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Abstract

You recklessly told your boss that solving a non-linear system of size n (n unknowns and n equations) requires a time proportional
to n, as you were not very attentive during algorithmic complexity lectures. So now, you have only one night to solve a problem
of big size (e.g., 1000 equations/unknowns), otherwise you will be fired in the next morning. The system is well-constrained and
structurally irreducible: it doesn’t contain any strictly smaller well-constrained subsystems. Its size is big, so the Newton-Raphson
method is too slow and impractical. The most frustrating thing is that if you knew the values of a small number k � n of key
unknowns, then the system would be reducible to small square subsystems and easily solved. You wonder if it would be possible to
exploit this reducibility, even without knowing the values of these few key unknowns. This article shows that it is indeed possible.
This is done at the lowest level, at the linear algebra routines level, so that numerous solvers (Newton-Raphson, homotopy, and also
p-adic methods relying on Hensel lifting) widely involved in geometric constraint solving and CAD applications can benefit from
this decomposition with minor modifications. For instance, with k � n key unknowns, the cost of a Newton iteration becomes
O(kn2) instead of O(n3). Several experiments showing a significant performance gain of our re-parameterization technique are
reported in this paper to consolidate our theoretical findings and to motivate its practical usage for bigger systems.

Keywords: Geometric Constraints Solving, Geometric Modeling with Constraints, Re-parameterization, Reduction,
Decomposition

1. Introduction

Geometric modeling by constraints [1, 2, 3, 4, 5, 6, 7] leads
to large systems of non-linear (algebraic most of the time)
equations. In their seminal work, Gao et al. [8] automatically
generated all the possible irreducible and structurally well-
constrained 3D systems of geometric constraints (which they
called basic configurations) that involve up to six geometric
primitives (points, lines, and planes). These basic configura-
tions correspond to 3D sub-problems that often occur in geo-
metric constraint solving problems, in variational modelling, or
in CAD/CAM applications. Most of the time, and contrarily
to the 2D case, there is no closed-form solution for such 3D
basic configurations. Gao et al. proposed the Locus Intersec-
tion Method (LIM) for solving these basic configurations and
showed that among these possible 683 systems, 614 ones can
be solved by using one key unknown (also called the driving
parameter), while solving the remaining 69 ones requires two
key unknowns. They referred to these two re-parameterization
solving methods as LIM1 and LIM2.

Re-parameterization consists in identifying or introducing a
small number of key unknowns, also called parameters in the
literature (hence the re-parameterization term), which have the
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following property: “if the values of these key unknowns were
known, then the system would be reducible to much smaller
structurally irreducible subsystems and thus it would be easily
solved”.

The work presented in [9] relied on properties of bipartite
graphs underlying systems of equations, to polynomially de-
compose large systems into well-, over-, and under-constrained
subsystems. The same paper [9] also proposed an efficient
method to decompose or reduce well-constrained systems into
irreducible and well-constrained (having as many equations as
unknowns) subsystems. These decompositions have consider-
ably speeded-up the solving process, and also allowed debug-
ging systems of constraints in a constraint programming con-
text. However, the reduction methods proposed in [9] have lim-
itations. For instance, they do not apply to re-parameterized
systems proposed in [8, 10, 11, 12]. This inability to re-
duce re-parameterized systems is due to the fact that the meth-
ods of [9] are unable to reduce irreducible systems, and that
re-parameterized systems are irreducible. Later on, after the
locus intersection method of Gao et al. [8] became popular,
several techniques for the decomposition of geometric sys-
tems with re-parameterization have been proposed [12, 10, 11].
These methods decompose well-constrained 3D systems into
re-parameterized subsystems with a small set of key unknowns
per subsystem, perform in polynomial time, and provide sub-
optimal but good results.

In spite of the breakthrough made by the re-parameterization
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Figure 1: Left: a 2D system of geometric constraints, where each graph edge
represents a distance constraint between two points corresponding to its inci-
dent nodes. For instance, edge AB implies that the distance AB is constant or
fixed. Right: the re-parameterized system. If u = AB′ was known, then the
system would be reducible and easy to solve, as the equation of the length of
edge CC′ would be redundant and could be ignored.

technique and the aforementioned methods seeking to find
small sets of key unknowns, there are two major limitations.
First of all, since re-parameterized systems are irreducible, the
decomposition methods proposed in [9] cannot apply to them.
Second, with basic configurations involving more than six ge-
ometric primitives or for systems of geometric constraints in-
volving more complex geometric primitives (cylinders, spheres,
cones, torii, etc.), using one or two key unknowns is not enough,
even when employing the best re-parameterization techniques
known so far [12]. In other words, although LIM1 (Locus Inter-
section method with one key unknown) is very fast and simple,
its variants LIMk (Locus Intersection methods involving k ≥ 2
key unknowns) become much less convenient.

Contribution. Our work addresses the aforementioned major
limitations of re-parameterization/decomposition techniques. It
proposes a technique for efficiently reducing or unlocking irre-
ducible re-parameterized systems of equations like those pro-
posed in [8, 10, 11, 12] and resulting from geometric constraint
systems and geometric modeling applications, so that the de-
composition methods proposed in [9], which were unable to re-
duce such re-parameterized irreducible systems, become appli-
cable. Furthermore, this work shows that it is possible to benefit
from these decomposition techniques even when the values of
the key unknowns are not known and the number of these key
unknowns k is greater than 2. For this purpose, we propose
to exploit re-parameterization at the lowest level, which is the
level of the underlying linear algebra routines: solving a linear
system or inverting a matrix. The focus on the lowest level for
exploiting re-parameterization is not hazardous. It is pertinent
and highly motivated by the fact that most existing solvers, like
Newton-Raphson or homotopy rely on the aforementioned low-
level linear algebra routines. Consequently, this level seems to
be the best place to exploit re-parameterization. Although, do-
ing so doesn’t prevent using re-parameterization at some higher
level.

Our paper focuses on exploiting the re-parameterization tech-
nique for reducing and thus efficiently solving well-constrained
irreducible re-parameterized systems which are determined in
advance and for which the key unknowns or parameters (even
if their values are unknown) are already identified. It doesn’t
seek to find the best decomposition or re-parameterization of
a system, a problem that has already been investigated in the

literature [12] (cf. section 10).
Although this paper focuses on solving well-constrained ir-

reducible re-parameterized systems of equations and not on di-
rectly solving (under-constrained) geometric constraint systems
involved in geometric modeling, the latter easily translate into
well-constrained systems of equations which are perfectly han-
dled by our technique. For instance, all the basic configura-
tions enumerated in [8] can be solved by our technique which
goes beyond the locus intersection method as the latter is lim-
ited to one or two key unknowns, while we do not have such
limitation. Other examples of geometric constraint systems can
be found in [12], while the particular case of the pentahedron
problem and the way it is more efficienlty solved through re-
parameterization are discussed in section 8.

The rest of this paper is organized as follows: we first in-
troduce the re-parameterization technique in section 2 through
examples, with a particular emphasis on the LIM involving
one parameter. In section 3, we briefly present matching the-
ory and show how combinatorial decomposition methods are
applied in order to improve the performance of linear algebra
routines. After that, we show in section 4 how decomposition
speeds-up linear algebra routines. In section 5, we show how
re-parameterization speeds-up linear algebra routines for re-
parameterized systems, so that Newton and homotopy methods
can straightforwardly benefit from re-parameterization. This
section also draws a complexity study. Section 6 explains
how Hensel lifting in p-adic methods can take advantage of re-
parameterization as well. This is an important result as it shows
that not only numerical analysis, but symbolic computations,
like Gröbner bases, may also benefit from re-parameterization.
Section 7 shows that interval solvers may also benefit from re-
parameterization, however the wrapping effect requires further
research. Section 8 presents an experimental study of the per-
formance of our re-parameterization technique at the lowest
level of linear algebra routines involved in numerous solvers
(Newton-Raphson, homotopy, and also p-adic methods rely-
ing on Hensel lifting) and shows an important speed-up. This
section also presents a CAD example showing the benefits of
our re-parameterization technique when applied to geometric
constraint systems. Section 9 examines the issues of using re-
parameterization at a higher level. Finally, section 10 presents
future works and open questions before section 11 concludes
the paper.

2. Understanding re-parameterization

In this section, we first illustrate the re-parameterization tech-
nique by means of two examples in 2D and 3D.

2.1. A trivial 2D example

Fig. 1 depicts a system of geometric constraints in 2D. For
this system, the lengths of all the edges are given. It is easy
to see that this system is under-constrained because it involves
twelve unknowns (2D coordinates of its six vertices) and nine
(distance) constraints. To make this system well-constrained,
we employ placement rules commonly used in the literature,
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to constrain the placement of a particular subset of a geomet-
ric system [13], and transform it into a well-constrained sys-
tem, without affecting the set of possible solutions. For our
2D system, we fix three coordinates in 2D, which is equiva-
lent to fixing the positions of the three points of one triangle,
say A′B′C′. Point A′(xA′ = 0, yA′ = 0) is placed at the co-
ordinates origin, point B′(xB′ > 0, yB′ = 0) is placed on the
positive x-axis, and point C′(xC′ , yC′ > 0) is placed in the xy-
plane with positive y coordinate. By doing so, the placement
of triangle A′B′C′ has a unique solution which can be easily
found, and this placement rule transforms the original under-
constrained system into a well-constrained one of six equations
(expressing the lengths of the six edges AB, BC,CA, AA′, BB′,
and CC′) in six unknowns (the coordinates of the vertices of tri-
angle ABC, those of triangle A′B′C′ are known). This system
has a finite number of solutions, at least for generic values of
the lengths (e.g., non-null values). Unfortunately, this system is
structurally irreducible, i.e., it is not decomposable into smaller
well-constrained subsystems.

We observe that if the length u of edge AB′ called a key un-
known or parameter is known (cf. Fig. 1 right), then the whole
system would be easy to solve. In fact, it would be easy to
determine the coordinates of point A as a first step, by solving
a system of two equations in two unknowns xA and yA. Geo-
metrically speaking, A is one of two intersection points of two
circles, the first circle has center A′ and radius lAA′ (length of
edge AA′), while the second one has center B′ and radius u.
Then in a second step, the coordinates of point B can be com-
puted in a similar way, as the intersection of two circles with
known centers and radii. Third and finally, point C can be com-
puted in three different ways because three equations are avail-
able (lengths of edges AC, BC, and CC′), but any of the three
combinations of two of them is enough for determining point
C. One of these equations can be “ignored”, still assuming that
u is known of course. We will assume that the ignored equation
is the one corresponding to the length of CC′. So to summa-
rize, if u is known, then the system becomes decomposable (or
reducible) and thus very easy to solve.

The aforementioned reasoning holds when the value of u is
known. However, u is in fact unknown. In order to solve the
system for u, i.e., to compute the correct value of u, it is pos-
sible to plot the functions A(u), B(u),C(u) (through sampling
for example), and to detect when the ignored equation deter-
mining the length of edge CC′ is satisfied. Note that by con-
struction, all the other constraints are satisfied. Some itera-
tions of the Newton-Raphson method or the dichotomy should
be enough to tune the value of u. Since in some way, re-
parameterization transforms an initial system of six equations
in six unknowns into a system of one equation (the ignored
equation) in one unknown (parameter u), it comes with no sur-
prise that the re-parameterized system can be solved more ef-
ficiently than the initial one. However, many complications
arise in the re-parameterized system due to the facts that: (1)
A(u), B(u), and C(u) are actually multi-functions (algebraically,
square roots are involved; geometrically, two circles intersect
in two points), and (2) the construction of A(u), B(u), and C(u)
may fail for some values of u (algebraically, for the square root

of a negative number; geometrically, for the intersection of two
disjoint circles). Finally, a third issue concerns the choice of the
interval of the possible values of u. In this example, because
of the triangle inequality of triangle AA′B′, u can be bounded
as u ≤ lAA′ + lA′B′ and u ≥ |lAA′ − lA′B′ |. Similarly, the trian-
gle inequality of triangle ABB′ implies that u ≤ lAB + lBB′ and
u ≥ |lAB − lBB′ |. When the computed intervals for the values of
u are disjoint, there is no real solution for the system.

We define the big re-parameterized system as the concatena-
tion of the initial system and another equation u2−(A−B′) ·(A−
B′) = 0 that defines the key unknown u. The big system has one
more equation and one unknown (u) than the initial system of
six equations in six unknowns. It is also well-constrained as it
has as many equations as unknowns. Its equations are indepen-
dent (almost everywhere the Jacobian has a full rank), so the big
re-parameterized system has a finite number of real solutions,
at least for generic values of the given lengths.

Since u is an unknown of the big system, the latter is irre-
ducible. Indeed, the equations of the big system are the follow-
ing:

0 = dist2(A, B′) − u2 equation defining u (1)

0 = dist2(A′, A) − l2A′A (2)

0 = dist2(B′, B) − l2B′B (3)

0 = dist2(A, B) − l2AB (4)

0 = dist2(A,C) − l2AC (5)

0 = dist2(B,C) − l2BC (6)

0 = dist2(C′,C) − l2C′C ignored equation, (7)

where lA′A, lB′B, lAB, lAC , lBC , lC′C denote the lengths of the six
edges and dist2(A, B) = (xA − xB)2 + (yA − yB)2. The Jacobian
of this system has the structure of the table depicted in Eq. 8,
where the first column corresponds to the key unknown u, the
last row corresponds to the ignored constraint, and an X is used
in place of a non-zero entry.

u xA yA xB yB xC yC

X X X 0 0 0 0
0 X X 0 0 0 0
0 0 0 X X 0 0
0 X X X X 0 0
0 X X 0 0 X X
0 0 0 X X X X
0 0 0 0 0 X X

(8)

If the first column corresponding to u and the last row corre-
sponding to the gradient of the ignored equation were removed,
i.e., if the value of u was known so that the last equation be-
comes redundant and thus may be discarded, then the remaining
system would be reducible. The order of unknowns and equa-
tions in the above system was deliberately chosen to emphasize
and make visible this reduction in three blocks of two equations
for each one, with a block lower triangular structure.
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This development leads to the main question addressed in
this work: “is it possible to exploit re-parameterization, i.e.,
is it possible to reduce the big system in some way, even when
the value of the key unknown u is indeed unknown?” At first
glance, it seems impossible to use decomposition because the
big system is irreducible.

Remark 1. Actually, u and its defining equation are useless.
xA can be used as the key unknown and the distance lC′C as the
ignored constraint. Removing the first row (equation defining
u) and the first column (derivatives w.r.t. u) results in the
Jacobian with a visible block lower triangular structure in the
upmost rightmost sub-square of the table depicted in Eq. 9,
where the last row corresponds to the ignored constraint.

xA yA xB yB xC yC

X X 0 0 0 0
0 0 X X 0 0
X X X X 0 0
X X 0 0 X X
0 0 X X X X
0 0 0 0 X X

(9)

By symmetry, any of the unknowns xA, yA, xB, yB, xC , and yC

can be used as the key unknown. However, rows and columns
must be permuted for the block lower structure of the Jacobian
to be visible.

2.2. A 3D example: the hexahedron

The main idea of re-parameterization is illustrated through
the 3D example of the hexahedron problem (a generalization of
the cube) in Fig. 2. The lengths of the twelve edges of the hex-
ahedron are given as input. The system of constraints is com-
pleted with six coplanarity constraints (one for each face of the
hexahedron), and a non-degeneracy constraint ensuring that the
hexahedron is not flat. The last constraint is an inequality that
eliminates a continuum of degenerate solutions of topological
dimension 1, i.e., a curve of flat hexahedra [14]. To simplify,
we will ignore this constraint in the sequel.

This system has a finite number of solutions, modulo rigid
body motions, i.e., up to isometries. It has eighteen equations.
The eight vertices are represented by 3 × 8 coordinates, six of
which can be arbitrarily fixed as done for the 2D example in the
previous section. For instance, vertex 0 is fixed at the origin,
vertex 1 on the positive x axis, and vertex 2 on the Oxy plane
with positive y coordinate. Thus x0 = y0 = z0 = y1 = z1 =

z2 = 0. This placement rule yields a well-constrained system of
eighteen (24-6) equations in eighteen unknowns. In addition, if
we consider that z3 = 0, which comes from the coplanarity of
vertices 0, 1, 2, and 3, and constraint x1 = l01 (where l01 is the
specified length for the edge 01 and x1 denotes the abscissa of
vertex 1), then we can satisfy and thus discard two additional
constraints. At the end, we are left with a system of sixteen

Figure 2: Two hexahedra. The values of the twelve hexahedron edge lengths
are specified. The lengths of the three diagonal edges (triangle 124) are key
unknowns. If these three values were known, then the problem would be re-
ducible and easily solvable. In this case, the three length constraints of the
edges incident to vertex 7 would be redundant and may be ignored.

equations in sixteen unknowns, which is irreducible according
to the methods proposed in [9].

The idea of re-parameterization when illustrated for the hex-
ahedron problem is the following: if the lengths of the edges
of the triangle numbered 124 are known, then it would be easy
to compute the coordinates of triangle 012. Vertex 4 is the in-
tersection of three spheres of known centers and radii. Then, it
would be possible to compute the coordinates of vertex 3 as a
function of the coordinates of vertices 0, 1, and 2. Similarly it
would be possible to compute the coordinates of vertex 5 as a
function of the coordinates of vertices 0, 1, and 4. It would also
be possible to compute the coordinates of vertex 6 as a function
of the coordinates of vertices 0, 2, and 4. Finally, the equations
of the three planes 135, 236, and 456 can be computed and their
intersection is vertex 7.

The distance constraints for edges 37, 57, and 67 have not
been used as they are redundant. In this example, the key un-
knowns do not represent unknowns of the initial system, as they
represent the lengths of the edges of triangle 124. The distance
constraints for edges 37, 57, and 67 are called the ignored con-
straints. The Jacobian of the hexahedron has the structure de-
picted in table 1.

In some sense, re-parameterization transforms the initial sys-
tem S (X) = 0 into a system X = F(U),G(X) = G(F(U)) = 0,
where U are the key unknowns, X = F(U) stands for the
non-ignored constraints that are satisfied by construction, and
G(F(U)) = 0 represents the ignored constraints. The unknowns
of the small re-parameterized system are the parameters U and
its equations are G(F(U)) = 0, unknowns X do not appear in
this formulation. A difficulty arises unfortunately, F is a multi-
function, e.g., it involves ±√, and it may be undefined for some
values of U. It may be difficult to find an explicit function F so
that X = F(U). In this case, one may prefer the implicit for-
mulation F(U, X) = 0,G(X) = 0, or F(U, X) = 0,G(U, X) = 0,
which is more general. It is the latter which is used in this paper,
for the sake of generality.

When there is only one parameter U, computing the cor-
rect values for the parameter U is simple, because it reduces
to following a parametric curve X = F(U) or the implicit curve
F(U, X) = 0, and to detect when the ignored constraint is satis-
fied (e.g., when the sign of G(U) changes). Some iterations of
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l12 l24 l41 x1 x2 y2 x3 y3 z3 x4 y4 z4 x5 y5 z5 x6 y6 z6 x7 y7 z7
D(0, 1) X
D(0, 2) X X
D(1, 2) X X X X
D(1, 3) X X X X
D(2, 3) X X X X X

C(0, 1, 2, 3) X X X X X X
D(0, 4) X X X
D(1, 4) X X X X X
D(2, 4) X X X X X X
D(1, 5) X X X X
D(4, 5) X X X X X X

C(0, 1, 4, 5) X X X X X X X
D(2, 6) X X X X X
D(4, 6) X X X X X X

C(0, 2, 4, 6) X X X X X X X X
C(1, 3, 5, 7) X X X X X X X X X X
C(2, 3, 6, 7) X X X X X X X X X X X
C(4, 5, 6, 7) X X X X X X X X X X X X

D(3, 7) X X X X X X
D(5, 7) X X X X X X
D(6, 7) X X X X X X

Table 1: The structure of the Jacobian of the big re-parameterized system for the hexahedron problem. Empty entries are zeros. The three first columns of the
Jocobian matrix correspond to the key unknowns. The last three rows correspond to the ignored constraints. We set six unknowns to 0 as usual: x0 = y0 = z0 = y1 =

z1 = z2 = 0. D(A, B) is the distance constraint between vertices A and B. C(A, B,C,D) is the coplanarity constraint of vertices (A, B,C,D). The lower triangular
block structure of the upmost rightmost square is visible, thanks to the chosen permutations for rows (equations) and columns (unknowns).

x zy
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a c d e f bb c d e f b c d e f

Figure 3: Left: the bipartite graph of a linear system ax + by = r1, cx + dy = r2,
and ey + f z = r3. Middle and right: the corresponding two perfect matchings
ad f and bc f . The determinant of the underlying matrix is ad f − bc f .

the Newton method or the dichotomy allow to tune the solution
values of U.

When U contains more than one parameter, the methods pro-
posed in the literature to solve the small re-parameterized sys-
tems for U are much more difficult and more involved. In their
pioneering work, Gao et al. [8] handle the case of one and two
key unknowns and show that hundreds of irreducible 3D prob-
lems may be solved by using this re-parameterization. Our
work presents a simple method, which applies for any num-
ber of key unknowns. The only restriction is that the number
k of these key unknowns should remain small compared to the
number n representing the size of the system to solve.

3. Matching theory and decomposition

The main motivation behind involving matching theory in
our discussion comes from the fact that the decomposition of
systems of equations mainly relies on this theory. In this paper,
we briefly discuss this theory, while more details can be found
in Lovasz and Plummer’s book [15]. The reader is referred to
this book for more information about matroids, König-Hall’s
marriage theorem, etc.

Each iteration of the Newton-Raphson method either per-
forms a Jacobian matrix inversion, solves some linear systems,
computes an LU decomposition, or performs similar linear al-
gebra computations. Other solvers rely on similar linear algebra
routines, like homotopy, also called continuation.

The methods proposed in [9] reduce well-constrained sys-
tems of (linear, or non-linear) equations to irreducible well-
constrained subsystems. These methods are purely combina-
torial, they study the bipartite graph of the equations and un-
knowns of the system. Each equation is represented by a graph
vertex belonging to a first set of vertices, while each unknown is
represented by a graph vertex belonging to a second set of ver-
tices. An edge links an equation-vertex to an unknown-vertex if
and only if the represented equation depends on that unknown.

The aforementioned decomposition methods apply to both
linear and non-linear systems. They are based on maximum
matchings. A matching is a subset of edges, so that each vertex
in the graph is the vertex of at most one edge in the matching.
A vertex which belongs to an edge in a matching is said to be
saturated, or covered, by this matching. A matching is maxi-
mum if it is maximum in cardinality. A matching is maximal if
it is maximum for inclusion, i.e., it is not included in a larger
matching. Maximal matchings are not always maximum, but
every maximum matching is of course maximal. A matching is
perfect when all vertices are saturated. A perfect matching is
both maximal and maximum.

The bipartite graph captures structural properties of the sys-
tem. A system of non-linear or linear equations and its Jacobian
matrix share the same bipartite graph. These properties depend
only on that graph, regardless of the values of the coefficients
of the system. For instance, the matrix has full rank (assuming
generic values for the non-zero entries) if and only if the bipar-
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Figure 4: The depicted system F1(x, y, z) = F2(z) = F3(z) = 0 is struc-
turally not well-constrained. “Structurally” means that the system is not well-
constrained regardless of the values of the coefficients a, b, c, d, and e. This
is equivalent to say that its bipartite graph doesn’t have any perfect matching.
The maximum matchings which are ad, ae, bd, and be have cardinality 2, so
the rank of the matrix is also 2 for generic coefficient values. represent the four
possible maximum matchings of this graph.

tite graph has (at least) one perfect matching. More generally,
the rank of the matrix, i.e., the number of independent equations
of the system, cannot be greater than the cardinality of the max-
imum matching in the bipartite graph associated to this matrix.
For some degenerate cases, the matrix rank is smaller than the
cardinality of the maximum matching. This one-to-one corre-
spondence between the terms of the determinant and the perfect
matchings of the bipartite graph is illustrated in Fig. 3 for the
matrix:

M =

 a b 0
c d 0
0 e f

 , (10)

which has the determinant ad f − bc f , while the perfect match-
ings are ad f and bc f . The graph edges are labeled with the
corresponding matrix coefficient. Note that in this example, the
determinant is independent of the value of e and that the corre-
sponding edge doesn’t belong to any perfect matching.

This correspondence between a perfect matching and a de-
terminant term holds for any square matrix. Indeed, let M be
a square matrix and let G be the corresponding bipartite graph,
i.e., G is the bipartite graph corresponding to the linear system
Mx = b, where b is a given generic vector (non-null). An edge
links the vertex representing the equation of the line l to a ver-
tex representing an unknown c if and only if Ml,c is non-null.
Therefore, the determinant of M is

∑
σ parity(σ)

∏n
l=1 Ml,σ(l),

where σ runs through all permutations 1, . . . , n and parity(σ)
is either +1 or −1 depending on whether the permutation σ is
even or odd, respectively. We remind that a permutation σ is
even (resp. odd) if and only if σ is the composition of an even
(resp. odd) number of swaps of two distinct elements. Any
non-null term

∏n
l=1 Ml,σ(l) contains exclusively non-null Ml,σ(l),

so the permutation σ gives a perfect matching in G: this match-
ing links the vertex of an equation l to a vertex of an unknown
σ(l).

This correspondence between a perfect matching and a deter-
minant term explains why the determinant is null when there is
no perfect matching as for the structurally not well-constrained
system of Fig. 4. The qualifier structurally means that the sys-
tem is not well-constrained regardless of the values of its coef-
ficients a, b, c, d, and e.

scc1 scc2scc2scc1

scc1 scc1scc2 scc2

x zy

fe

a b
c d

x zy

fe

a dc
b

Figure 5: Upper row: the two perfect matchings of the system depicted in
Fig. 3 and the corresponding strongly connected components induced in the
oriented graph. The edges of the perfect matching (bold lines) are oriented
in two directions, while the other edges are oriented downwards (from equa-
tions to unknowns). Lower row: in the reduced graph, each strongly connected
component is reduced to a vertex. The edges of the reduced graph indicate
the dependencies between the different subsystems. The reduced graph has no
cycle.

The methods of [9] strongly polynomially (cf. [16] for the
difference between strongly and weakly polynomial time) com-
pute a maximum (perfect for well-constrained systems) match-
ing of the bipartite graph corresponding to a system of equa-
tions. Then, they orient the edges of the bipartite graph accord-
ing to whether they belong or not to the maximum matching.
This process is illustrated in Fig. 5 for the example depicted
in Fig. 3. For a well-constrained system, the only case dis-
cussed in this work, each strongly connected component of the
oriented graph represents an irreducible well-constrained sub-
system. The strongly connected components are independent of
the used maximum matching. Moreover, the edges of the graph
that link two distinct strongly connected components, i.e., the
edges of the reduced acyclic graph, reflect the dependencies be-
tween the different subsystems, i.e., they provide the order for
solving the different subsystems.

Some data structures are not only very convenient, but almost
necessary in order to fully and easily benefit from the decompo-
sition during the solving process, even for linear systems. These
structures are the equation-unknown bipartite graphs and the
Directed Acyclic Graphs (DAG for short) of subsystems, whose
edges indicate the existing dependencies between the subsys-
tems. These DAGs are the reduced graphs illustrated in Fig. 5.
These data structures are even more indispensable in the case
on non-linear systems, where we have to handle the multiplic-
ity of the solutions of the non-linear subsystems, or on the other
hand the absence of their solutions.

4. Reduction speeds-up linear algebra

The reduction or decomposition methods proposed in [9] re-
order unknowns and equations in polynomial time, so that the
Jacobian matrix becomes block lower triangular, and the de-
composition into well-constrained subsystems becomes more
visible. As a result, the processes of solving a linear system
involving the Jacobian or inverting the Jacobian matrix become
more efficient, thanks to the use of forward block substitution.
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Remember that solving a linear system of n equations and n un-
knowns has a computational complexity of O(n3) in the general
case by using Gauss pivoting, while solving a lower triangular
system has a smaller complexity of O(n2) [17].

Let us assume that matrix M is block lower triangular as fol-
lows:

M =

 M1,1 0 0
M2,1 M2,2 0
M3,1 M3,2 M3,3

 (11)

We will show how to exploit the decomposition of M in order
to solve a system MX = B or to invert matrix M. The proofs of
what follows are straightforward and may be found in [17].

Remark that the matrices and the vectors mentioned in
this section may either involve floating point arithmetic when
manipulated by the Newton-Raphson or homotopy methods
(section 5), interval arithmetic when manipulated by interval
solvers (section 7), or rational/modular arithmetic when han-
dled by some p-adic methods (section 6).

4.1. Inverting a block lower triangular matrix
The matrix K inverse of the square non-singular block lower

triangular matrix M is also a block lower triangular matrix. It
has the same block structure as matrix M

K = M−1 =

 K1,1 0 0
K2,1 K2,2 0
K3,1 K3,2 K3,3

 , (12)

where its blocks Kl,c are defined as:

Kl,c = 0 when c > l (13)

Kl,l = M−1
l,l (14)

Kl,c = −Kl,l

l−1∑
i=c

Ml,iKi,c when l > c (15)

In fact, it is always possible to avoid the inversion of matrix
M as it suffices to just solve less than n linear systems (n is the
number of rows or columns of M) as discussed in the following.

4.2. Solving a linear system
To solve a linear system MX = B, where X = (X1, X2, . . .)t

and B = (B1, B2, . . .)t have a structure compatible with the block
structure of matrix M, we have to successively solve the subsys-
tems X1 := solve(M1,1X1 = B1), then X2 := solve(M2,2X2 =

B2 − M2,1X1), then X3 := solve(M3,3X3 = B3 − (M3,1X1 +

M3,2X2)), etc. In other words, we have to solve the series of
the following l systems in ascending order of l:

Xl := solve(Ml,lXl = Bl −

l−1∑
i=1

Ml,iXi) (16)

The smaller are the blocks Ml,l and therefore numerous, the
greater is the number of null blocks under the diagonal, and

the more important is the speed-up in the solving process. In
order to evaluate this speed-up, let us study the complexity for
a simplified case, where M is of size n by n and all diagonal
blocks are of equal size t by t. This implies that there exists
b = n/t diagonal blocks. If we denote by β the number of non-
null matrix blocks below the diagonal, i.e., 0 ≤ β ≤ b(b−1)/2 ∈
O(b2) = O(n2/t2), then solving MX = b requires β products of
a matrix of size t by t by a column vector of size t, which costs
O(βt2), and the same number of additions of column vectors
of size t, which costs O(βt), and finally b times solving linear
systems Ml,lXl = Bl −

∑l−1
i=1 Ml,iXi, l = 1, . . . b, which costs

O(bt3), at a cost of O(t3) per inversion (Strassen inversions are
not pertinent for small matrices of size t by t when t is small).
Therefore, the overall complexity is O(βt2 +bt3) = O((β+bt)t2).
But since bt = n, the complexity becomes O((β + n)t2).

Now, let us assume that t is small as well, e.g., t ≤ 10, so
that it can be considered as constant t ∈ O(1). The overall
complexity of solving MX = B is O(β+ n). We remind that 0 ≤
β ≤ b(b − 1)/2 = O((n/t)2) = O(n2), so even if there is no null
block below the diagonal, the complexity drops from n3 to n2.
If β is of the order of n, then the complexity drops from n3 to n.
This may happen for geometric constraint systems because each
constraint like the distance between two points depends on a
constant number of variables. Therefore, the speed-up induced
by the decomposition may be considerable.

In the following, we will put α = β+n, where α is the number
of non-null block matrices. We will say that the complexity of
the solving process is O(α) and this holds because we assume
that t is constant.

The optimal cost for solving a sparse linear system and the
optional solving strategy (e.g., how to choose Gauss pivots that
allow the most efficient system solving?) are discussed in more
detail in Bomhoff’s PhD thesis [18]. The exposed problems
and the used combinatorial methods consider only the bipartite
graph of the linear system.

5. Re-parameterization speeds-up linear algebra

This section shows that re-parameterization speeds-up linear
algebra computations involved in the Newton-Raphson method
or its variants, like for example the damped Newton method
or the homotopy. In the sequel, we only consider the Newton-
Raphson method.

We assume that the system of equations is well-constrained,
the set of key unknowns is known, and the structure of the Ja-
cobian matrix of the system has already been computed by the
methods proposed in [9] and remains unchanged along the iter-
ations of the Newton-Raphson method. Each Newton-Raphson
iteration solves a linear system whose matrix has the structure
(already seen in Eq. 8 or in the example of Fig. 1) depicted in
Fig. 6.

Translating the Jacobian structure into formulas yields:

HU + AX = R, CU + LX = S (17)

where A is a square non-singular block lower triangular matrix,
U is the vector of parameters or key unknowns, and X is the
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Figure 6: The structure of the Jacobian of a big re-parameterized system.

vector of the other unknowns. Eq. HU + AX = R follows from
the derivative of the non-ignored constraints, while Eq. CU +

LX = S follows from the derivative of the ignored constraints.
Let us now define the concept of an R-structure. Consider

the following matrix extracted from the above equations:(
H A
C L

)
(18)

This matrix is said to have an R-structure (R for re-
parameterization). Two matrices are said to have the same R-
structure if and only if the sizes of their four blocks H, A, C,
and L are equal, and the block structures of their A parts are
equal.

From Eq.17, we deduce:

(C − LA−1H) U = S − LA−1R (19)

which is proved as:

(Eq.17)⇒ CU + LX = S , X = A−1(R − HU)
⇒ CU + LA−1(R − HU) = S

⇒ (C − LA−1H)U = S − LA−1R

We will solve the last linear equation for U, then deduce X,
avoiding at the same time the inversion of A. We assume that
A is of size n × n. The re-parameterization makes A highly
reducible and this is the goal of re-parameterization. This de-
composition of A allows to speed-up the solving process for lin-
ear systems Ax = B as shown in the previous section. Solving
Ax = B (for a given B) costs O(α), i.e., the number of non-null
blocks of matrix A. Equations 17 and 19 are solved for U and
X as follows:

1 Zn×1 := solve(An×nZn×1 = Rn×1) costs O(α). This yields
Z = A−1R which appears in Eq. 19, avoiding at the same
time the inversion of matrix A.

2 Kn×k := solve(An×nKn×k = Hn×k). This requires solving k
linear systems, one for each column c = 1, . . . k of K, and
the corresponding column of H. This costs O(kα). This
yields K = A−1H which appears in Eq. 19, avoiding at the
same time the inversion of matrix A.

3 Compute C−LA−1H = Ck×k−Lk×nKn×k costs O(k2n). This
term is involved in step 5.

4 Compute S − LA−1R = S k×1 − Lk×nZn×1 costs O(kn). This
term is involved in the right side of Eq. 19 and in step 5.

5 Uk×1 := solve((C − LA−1H)k×k Uk×1 = (S − LA−1R)k×1),
where only U is unknown, costs O(k3). This is Eq. 19. It
is useless to optimize this step because k is small. This
gives U.

6 Compute Rn×1 − Hn×kUk×1 costs O(nk). This term is in-
volved in step 7.

7 Xn×1 := solve(An×nXn×1 = (R − HU)n×1), where only X is
unknown, costs O(α), avoiding at the same time the inver-
sion of matrix A. This is the first equation of the system 17.
This yields X.

Now, U et X are known. Consequently, the overall cost of
solving a re-parameterized linear system is O(k(α + kn + k2)).
As k � n and because n ≤ α ≤ n(n − 1)/2 ∈ O(n2), this
cost is therefore in-between k2(n + k) in the best case and
O(kn2 + kn + k3) = O(kn2) in the worst case. This cost is always
less than n3 which is the cost of solving a linear system by clas-
sical methods (Gauss pivoting or LU decomposition). It is even
less than the cost of the inversion by the Strassen method which
is O(nlog2 7) ≈ O(n2.8...) and also less than the cost of the inver-
sion by the Coppersmith-Winograd method which is O(n2.375...)
(cf. [17] for more details, where it is shown that the inversion
of a matrix of size n× n has asymptotically the same cost as the
product of two matrices of size n × n).

Another remark deserves to be mentioned. We have as-
sumed for simplicity reasons that k � n and we do not dis-
cuss the problem of determining the maximum value of k in
order for the speed-up of the re-parameterization to remain in-
teresting or significant. The aforementioned complexity study
suggests a bound for k: if k = O(n0.375...), then our method has
the same complexity as that of CoppersmithWinograd method
which equals O(n2.375...). This bound for k is interesting be-
cause it is probably easier to find sets of key unknowns of size
O(n0.375...) rather than sets of size O(1) or O(log n).

6. Re-parameterization speeds up p-adic methods

p-adic methods are used in p-adic analysis, but also to solve
diophantine problems [19, 20, 21, 22, 23] or in computer alge-
bra computations, e.g., greatest common divisor of polynomi-
als, polynomial factorization [24, 25], or Gröbner bases com-
putation [26].

Re-parameterization can also benefit Hensel lifting used in
p-adic methods. Let us assume that X0 is a root of some re-
parameterized algebraic system F(X) = 0 modulo p (a prime
number or a power of a prime number). Our goal is to compute
X1 such that X0 + pX1 is a root of F(X) = 0 modulo p2. In the
Taylor series expansion F(X0 + pX1) = F(X0)+ pF′(X0)X1 + . . .,
we can clearly discard powers pk, k > 1 (the dots at the end of
the expansion) because they vanish modulo p2. Then, F(X0) =

0 mod p implies that F(X0) (taken modulo p2) is a multiple of
p. We compute the vector λ = F(X0)/p. Then F(X0 + pX1) =

0 ⇒ F(X0) + pF′(X0)X1 = 0 [ mod p2] ⇒ λ + F′(X0)X1 =
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0 [modp], which is a linear system, solvable modulo p. In fact,
Hensel lifting is nothing else than the Newton-Raphson method
but for the p-adics [26].

The proposed method can also be applied to compute the p-
adic expansion of the root, i.e., the roots modulo p, p2, p3, . . .
(or p2, p4, p8, . . .), starting from the root X0 modulo p.

To summarize, if F(x) = 0 is a re-parameterized system, then
each Hensel lifting may benefit from it. Note however that re-
parameterization doesn’t help to find the initial root X0 modulo
p.

7. Re-parameterization speeds up interval solvers

This section shows that interval solvers (ALIAS-C++ [27],
RealPaver [28], IBEX [29], and QUIMPER [30]) can benefit
from re-parameterization. Interval solvers use methods of in-
terval analysis [31, 32, 33, 34] that compute all the real roots of
a system f (x) = 0 within a given initial box, where f denotes a
large well-constrained re-parameterized system.

Typically, interval solvers handle a stack of boxes and work
as follows: the initial box is pushed into this stack of boxes to
be processed. While this stack is non empty, the top box B is
popped and processed. This box processing tries to reduce the
box without missing any root. One of the following cases may
happen for a box B:

• Box B is proven to contain no roots (e.g., B is already an
empty box).

• Box B is proven to contain only one regular root (the Ja-
cobian is non-null), e.g., by some tests using Kantorovith
theorem [35]. In this case, this unique root is tuned
by some iterations of the standard (non-interval version)
Newton-Raphson method and inserted into a list of roots.

• Box B is too small to be subdivided again and it is impos-
sible to prove that it contains no roots. Box B may contain
multiple roots, close roots, or no root at all, but the used
arithmetic precision is insufficient. In this case, box B is
inserted into a list of residual boxes.

• Box B has not been significantly reduced, so it may con-
tain several real roots. In this case, B is bisected along
its largest interval (other bisection choices have also been
studied [27, 31, 32]) and the resulting boxes are pushed
into the stack of non-processed boxes.

Several methods have been proposed in the interval analy-
sis community for processing a box B, i.e., finding the roots
of f (x) = 0 within B, or reducing B (maybe to the empty
box) without missing any of its roots. One may look for the
Krawczyck-Moore or the Sengupta-Hansen operators [32], just
to cite few ones.

The simplest approach just solves with interval computations
the linear system. If we denote by x0 is the center of box B,
then:

f (x ∈ B) = f (x0 + (x − x0)) ∈ f (x0) + f ′(B)(x − x0) (20)

We are looking for x ∈ B solution of f (x0)+ f ′(B)(x−x0) = 0.
Fig. 7 left provides a geometric interpretation of this equation
for a 1D problem. Let us put ∆x = x − x0. ∆x is the solution
of the interval-wise linear system f ′(B)∆x = − f (x0). f ′(B) is
first computed by intervals, by exploiting the sparsity of the Ja-
cobian f ′. Then, we compute ∆x := solve( f ′(B)∆x = − f (x0))
by exploiting the R-structure of the Jacobian, through the use of
the of the methods described in section 5.

A main difficulty arises when any of the sub-matrices of the
diagonal of the Jacobian f ′(B) is a singular matrix. This is the
case of the 1D example of Fig. 7.

A solution to the aforementioned problem can be found by
using the centered evaluation form. Let us consider J = f ′(B)
and denote by J0 the center of J, which is a non-singular matrix
with probability one. It is also possible to use J0 = f ′(x0). Let
us put ∆J = J − J0. It follows that:

f (x0) + J∆x = 0
⇒ f (x0) + (J0 + ∆J)∆x = 0
⇒ f (x0) + J0∆x + ∆J∆x = 0
⇒ f (x0) + J0∆x + ∆J(x − x0) = 0, x ∈ B

⇒ f (x0) + J0∆x + ∆J(B − x0) = 0
⇒ J0∆x = − f (x0) − ∆J(B − x0) (21)

This last equation represents a linear system having an un-
known ∆x. The elements of matrix J0 are floating point num-
bers, not intervals. With probability one, J0 is non-singular. In
addition, J0 has the R-structure of f , so solving the linear sys-
tem can benefit from re-parameterization. Only the vector at
the right side of the equation −( f (x0) + ∆J(B − x0) has interval
elements. Geometrically, the hypersurface of each equation is
bounded by a thick hyperplane of constant thickness, it is the
convex hull of the cones of the previous linearization by inter-
vals.

A simple 1D example is depicted in Fig. 7, where B =

[−2, 2], x0 = 0, f (x0) = −1, and f ′(B) = [−1/3, 2/3]. The first
linearization by intervals is f (x0 +∆x) ∈ f (x0)+ f ′(B)∆x, which
gives −1 + [−1/3, 2/3]∆x = 0. Geometrically, the arc of the
curve is bounded by (or enclosed in) the two gray-shaded trian-
gles, cf. left side of Fig. 7. f ′(B) is singular. The middle side of
Fig. 7 shows the second linearization by intervals: the centered
form. The arc of the curve is covered by a thick straight line,
i.e., by the thick band of equation J0∆x = − f (x0)−∆J(B− x0).
Numerically, 1/6x−[0, 2] = 0. The right side of Fig. 7 superim-
poses the left and middle side coverings or bounds of the same
figure. We observe that the intersection of the straight line Ox
with the thick line is greater than its intersection with the two
gray-shaded triangles. Fig. 8 illustrates a 2D example.

Once ∆x is computed, box B is updated as B := B∩(x0 +∆x).
If this intersection is empty, then B doesn’t contain any root. If
the box is not reduced, then it is split into two boxes, e.g., using
the largest side. Bisection is unavoidable because it is the only
way to separate the roots.

The Gauss-Seidel idea can be used to optimize the computa-
tion of B∩(x0+∆x): each i-th coordinate Bi of B may be reduced
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Figure 7: A function may be bounded in two ways by an interval-wise linear function. Left: f (x) ∈ f (x0) + f ′(B)(x − x0) = −1 + [−1/3, 2/3]x is the equation of
the two gray-shaded triangles. Middle: f (x) ∈ x/6 − [0, 2] is the equation of the gray-shaded band. Right: the left and middle figures superimposed, where the
gray-shaded band is the convex hull of the two gray-shaded triangles.

Figure 8: Linearization by intervals of a 2D system within a box B. The two
involved curves are enclosed in two thick lines represented by the two gray-
shaded bands. The solution of this 2D system is represented by the reduced
box drawn in dashed lines.

with Bi := Bi∩ (x0 +∆x)i, as soon as it is available. The follow-
ing computations use the latest and more precise value of Bi. If
Bi is empty, then the processed box B contains no root. This
idea is used in the Hansen-Sengupta operator.

Another classical optimization used in the Hansen-Sengupta
operator is preconditioning, which limits the wrapping ef-
fect [36] of interval computations. The preconditioned sys-
tem g(x) = f ′(x0)−1 f (x) = 0 is solved instead of the system
f (x) = 0. By construction, g′(x) = f ′(x0)−1 f ′(x), so g′(x0) is
the identity matrix. If f and g were linear, then the h-th hy-
perplane of equation g′h(x) = 0 would be perpendicular to the
axis xh. The smallest is the box, the closer is the hypersurface
g′h(x) = 0 to a hyperplane. Is it possible to exploit both re-
parameterization and preconditioning at the same time? The
difficulty comes from the fact that g′ doesn’t have the same
R-structure as f ′. Indeed, the matrix product of two matrices
having the same R-structure doesn’t have the same R-structure
in general.

To summarize, interval solvers may in principle benefit from
re-parameterization, but further work has to be done to address
the wrapping effect issue for re-parameterized systems.

8. Experimental results

We implemented our method for solving a linear re-
parameterized system in Matlab and compared it with the naive
Gaussian elimination method. We used the Matlab command

X = M\B to solve the linear system MX = B with the naive
Gaussian elimination method. As motivated earlier in the pa-
per, exploiting and thus benchmarking re-parameterization at
the lowest level of the underlying linear algebra routines is
highly motivated by the fact that most existing solvers (Newton-
Raphson, homotopy, etc.) rely on these low-level linear algebra
routines.

For the hexahedron problem, there is no significant difference
between the two methods as the system is too small. There-
fore, we have generated bigger random systems having the R-
structure (section 5) and made a comparison.

For a system having the R-structure depicted in Figure 6, the
performance comparison for the naive method and ours are pro-
vided in Table 2. In these experiments and for each combination
of n (system size) and m (block size), we generated 100 random
systems, solved them, and reported the average running time in
milliseconds in the aforementioned table, where n is the size
of the system, k is the number of key unknowns, and m is the
size of each diagonal block. In other words, H is a (n − k) × k
matrix, C is a k × k matrix, A is a (n − k) × (n − k) matrix, L is
a k × (n − k) matrix, and each block of A, i.e., Ai, j is a m × m
matrix (cf. section 5 for the definition of matrices H, A, C,
and L). The table column labeled “Naive” reports the solving
timings for the naive Gaussian elimination method while the
table column labeled “Re-param.” reports the solving timings
for our re-parameterization method. All non-zero entries of the
involved matrices were generated randomly.

The empirical results clearly confirm that the re-
parameterization method is significantly faster than the
naive one and that it allows a more efficient solving for big
systems of equations. For the reported experiments, our re-
parameterization achieved an approximate ×26.6 performance
gain over the naive method. For k = 5 and k = 10, we obtained
the same timings (and thus the same speed-ups) as those
reported in table 2. These experiments emphasize another
interesting fact about re-parameterization: the bigger are the
systems of equations, the more important is the performance
gain of the re-parameterization (×3.7 gain for systems with
n = 502, ×8.1 gain for systems with n = 1002, ×21.1 gain
for systems with n = 2002, and ×73.4 gain for systems
with n = 4002). This significant speed-up behavior shows
the importance and the relevance of our re-parameterization
method and highly motivates its adoption for bigger systems
often encountered in practice.
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No. n k m Naive (ms) Re-param. (ms)
1 502 2 10 18.1 4.2
2 502 2 50 17.2 4.8
3 502 2 100 17.4 5.7
4 1002 2 10 71.5 7.6
5 1002 2 50 83.2 10.4
6 1002 2 100 83.5 12.0
7 2002 2 10 407.3 15.6
8 2002 2 50 426.8 20.1
9 2002 2 100 402.2 25.3
10 4002 2 10 2708.6 33.0
11 4002 2 50 2672.4 33.9
12 4002 2 100 2743.7 46.3

Table 2: Performance comparison of the naive method and our re-
parameterization method for solving big linear systems. Significant speed-ups
are achieved by our re-parameterization method over the naive one.
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Figure 9: (a) The naive 3D pentahedron GCSP that yields an irreducible well-
constrained system of 9 equations in 9 unknowns after using placement rules.
(b) Re-parameterizing the pentahedron GCSP by introducing key unknowns
representing the distances from 3 of its its vertices (composing one triangular
face) to vertex I (intersection of its concurrent edges) results in a much smaller
well-constrained system of 3 equations in 3 unknowns that is solved more effi-
ciently.

Reducing the size of big irreducible subsystems indeed
improves the performance of different solvers underlying
CAD applications. So further to the aforementioned (lin-
ear algebra) low-level experiments, we demonstrate the ben-
efits of re-parameterization technique by presenting the pen-
tahedron problem [37, 38] that concretely shows how re-
parameterization operates at the higher geometric level in order
to reduce geometric constraint systems underlying CAD appli-
cations, and thus allows to solve them more efficiently.

A 3D pentahedron is a polyhedron composed of 6 vertices, 9
edges, and 5 faces, two of which are triangles and the remaining
three are quadrilaterals, cf. Fig. 9a. The geometric constraint
system traditionally associated to the 3D pentahedron is defined
by the lengths of its edges and the planarity of its quadrilateral
faces, translating into an under-constrained naive algebraic for-
mulation of 12 equations in 18 unknowns, which can be reduced
to a well-constrained irreducible system of 9 equations in 9 un-
knowns by using a placement rule that fixes one triangular face
of the pentahedron in a plane, say z = 0, and thus fixes the 9
coordinates of its vertices, leaving the 9 coordinates of the other
triangular face as system variables.

Even if the naive algebraic formulation of the pentahedron
is simple, it is still difficult to solve by interval solvers, com-
puter algebra (even when the distance parameters are instan-
tiated with numeric values), and also Cayley-Menger deter-

minants and their generalizations [39] that have been used to
solve problems similar to the pentahedron (e.g., the octahedron
GCSP). Most importantly, the pentahedron problem is unsolv-
able with only one key unknown by the re-parameterization
technique proposed by Gao et al. [8] for solving 3D simple ge-
ometric problems similar to the 3D pentahedron.

Our re-parameterization of the pentahedron problem exploits
a geometric property which is specific to non-degenerate pen-
tahedra. This property states that the three supporting lines of
the pentahedron edges AD, BE, and FG intersect at the same
point I (Fig. 9a), which may be located at infinity if these lines
are parallel (a case that is not considered in these experiments
but which has been studied in [37]). Therefore, using this prop-
erty, if we apply the “law of cosines” (cf. Fig. 9b) to obtain the
equation of the angle α1 of triangle ABI at vertex I, replace this
equation into the equation of angle α1 obtained similarly but by
considering triangle DEI (both triangles lie on the supporting
plane of the same quadrilateral face ABED and share the same
angle at vertex I), and do the same for the triangles and angles
α2 and α3 defined by the pairs of triangles lying in the two sup-
porting planes of the remaining two quadrilateral faces of the
pentahedron, we obtain a new formulation/re-parameterization
of the pentahedron GCSP described by Eq. 22 of Fig. 10, where
variables XD, XE , and XF denoting the distances from respective
vertices D, E, and F to vertex I represent the key unknowns of
our new well-constrained re-parameterized system of 3 equa-
tions in 3 unknowns, which is largely smaller than the naive
one.

As a summary, by using re-parameterization, we reduced the
pentahedron GCSP from an irreducible 9 equations/unknowns
system into a simple 3 equations/unknowns system. Several
experiments that we conducted in order to solve both systems
(naive and re-parameterized) by the interval solver provided by
ALIAS-C++ interval analysis library [31] revealed a consider-
able performance enhancement (×42).

We shall note that the new formulation of the pentahedron
GCSP is an ad hoc re-parameterization that doesn’t generalize
to other geometric problems. Nevertheless, this example gives
an indication of the solving process performance improvements
that the re-parameterization may bring when implementing the
methods we propose in this work.

9. Re-parameterization at a higher level

Exploiting re-parameterization at the lowest level (of the
widely used linear-algebra routines) has the advantages of sim-
plicity and factorization, because it permits to reuse classical
solving methods like Newton-Raphson, homotopy, and interval
Newton methods at a small cost of minor implementation mod-
ifications or just by recompiling code, and makes these new re-
parameterization-aware solver implementations a more efficient
alternative to classical implementations underlying the solvers
used in CAD applications, geometric modeling by constraints,
or other fields. However, re-parameterization can also be used
at a higher level. For instance, for an interval-based solver, it
is possible to handle only boxes involving the parameters U,
e.g., bisecting only boxes implying U. The boxes involving
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Figure 10: New re-parameterization of the 3D pentahedron GCSP that yields a well-constrained irreducible system of 3 equations in 3 key unknowns XD, XE , and
XF .

variables X are computed as a function of U through interval
computations. The main difficulty at the higher level resides
in the necessity for completely changing the implementation of
the considered solver.

10. Preliminary results, and emerging questions

Many questions come into mind after analyzing the current
work. The first one consists in whether interval Newton solvers
can benefit from both re-parameterization and preconditioning,
or from other ways of limiting the wrapping effect? For in-
stance, among the many contraction operators available in in-
terval analysis (Krawczyck-Moore operator, Hansen-Sengupta
operator, etc.) or interval propagation operators (Box consis-
tency: 2B, Box, BC4, HC4, Mohc, etc. [32]), is there any
one that is suitable, or could be adapted to take advantage
of re-parameterization? The same question arises for solvers
based on tensorial Bernstein bases [40] or on Bernstein poly-
topes [41].

Another point concerns which redundant equations should be
ignored? For example, one may think that it is better to ignore
the highest degree equations.

For the sake of simplicity, we assumed that the number of
key unknowns k is a constant or is smaller than n the number
of unknowns and equations of the system. Presumably, a value
of k of the order of log n or

√
n remains interesting. In this

sense, can we specify the maximum value of k that remains
interesting?

Until now, we have not addressed the problem of comput-
ing a smaller set of key unknowns, whether for systems of
equations or for geometric constraint systems. We remind that
in [10, 12, 14], polynomial time algorithms have been proposed
for geometric constraint systems. These algorithms compute
small (may be not the smallest) sets of key unknowns. The
generalization of these algorithms to more general (other than
geometric constraint systems) sparse systems of equations is an
open problem. In his PhD thesis [18], Bomhoff studied some
similar problems related to systems of equations, for which the
computation of the optimal solution is NP-hard, but the poly-
nomial time computation of solutions close to the optimum is
possible.

Similarly, one might think of the applicability of re-
parameterization to other domains, like in linear algebra com-
putations (SVD or QR decompositions, etc.), for solving linear
programming problems, or for some symbolic computations.

Also for simplicity purposes, we have employed combinato-
rial methods for systems decomposition. Unfortunately, these

methods detect only the structural dependencies and are un-
able to detect dependencies due to geometric theorems. Wit-
ness interrogation [42, 43, 44] allows to detect all the depen-
dencies and also performs systems decomposition, assuming
that a typical witness of the desired solution is known [45].
Hence the question: can we substitute the combinatorial meth-
ods by the witness method in order to take advantage from re-
parameterization?

In this work, we focused only on well-constrained systems
of equations, not on systems of geometric constraints. We have
systematically transformed systems of geometric constraints
into systems of equations, and then applied some placement
rules (fixing three coordinates in 2D and six coordinates in 3D)
in an ad hoc fashion in order to transform the original under-
constrained geometric systems into well-constrained systems
of equations. These placement rules depend on the coordinate
system and do not constitute geometric constraints. This small
difference between systems of equations and systems of geo-
metric constraints may seem innocuous or insignificant at first
glance. Unfortunately, it introduces many complications.

From a mathematical point of view, the combinatorial char-
acterization, called the rigidity, of geometric constraint systems
in 3D is still a research topic even for simple cases, where
all constraints are generic distances between points. In 2D,
the combinatorial characterization of the rigidity is given by
Laman’s theorem, but the latter is very restrictive, as for exam-
ple, it assumes that all constraints are generic distances between
points, excluding cocyclicity constraints, alignment constraints,
etc.

In computer science, this difference complicates the de-
composition of geometric constraint systems by combinatorial
methods [5]. We may think that using the re-parameterization
technique for geometric constraint systems is more difficult
than using it for systems of equations, and that many works
will be dedicated to these two questions.

11. Conclusion

In this work, we focused on reducing irreducible non-linear
systems of equations, by exploiting the re-parameterization
technique. The two main motivations of our work come from
the inability of the decomposition methods proposed in [9] to
reduce re-parameterized well-constrained systems of equations,
and from the fact that for systems involving more than one pa-
rameter in their formulation, it is very difficult to exploit the
re-parameterization technique [8, 10, 11, 12].

The current work generalizes the decomposition meth-
ods of [9] and makes them applicable to well-constrained
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re-parameterized systems. We propose to exploit the re-
parameterization technique at the lowest level of the om-
nipresent routines of linear algebra, so that many classical
solvers, with a small cost of minor modifications, benefit from
this technique and exhibit significant performance enhance-
ments. The computational complexity gain may be very impor-
tant. Therefore, our method opens the way to use the Newton-
Raphson method and its variants (homotopy, interval solvers,
etc.) for solving much larger systems with few key unknowns.

Acknowledgment

This publication was made possible by NPRP grant #09-906-
1-137 from the Qatar National Research Fund (a member of
Qatar Foundation). The statements made herein are solely the
responsibility of the authors.

References
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