 

pronounced family of walls parallel to the (011) crystallographic plane, replaces the 

disintegrated former dislocation organization (see Fig. 10). This is in agreement with 

experimental observations.

3.8. Discussion

The proposed model has been validated on single crystals under different 

crystallographic orientations and for various loading conditions. These include 

monotonic tests, i.e., simple shear, as well as two-stage strain paths, i.e., Bauschinger 

shear tests and cross tests. The results from investigating the evolution of both the 

intensity and the polarity associated with the families of dislocation walls show that the 

intragranular substructures observed experimentally are accurately reproduced by our 

calculations. Although most of the literature results are recovered by the present model, 

the evolutions of some variables are sometimes found to be different from those

reported by Peeters et al. [10], but are still in agreement with experiments. These 

differences can very likely be attributed to the way in which we determine crystal 

rotation, which seems to produce larger rotations with our model.
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4. Self-consistent scale-transition scheme

To derive the overall macroscopic behavior from knowledge of the behavior of 

individual grains, we adopt a self-consistent scheme. The main lines of the approach are 

recalled hereafter; the reader may refer to Refs. [16] and [27] for more details. The 

macroscopic constitutive law linking the macroscopic fields, i.e., the nominal stress rate 

N and the macroscopic velocity gradient G , by means of the macroscopic tangent 

modulus L has the same incremental form as that of the single crystal (see Eq. (1)):

:N L G .      (28)

In a scale-transition scheme, the macroscopic tensor fields are defined as the volume 

averages of their microscopic counterparts, and they are related to each other by means 

of fourth-order concentration tensors A and B in order to solve the averaging problem:

       :    ,   : g x A x G n x B x N .      (29)

This allows the macroscopic tangent modulus L to be given in a systematic manner:

       1 : :
V

V dv L l x A x l x A x .      (30)

For a polycrystalline aggregate composed of ellipsoidal crystals with different 

crystallographic orientations, the behavior and mechanical fields of each individual 

crystal are assumed to be homogeneous. Denoting by Ig (respectively Il ) the volume 

average of the velocity gradient (tangent modulus) for a grain I within the

polycrystalline aggregate, and using certain elaborate derivations making use of Green’s 

tensors [27], we show that the concentration tensor IA related to grain I is given by

     
1

1 1
: : :I II I II I

 
    A I T l L I T l L ,      (31)

where IIT is the interaction tensor for grain I , related to Eshelby’s tensor [28] for an 

ellipsoidal inhomogeneity. For a polycrystalline aggregate comprising Ng grains of

respective volume fraction If , the one-site self-consistent expression corresponding to 

the self-consistent scheme in the sense of Hill [29] can ultimately be obtained as

1

:
Ng

I I I

I

f


L l A .      (32)

Because morphological and crystallographic changes during loading are known to 

affect the slip activity processes, it is important to take these factors into consideration 
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for each crystal. The change of crystallographic orientation is induced by the elastic 

rotation rate ew [16,23]. The Euler angles of a single crystal, which define the 

crystallographic orientation according to Bunge’s notation [30,31], evolve with the

lattice spin ew as described in Ref. [18]. For the morphology of the grain, the 

morphological orientation evolves with the total rotation rate, and the associated Euler

angles have similar evolution equations (see Ref. [18]). These angles define the 

orientation of the principal coordinate system of the ellipsoid representing the grain 

with respect to the coordinate system (RD, TD, ND) of the sample. Finally, the 

evolution of the shape of the grains taken as ellipsoids is due to the total deformation 

rate, and the evolution equations of the half-axes of the ellipsoid that represents the 

shape of the grain can be found in [18].

4.1. Simulation of the behavior of polycrystalline aggregates

In this section, the results obtained with the proposed model, henceforth referred to 

as "model 1", are compared with experimental data. We performed several sequential 

rheological tests for two steels, namely, a single-phase ferritic steel (IF-Ti) and a 

ferritic-martensitic dual-phase steel (DP). A necessary preliminary step consists of

identifying the following material parameters for these steels:

 The immobilization parameter I and the recovery parameter R are determined

using a simple shear test.

 The immobilization parameter wdI and the recovery parameters wdR and ncgR

are characterized based on two cross tests with different amounts of prestrain.

 The immobilization parameter wpI and the recovery parameters wpR , revR , and 

2R are characterized based on two Bauschinger (reverse) shear tests with

different amounts of prestrain.

The parameter values for these two steels are reported in Tables 3–4. It is important 

to note that in the case of the dual-phase steel, all the hardening parameters are taken to 

be identical for the two phases, except for the initial critical resolved shear stress. 

Indeed, since the strain hardening modes in martensite are not well known, this choice 

reduces the number of parameters that need to be identified.

In order to emphasize the impact of the intragranular substructure on the macroscopic 

behavior, the predictions of the developed model are compared to those obtained using a 
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simpler model, without elaborate microscopic modeling, referred to as "model 2" 

[17,18]. The parameters for the latter model corresponding to the two investigated steels 

are listed in Tables 5–6.

Figs. 11–13 show comparisons between experimental data and results obtained with 

both models during monotonic and sequential loadings for IF-Ti steel and DP steel:

 For uniaxial and plane tensile tests, the Cauchy stress component 11 is 

expressed as a function of the logarithmic strain component 11 .

 For simple and Bauschinger shear tests, the Cauchy stress component 12 is 

plotted as a function of the shear strain component 122  .

 For cross tests, the Cauchy stress component 11 is plotted as a function of the 

logarithmic strain component 11 during the prestrain. The Cauchy stress 

component 12 is then represented as a function of the shear strain component 

122  , augmented by the amount of prestrain.

 For biaxial expansion tests, the Cauchy stress components 11 and 22 are 

plotted as functions of the logarithmic strain components 11 and 22 , 

respectively.

For the IF-Ti steel, Fig. 11 shows that the two models are able to correctly reproduce 

the stress–strain behavior as far as monotonic loadings are concerned. For two-stage 

strain paths, however, it is clear that the refined description of the dislocation

arrangement significantly improves the prediction of the macroscopic 

softening/hardening transient effects associated with sequential loadings. This also 

confirms that the intragranular microstructure produced along the first strain path leads 

to certain consequences that noticeably affect the macroscopic behavior during the

subsequent loading sequences. For example, for a cross test, the prestrain-induced 

microstructure will serve as an obstacle to the dislocation motion on the planes of the 

new active slip systems and will cause a jump in stress response during the change in 

slip activity. Also, during a reverse test, strain-hardening stagnation will occur after the 

reversal of the strain path due to the remobilization of directionally movable 

dislocations associated with dense walls and their interaction with the randomly 

distributed dislocations in the cell interiors.

Simple shear behavior is accurately reproduced with the present model, unlike the 

corresponding prediction obtained with the simpler model (model 2), which proves to 
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saturate too rapidly as the shear strain increases. The discrepancy between simulation 

and experiment in the context of uniaxial tension is slightly larger with the present

model, but it remains quite reasonable on the whole. Note that the parameters for model 

2 have been identified using the uniaxial tensile test, which may explain its better 

agreement with experimental data for this particular loading path. Plane tension is also 

better predicted using our new model. The intragranular substructure developed during 

this type of strain path is similar to that observed during simple shear or uniaxial 

tension. Considering these phenomena in the context of constitutive modeling seems to 

improve the results obtained with model 1 (see Fig. 11).

The most important improvements contributed by the current model correspond to

the cross test; its predictions are in agreement with the experimental observations, while 

model 2 underestimates the cross effect. The prediction of this effect is noticeably

improved through consideration of the heterogeneous dislocation distribution. The 

results for the Bauschinger tests are equally improved with regard to both the 

Bauschinger effect level and the extent of strain-hardening stagnation. In contrast to the 

results obtained with model 2, the discrepancy between simulations and experiments 

with respect to the Bauschinger effect does not increase with the amount of prestrain 

when model 1 is used, although this effect still appears to be underestimated. 

Furthermore, the transient strain-hardening stagnation is reproduced and seems to be 

well correlated with the amount of prestrain. Fig. 12 reveals that taking into account the

heterogeneous dislocation distribution has little effect on the macroscopic behavior for 

this particular biaxial expansion test. This is probably due to the development during 

this test of the equiaxial cell structure with no clearly oriented walls.

Fig. 13 illustrates the same observations in the case of the DP steel. We draw very 

similar conclusions once again. In particular, it is clear that the softening/hardening 

transient effects can be accurately reproduced with our new model. Consideration of the 

intragranular microstructure improves the results considerably as compared to those 

predicted by model 2. It is worth noting that the agreement of model 1 with the 

experimental data is even better for this DP steel than for the above considered IF-Ti 

steel. This can be attributed in part to the less-pronounced effect of dislocation cells for 

the DP steel in comparison with the single-phase steel.

In summary, Figs. 11–13 confirm that the proposed model is capable of reproducing

the main features of the elastic–plastic behavior of single-phase and dual-phase 

polycrystalline materials with reasonably good accuracy.
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5. Conclusions

In this paper, we proposed an advanced multiscale model with the intended purpose 

of accurately predicting the main features of the macroscopic stress–strain response for 

both single-phase and dual-phase steels in the context of changing strain paths. The key 

element of our formulation is the combination of modeling at the mesoscopic scale, 

which provides the local elastic–plastic constitutive law, with a careful microscopic 

description of the intragranular microstructure. This allows us to take into account the 

evolution of heterogeneous dislocation distribution during strain-path changes. The 

resulting local constitutive equations are then implemented into a large strain self-

consistent scale-transition scheme to derive the macroscopic behavior of polycrystalline 

aggregates. The performance of this new extended multiscale model is assessed by 

investigating the impact of the microstructure induced in the context of monotonic and 

two-stage strain paths on the macroscopic hardening/softening transient effects of

multiphase polycrystalline steels.

We first showed, through preliminary analyses on single crystals of IF-steel, that our

new multiscale model can reproduce the substructure development observed in TEM 

micrographs after monotonic and sequential loadings for crystals with different initial 

crystallographic orientations. Comparisons with previously published constitutive 

models and experiments on crystals for various loading conditions, i.e., simple shear 

tests, Bauschinger shear tests, and cross tests, allowed us to validate our model at both 

micro- and mesoscopic scales. Furthermore, our investigation of the macroscopic 

stress–strain response of two different materials clearly demonstrates the ability of our

integrated self-consistent model to reproduce the main macroscopic softening/hardening 

transient effects in the context of strain-path changes for both single-phase and dual-

phase polycrystalline steels. Comparisons with experiments and with a simplified

micromechanical model, which does not account for intragranular substructure 

description, emphasize the important role of the dislocation microstructure and the 

associated improvements in terms of prediction of both cross and Bauschinger effects.
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Table captions

Table 1. Families of dislocation walls.

Table 2. Material model parameters, according to Peeters and co-workers [9,10].

Table 3. Identified parameters of model 1 for the IF-Ti steel.

Table 4. Identified parameters of model 1 for the DP steel.

Table 5. Identified parameters of model 2 for the IF-Ti steel.

Table 6. Identified parameters of model 2 for the DP steel.
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Table 1

Families of dislocation walls.

active slip system direction family of walls
[111] ou [11-1] (1-10)
[111] ou [1-11] (10-1)
[111] ou [-111] (01-1)
[-111] ou [1-11] (110)
[-111] ou [11-1] (101)
[1-11] ou [11-1] (011)
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Table 2

Material model parameters, according to Peeters and co-workers [9,10].

I R [m] Iwd Rwd [m] Iwp Rwp [m]

2.2 x 10-2 8.5 x 10-10 9.4 x 10-1 2.6 x 10-8 5 x 10-2 3.8 x 10-9

Rncg [m] Rrev [m] R2 [m] f c0[110] [MPa] c0[112] [MPa]

2.3 x 10-9 1 x 10-8 1 x 10-8 0.2 42 42
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Table 3

Identified parameters of model 1 for the IF-Ti steel.

I R [m] Iwd Rwd [m] Iwp Rwp [m]

4.5 x 10-2 2.5 x 10-9 1.8 x 10-1 2 x 10-9 4.5 x 10-2 2 x 10-9

Rncg [m] Rrev [m] R2 [m] f c0[110] [MPa] c0[112] [MPa]

5 x 10-10 1 x 10-9 1 x 10-8 0.2 45 45
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Table 4

Identified parameters of model 1 for the DP steel.

Ferrite (900 crystallographic orientations)

I R [m] Iwd Rwd [m] Iwp Rwp [m]

4.4 x 10-2 3 x 10-9 7.7 x 10-1 2.5 x 10-9 4.4 x 10-2 2.5 x 10-9

Rncg [m] Rrev [m] R2 [m] f c0[110] [MPa] c0[112] [MPa]

5 x 10-10 1 x 10-9 1 x 10-8 0.2 180 180

Martensite (100 crystallographic orientations)

I R [m] Iwd Rwd [m] Iwp Rwp [m]

4.4 x 10-2 3 x 10-9 7.7 x 10-1 2.5 x 10-9 4.4 x 10-2 2.5 x 10-9

Rncg [m] Rrev [m] R2 [m] f c0[110] [MPa] 

5 x 10-10 1 x 10-9 1 x 10-8 0.2 550
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Table 5

Identified parameters of model 2 for the IF-Ti steel.

c0[110] [MPa] c0[112] [MPa] g0 yc [m] Dmoy [m]

45 45 90 3.25 x 10-9 20 x 10-6
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Table 6

Identified parameters of model 2 for the DP steel.

Ferrite (900 crystallographic orientations)

c0[110] [MPa] c0[112] [MPa] g0 yc [m] Dmoy [m]

180 180 120 2.4 x 10-9 10 x 10-6

Martensite (100 crystallographic orientations)

c0[110] [MPa] g0 yc [m] Dmoy [m]

550 120 2.4 x 10-9 1 x 10-6
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Figure captions

Fig. 1. (a) Longitudinal plane view TEM micrograph of a grain in an IF-steel specimen 

after 20% uniaxial tension in RD (after Peeters et al. [9]). (b) Schematic representation 

of the heterogeneous dislocation microstructure.

Fig. 2. Longitudinal plane view TEM micrographs (after Peeters et al. [10]): (a) of a (-

27.7, 133.5, 51.7°)-oriented grain in a 15% sheared specimen with SD parallel to RD 

and SPN parallel to TD, and (b) of a (-41.6, 135.2, 38.7°)-oriented grain in a 30% 

sheared specimen with SD parallel to RD and SPN parallel to TD.

Fig. 3. Evolution of the intensity and polarity of the dislocation sheets in a crystal with 

initial orientation (-34.2, 135.7, 51.5°) during the simple shear test described in Fig. 2a.

Fig. 4. Evolution of the intensity and polarity of the dislocation sheets in a crystal with 

initial orientation (-27.2, 133.4, 53°) during the simple shear test described in Fig. 2a.

Fig. 5. Evolution of the intensity and polarity of the dislocation sheets in a crystal with 

initial orientation (-57.5, 138.3, 35.6°) during the simple shear test described in Fig. 2b.

Fig. 6. Longitudinal plane view TEM micrographs (after Peeters et al. [10]): (a) of a 

(95.6, 124.3, 53.4°)-oriented grain in a specimen after a reverse shear test of -30%/30% 

with SD parallel to RD and SPN parallel to TD, and (b) of a (43.8, 127.8, -42.4°)-

oriented grain in a specimen after a reverse shear test of -30%/30% with SD parallel to 

RD and SPN parallel to TD.

Fig. 7. Evolution of the intensity and polarity of the dislocation sheets in a crystal with 

initial orientation (92, 124.7, 55.7°) during the reverse shear test described in Fig. 6a.

Fig. 8. Evolution of the intensity and polarity of the dislocation sheets in a crystal with 

initial orientation (43.3, 127.7, -42.8°) during the reverse shear test described in Fig. 6b.

Fig. 9. Longitudinal plane view TEM micrograph of a (33.9, 55.9, 137.4°)-oriented 

grain in a specimen after a cross test, consisting of 10% tensile deformation in RD 

followed by 20% simple shear with SD parallel to RD and SPN parallel to TD (after 

Peeters et al. [10]).

Fig. 10. Evolution of the intensity and polarity of the dislocation sheets in a crystal with 

initial orientation (32.9, 55.9, 137.4°) during the cross test described in Fig. 9.
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Fig. 11. Comparisons between models and experiments pertaining to the stress–strain 

behavior of an IF-Ti steel for different strain paths performed perpendicular to RD (PT 

stands for plane tension, UT for uniaxial tension, SS for simple shear, BS for 

Bauschinger shear tests at 10%, 20%, and 30% of shear prestrain, UT+SS for cross test).

Fig. 12. Comparisons between models and experiments for the stress–strain behavior of 

an IF-Ti steel during biaxial expansion 1/4 (i.e., the prescribed stress component ratio is 

22 11 4   ), with direction 1 parallel to RD.

Fig. 13. Comparisons between models and experiments for the stress–strain behavior of 

a DP steel during different strain paths performed perpendicular to RD (UT stands for 

uniaxial tension, SS for simple shear, BS for Bauschinger shear tests at 10%, 20%, and 

30% of shear prestrain, UT+SS for cross test).
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Fig. 1. (a) Longitudinal plane view TEM micrograph of a grain in an IF-steel specimen after 

20% uniaxial tension in RD (after Peeters et al. [9]). (b) Schematic representation of the 

heterogeneous dislocation microstructure.

Figure(s)
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Fig. 2. Longitudinal plane view TEM micrographs (after Peeters et al. [10]): (a) of a (-27.7, 

133.5, 51.7°)-oriented grain in a 15% sheared specimen with SD parallel to RD and SPN 

parallel to TD, and (b) of a (-41.6, 135.2, 38.7°)-oriented grain in a 30% sheared specimen 

with SD parallel to RD and SPN parallel to TD.

Figure(s)
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Fig. 3. Evolution of the intensity and polarity of the dislocation sheets in a crystal with initial 

orientation (-34.2, 135.7, 51.5°) during the simple shear test described in Fig. 2a.

Figure(s)
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Fig. 4. Evolution of the intensity and polarity of the dislocation sheets in a crystal with initial 

orientation (-27.2, 133.4, 53°) during the simple shear test described in Fig. 2a.

Figure(s)
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Fig. 5. Evolution of the intensity and polarity of the dislocation sheets in a crystal with initial 

orientation (-57.5, 138.3, 35.6°) during the simple shear test described in Fig. 2b.

Figure(s)
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Fig. 6. Longitudinal plane view TEM micrographs (after Peeters et al. [10]): (a) of a (95.6, 

124.3, 53.4°)-oriented grain in a specimen after a reverse shear test of -30%/30% with SD 

parallel to RD and SPN parallel to TD, and (b) of a (43.8, 127.8, -42.4°)-oriented grain in a 

specimen after a reverse shear test of -30%/30% with SD parallel to RD and SPN parallel to 

TD.

Figure(s)
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Fig. 7. Evolution of the intensity and polarity of the dislocation sheets in a crystal with initial 

orientation (92, 124.7, 55.7°) during the reverse shear test described in Fig. 6a.

Figure(s)
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Fig. 8. Evolution of the intensity and polarity of the dislocation sheets in a crystal with initial 

orientation (43.3, 127.7, -42.8°) during the reverse shear test described in Fig. 6b.

Figure(s)
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Fig. 9. Longitudinal plane view TEM micrograph of a (33.9, 55.9, 137.4°)-oriented grain in a 

specimen after a cross test, consisting of 10% tensile deformation in RD followed by 20% 

simple shear with SD parallel to RD and SPN parallel to TD (after Peeters et al. [10]).

Figure(s)
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Fig. 10. Evolution of the intensity and polarity of the dislocation sheets in a crystal with initial 

orientation (32.9, 55.9, 137.4°) during the cross test described in Fig. 9.

Figure(s)
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Fig. 11. Comparisons between models and experiments pertaining to the stress–strain 

behavior of an IF-Ti steel for different strain paths performed perpendicular to RD (PT stands 

for plane tension, UT for uniaxial tension, SS for simple shear, BS for Bauschinger shear tests 

at 10%, 20%, and 30% of shear prestrain, UT+SS for cross test).

Figure(s)
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Fig. 12. Comparisons between models and experiments for the stress–strain behavior of an IF-

Ti steel during biaxial expansion 1/4 (i.e., the prescribed stress component ratio is 

22 11 4   ), with direction 1 parallel to RD.

Figure(s)



Page 46 of 46

Acc
ep

te
d 

M
an

us
cr

ip
t

Fig. 13. Comparisons between models and experiments for the stress–strain behavior of a DP 

steel during different strain paths performed perpendicular to RD (UT stands for uniaxial 

tension, SS for simple shear, BS for Bauschinger shear tests at 10%, 20%, and 30% of shear 

prestrain, UT+SS for cross test).

Figure(s)




